Макияж. Уход за волосами. Уход за кожей

Макияж. Уход за волосами. Уход за кожей

» » Леонардо да винчи как ученый и изобретатель. Леонардо да Винчи - учёный, изобретатель, писатель, музыкант

Леонардо да винчи как ученый и изобретатель. Леонардо да Винчи - учёный, изобретатель, писатель, музыкант

Леонардо да Винчи родился 15 апреля 1452 года в селении Анкиато вблизи города Винчи (отсюда и произошла приставка к его фамилии). Отец и мать мальчика не были женаты, поэтому первые годы Леонардо провел с матерью. Вскоре отец, служивший нотариусом, забрал его к себе в семью.

В 1466 году да Винчи поступил подмастерьем в мастерскую художника Верроккьо во Флоренции, где также обучались Перуджино, Аньоло ди Поло, Лоренцо ди Креди, работал Ботичелли, бывал Гирландайо и др. В это время Леонардо увлекся рисованием, скульптурой и моделированием, изучал металлургию, химию, черчение, осваивал работу с гипсом, кожей, металлом. В 1473 году да Винчи получил квалификацию мастера в Гильдии Святого Луки.

Раннее творчество и научная деятельность

В начале творческого пути Леонардо практически все свое время посвящал работе над картинами. В 1472 – 1477 художник создал картины «Крещение Христа», «Благовещение», «Мадонна с вазой». В конце 70-х годов закончил «Мадонну с цветком» («Мадонну Бенуа»). В 1481 году была создана первая крупная работа в творчестве Леонардо да Винчи – «Поклонение волхвов».

В 1482 году Леонардо переезжает в Милан. С 1487 года да Винчи занимался разработкой летательной машины, которая была основана на птичьем полете. Леонардо создал сначала простейший аппарат на основе крыльев, а затем разработал механизм аэроплана с полным управлением. Однако воплотить идею в жизнь не удалось, так как у исследователя не было мотора. Кроме того, Леонардо изучал анатомию и архитектуру, открыл ботанику как самостоятельную дисциплину

Зрелый период творчества

В 1490 году да Винчи создает картину «Дама с горностаем», а также знаменитый рисунок «Витрувианский человек», который иногда называют «каноническими пропорциями». В 1495 – 1498 годах Леонардо работал над одним из самых главных своих произведений – фреской «Тайная вечеря» в Милане в монастыре Санта-Мария деле Грацие.

В 1502 году да Винчи поступил на службу военным инженером и архитектором к Чезаре Борджиа. В 1503 художник создает картину «Мона Лиза» («Джоконда»). С 1506 года Леонардо служит при короле Франции Людовике XII.

Последние годы

В 1512 году художник под покровительством папы Льва Х переезжает в Рим.

С 1513 по 1516 года Леонардо да Винчи живет в Бельведере, работает над картиной «Иоанн Креститель». В 1516 году Леонардо по приглашению французского короля поселяется в замке Кло-Люсе. За два года до смерти у художника онемела правая рука, ему было трудно самостоятельно передвигаться. Последний годы своей краткой биографии Леонардо да Винчи провел в постели.

Умер великий художник и ученый Леонардо да Винчи 2 мая 1519 года в замке Кло-Люсе близ города Амбуаз во Франции.

Другие варианты биографии

Тест по биографии

Интересный тест на знание биографии Леонардо да Винчи.

Какой вклад внес Леонардо да Винчи в науку и искусство, Вы узнаете из этой статьи.

Леонардо да Винчи вклад в науку

Будущий итальянский ученый и художник, изобретатель и ученый, музыкант и писатель, а также представитель искусства Возрождения, появился на свет в поселке Анкиато около городка Винчи 15 апреля 1452 года. За свою жизнь он успел нарисовать много картин и рисунков, создать проекты изобретений, которые потрясли мир. Но обо всем поочередно.

Леонардо да Винчи вклад в биологию

Его интересовали вопросы патологии, а точнее прогрессирующие изменения, происходящие под действием болезни. Ученый был первым, кто описал атеросклероз после вскрытия тела старика, и тщательно его изучив.

Также да Винчи интересовала такая область биологии, как физиология. Он изучал принципы и причины проявления кашля, дыхания, зевоты, биение сердца, рвоты, чихания, системы мочевыделения и чувственных раздражений. В работе мускул Леонардо видел принципы механики, кровообращение пытался объяснить через правила гидродинамики. После тщательного изучения работы глаза, им было создано модель «Сamera Оbscura», с которой он не расставался.

Также да Винчи особый интерес проявлял к гемодинамическим проблемам физиологии сердца. Им была осуществлена попытка создания первого протеза клапана аорты. Кроме того он описал и зарисовал аппендикс, сосудистую систему внутри печени и речевой аппарат человека, точнее его аномалии.

Леонардо да Винчи вклад в медицину

Особенно заслуживает внимания вклад Леонардо да Винчи в анатомию. Глубокие познания в этой области позволили ему максимально изучить организм человека и правдоподобно его изучить. Его анатомические рукописи и рисунки были обнаружены в 1778 году и стали доступны обществу.

Художником в совершенстве было изображено скелет, связав в рисунке мускулы и нервы, прикрепленные к костям. Леонардо был первым человеком, который точно и правильно нарисовал пропорции и формы частей человеческого скелета. Ученый впервые предположил, что крестец хребта состоит из 5 позвонков, а не 3, как думали раньше. Также он описал кифозы и лордозы позвоночного столба, суставные поверхности костей.

Леонардо да Винчи вклад в культуру

Среди ранних работ художника были картины «Крещение», Мадонна с цветком». Это глубокие произведения с тщательной детализацией и обобщенными формами. Но сильное увлечение наукой его некогда отвлекало от рисования. И такие работы как «Поклонение волхвов» и «Святой Иероним» остались недописанными.

Леонардо да Винчи вклад в искусство особенно был плодотворным в миланский период творчества 1482 – 1499 годов. Он создал скульптурный монумент конной статуи Франческо Сфорца и большое количество архитектурный проектов. К сожалению, до нас они не дошли: либо были уничтожены врагами, либо временем. Среди живописи, то наиболее популярными картинами миланского периода являются «Тайная вечеря» и «Мадонна в гроте». Еще одной вершиной творчества да Винчи была знаменитая на весь «Джоконда» или «Мона Лиза».

Таким образом, Леонардо да Винчи вклад в историю науки и культуры настолько огромен, что его исследования намного опередили свое время. Он был новатором и экспериментатором, гением и фанатиком своего дела. Его зарисовки, рисунки, а также наброски были настолько точны и подтверждаются современными учеными при помощи чудо техники ХХІ века.

Надеемся,что из этой статьи Вы узнали, какой вклад в науку и искусство внес Леонардо да Винчи.


Для Леонардо искусство всегда было наукой. Заниматься искусством значило для него производить научные выкладки, наблюдения и опыты. Связь живописи с оптикой и физикой, с анатомией и математикой заставляла Леонардо становиться ученым. И часто ученый оттеснял художника.

Как ученый и инженер Л. да Винчи обогатил проницательными наблюдениями почти все области науки того времени, рассматривая свои заметки и рисунки как подготовительные наброски к гигантской энциклопедии человеческих знаний. Скептически относясь к популярному в его эпоху идеалу ученого-эрудита, Л. да Винчи был наиболее ярким представителем нового, основанного на эксперименте естествознания.

Математика

Особенно высоко ценил Леонардо математику. Он считал, что «никакой достоверности нет в науках там, где нельзя приложить ни одной из математических дисциплин, и в том, что не имеет связи с математикой». Математические науки обладают, по его словам, «высшей достоверностью, накладывают молчание на язык спорщиков». Математика была для Леонардо опытной дисциплиной. Не случайно Леонардо да Винчи был изобретателем многочисленных приборов, предназначенных для решений математических задач (пропорциональный циркуль, прибор для вычерчивания параболы, прибор для построения параболического зеркала и др.) Он первый в Италии, а может быть и в Европе, ввел в употребление знаки + (плюс) и – (минус).

Леонардо оказывал предпочтение геометрии перед другими разделами математики. Он признавал важную роль числа и очень интересовался числовыми соотношениями в музыке. Но число для него значило меньше, чем геометрия, поскольку арифметика опирается на «конечные величины», тогда как геометрия имеет дело с «бесконечными величинами». Число слагается из отдельных единиц и представляет собой нечто монотонное, лишенное магии геометрических пропорций, которые имеют дело с поверхностями, фигурами, пространством. Леонардо пытался достичь квадратуры круга, - то есть создать квадрат, равновеликий кругу. Он упорно работал над этой проблемой, как и над другими головоломными задачами, в том числе с криволинейными и прямолинейными поверхностями, применяя целый ряд различных способов. Леонардо изобрел особый инструмент для черчения овалов и впервые определил центр тяжести пирамиды. Высшим выражением величия геометрии были пять правильных тел, почитавшихся в классической философии и математике. Это единственные твердые тела, которые состоят из равных многоугольников и симметричны по отношению ко всем своим вершинам. Это тетраэдр, гексаэдр, октаэдр, додекаэдр, икосаэдр. Они могут быть усеченными – то есть со срезанными симметрично вершинами, превращенными таким образом в полуправильные тела. Пик увлечения Леонардо математикой пришелся на время его сотрудничества с математиком Лукой Пачоли, появившемуся в 1496 году при дворе Сфорца. Леонардо создал для трактата Пачоли «О Божественной пропорции» серию иллюстраций.

Изучение геометрии позволило ему впервые создать научную теорию перспективы, и он был одним из первых художников, писавших пейзажи, сколько-нибудь соответствующие действительности. Правда, у Леонардо пейзаж еще несамостоятелен, это декорация к исторической или к портретной живописи, но какой огромный шаг по сравнению с предшествующей эпохой и сколько тут ему помогла верная теория!

Механика

Особое внимание Леонардо да Винчи уделял механике, называя ее "раем математических наук" и видя в ней главный ключ к тайнам мироздания. Теоретические выводы Леонардо в области механики поражают своей ясностью и обеспечивают ему почетное место в истории этой науки, в которой он является звеном, соединяющем Архимеда с Галилеем и Паскалем.

Работы Леонардо в области механики могут быть сгруппированы по следующим разделам: законы падения тел; законы движения тела, брошенного под углом к горизонту; законы движения тела по наклонной плоскости; влияние трения на движение тел; теория простейших машин (рычаг, наклонная плоскость, блок); вопросы сложения сил; определение центра тяжести тел; вопросы, связанные с сопротивлением материалов. Перечень этих вопросов делается особо значительным, если учесть, что многие из них разбирались вообще впервые. Остальные же, если и рассматривались до него, то базировались в основном на умозаключениях Аристотеля, весьма далеких в большинстве случаев от истинного положения вещей. По Аристотелю, например, тело, брошенное под углом к горизонту, сначала должно лететь по прямой, а в конце подъема, описав дугу круга, падать вертикально вниз. Леонардо да Винчи рассеял это заблуждение и нашел, что траекторией движения в этом случае будет парабола.

Он высказывает много ценных мыслей, касающихся сохранения движения, подходя вплотную к закону инерции. «Ни одно чувственно воспринимаемое тело, - говорит Леонардо, - не может двигаться само собою. Его приводит в движение некоторая внешняя причина, сила. Сила есть невидимая и бестелесная причина в том смысле, что не может изменяться ни по форме, ни по напряжению. Если тело движимо силой в данное время и проходит данное пространство, то та же сила может подвинуть его во вдвое меньшее пространство. Всякое тело оказывает сопротивление в направлении своего движения. (Здесь почти угадан Ньютонов закон действия, равного противодействию). Свободно падающее тело в каждый момент своего движения получает известное приращение скорости. Удар тел есть сила, действующая в течение весьма недолго времени». На основании этих выводов Леонардо убедился в том, что аристотелевское предположение, что тело, движимое в два раза большей силой, проделает вдвое больший путь или что тело, весящее вполовину меньше, движимое той же силой, также проделает в два раза большее расстояние, на практике неосуществимо. Леонардо решительно отрицает возможность вечно движущегося без посторонней силы механизма. Он основывается на теоретических и опытных данных. По его теории, всякое отраженное движение слабее того, которое его произвело. Опыт показал ему, что шар, брошенный о землю, никогда (вследствие сопротивления воздуха и несовершенной упругости) не поднимается на ту высоту, с которой он брошен. Этот простой опыт убедил Леонардо в невозможности создать силу из ничего и расходовать работу без всякой потери на трение. О невозможности вечного движения он пишет: «Первоначальный импульс должен рано или поздно израсходоваться, а потому в конце концов движение механизма прекратится».

Леонардо знал и использовал в своих работах метод разложения сил. Для движения тел по наклонной плоскости он ввел понятие о силе трения, связав ее с силой давления тела на плоскость и правильно указав направление этих сил.

Леонардо работал и над конкретными инженерными проектами для своих покровителей – и как консультант, и как создатель простых утилитарных предметов вроде клещей, замков или домкратов, изготовлявшихся в его мастерской. Подъемные механизмы имели большое значение при подъеме с земли тяжелых грузов, например, каменных блоков, - особенно при погрузке на транспортные средства. Леонардо впервые сформулировал мысль о том, что в этих простейших машинах выигрыш в силе происходит за счет потери во времени.

Гидравлика

Большое место в трудах Леонардо да Винчи занимала гидравлика. Он начал заниматься гидравликой еще в ученические годы и возвращался к ней в течение всей своей жизни. Как и в других областях своей деятельности, Леонардо сочетал в гидравлике разработку теоретических принципов с решением конкретных прикладных задач. Теория сообщающихся сосудов и гидравлических насосов, соотношение между скоростью течения воды и площадью сечения - все эти вопросы в основном родились из прикладных инженерных задач, которыми он так много занимался (постройка шлюзов, каналов, мелиорация). Леонардо спроектировал и частично осуществил постройку ряда каналов (канал Пиза - Флоренция, оросительные каналы на реках По и Арно). Он почти вплотную приблизился к формулировке закона Паскаля, а в теории сообщающихся сосудов практически предвосхитил идеи XVII в.

Леонардо занимала также теория водоворота. Имея довольно ясное понятие о центробежной силе, он заметил, что «вода, движущаяся в водовороте, движется так, что те из частиц, которые ближе к центру, имеют большую вращательную скорость. Это – поразительное явление, потому что, например, частицы колеса, вращающегося вокруг оси, имеют тем меньшую скорость, чем они ближе к центру: в водовороте мы видим как раз обратное». Леонардо пытался классифицировать и описать сложные конфигурации воды в турбулентном движении.

Леонардо, которого называли «хозяином воды», консультировал правителей Венеции и Флоренции; соединяя теорию и практику, он стремился показать, почему смерчи поглощают берега, доказать, что для достижения желаемых результатов следует использовать неиссякаемую силу движущейся воды, а противостоять ей.

Еще более отчетливы и замечательны воззрения Леонардо на волнообразное движение. «Волна – говорит он, - есть следствие удара, отраженного водою». «Часто волны движутся быстрее ветра. Это происходит оттого, что импульс был получен, когда ветер был сильнее, чем в данное время. Скорость волны не может измениться мгновенно». Чтобы пояснить движение частиц воды, Леонардо начинает с классического опыта новейших физиков, т.е. бросает камень, производя круги на поверхности воды. Он дает чертеж таких концентрических кругов, затем бросает два камня, получает две системы кругов и задается вопросом: «Отразятся ли волны под равными кругами?» затем он говорит: «Таким же образом можно объяснить движение звуковых волн. Волны воздуха удаляются кругообразно от места своего происхождения, один круг встречает другой и проходит далее, но центр постоянно остается на прежнем месте»

Этих выписок достаточно, чтобы убедиться в гениальности человека, в конце XV века положившего основание волнообразной теории движения, которая получила полное признание лишь в XIX столетии.

Физика

В области практической физики Леонардо также выказал замечательную изобретательность. Так, задолго до Соссюра, он соорудил весьма остроумный гигрометр. На вертикальном циферблате находится род стрелки или весов с двумя шариками равного веса, из которых один из воска, другой из ваты. В сырую погоду вата притягивает воду, становится тяжелее и перетягивает воск, вследствие чего рычаг подвигается, и по количеству пройденных им делений можно судить о степени влажности воздуха. Кроме того, Леонардо изобретал разные насосы, стекла для усиления света ламп, водолазные шлемы.

Еще Вентури утверждал, что Леонардо раньше Кардано и Порты изобрел камеру – обскуру. Теперь это вполне доказано благодаря исследованиям Гроте, который нашел у да Винчи соответствующие рисунки и описания.

В области прикладной физики весьма интересна изобретенная Леонардо паровая пушка. Действие ее состояло в том, что в сильно нагретую камеру вводилась теплая вода, мгновенно превращавшаяся в пары, которые своим давлением вытесняли ядро. Кроме того, он изобрел вертел, вращавшийся посредством токов теплого воздуха.

Военное дело

Нельзя обойти молчанием различные военные изобретения Леонардо. Замечательным примером того, как он относился к военным механизмам, является его проект гигантского самострела. Испытывая отвращение к войне, которую он называл «отвратительным безумием», Леонардо в то же время был увлечен созданием самого разрушительного на тот момент оружия, которым он занялся не только по желанию своих покровителей, но и, будучи сам захвачен возможностью создания систем, способных тысячекратно увеличить могущество человека. Кроме того, он задумывался над созданием разрывных снарядов, с тем, чтобы метательное орудие обладало еще большей пробивающей силой.

Остроумны изобретенные Леонардо землекопательные машины, состоящие из сложной системы рычагов, движущих одновременно десятки лопат. В виде курьеза можно указать также на изобретенные им колесницы с вращающимися серпами, которые, врезываясь в неприятельскую пехоту, должны были косить солдат.

Гораздо более важны чертежи и объяснения да Винчи, относящиеся к сверлению пушечных жерл и к отливке различных частей орудия. Особенно он интересовался различными бронзовыми сплавами. Весьма подробно исследовал Леонардо обстоятельства полета снарядов, интересуясь этим предметом не только как артиллерист, но и как физик. Он разбирал такие вопросы, как, например, какую форму и величину должны иметь зерна пороха для более скорого сгорания или для более сильного действия? Какой формы должна быть картечь для более быстрого полета? На многие из таковых вопросов исследователь отвечает вполне удовлетворительно.

Большой мечтой Леонардо – инженера был полет – созданию Uccello («большой птицы») он придавал большое значение. Тот, кто мог покорить небо, действительно имел право заявить, что создал «вторую природу».

Как и во всех других исследованиях Леонардо, основы были заложены в природе. Птицы и летучие мыши подсказали ему, как этого достичь. Но Леонардо не собирался следовать примеру легендарного героя Дедала, привязав покрытые перьями птичьи крылья к рукам, чтобы взлететь, махая ими. Он с самого начала видел, что проблема заключалась в соотношении силы и веса. Леонардо достаточно хорошо знал анатомию, чтобы понимать, что рука человека не создана для размахивания с силой, эквивалентной силе птичьего крыла. Нужно отметить, что он начал изучать полет птиц, поскольку ему было необходимо понять принципы, на которые он мог опираться, чтобы достичь положительных результатов, используя лишь силу человека. До 1490 года он придумал каркасную конструкцию крыльев, образцом для которой было строение крыльев летающих существ, но он учитывал и строение человеческих мышц, особенно мышц ног. Возможно, педали могли дополнить мышцы рук и груди в достаточной мере, чтобы достичь желаемого результата. В крыльях использованы «кости» из дерева, «сухожилия» из веревок и «связки» из кожи, чтобы воспроизвести сложные движения птичьего крыла. Задумано было прекрасно, но он пришел к выводу, что ни одна из дорогих его сердцу конструкций не способна действовать так, как это требовалось.

Когда после возвращения во Флоренцию Леонардо вторично обратился к этой проблеме, он пошел по другому пути. Небольшой Туринский кодекс, посвященный полету птиц и датированный 1505 годом, свидетельствует о том, что он вновь вернулся к изучению полета птиц, паривших в восходящих потоках теплого воздуха над тосканскими холмами, - особенно огромных хищных птиц, планировавших, не махая крыльями, высматривая добычу внизу. Он делал наброски воздушных вихрей под вогнутой частью птичьего крыла, выяснял, к чему приводят изменения центра тяжести у птицы и что могут сделать незаметные движения хвоста. Он придерживался стратегии активного планирования, при котором любые движения крыльев и хвоста были направлены не на контролируемый отрыв от земли, а на управление высотой, траекторией полета и виражи. Конструкция крыла по-прежнему основывалась на природных наблюдениях, но это были общие принципы и тенденции, а не простое подражание. Авиатор, которому, вероятно, предстояло управлять полетом и поддерживать равновесие с помощью хвоста, должен был висеть под крыльями, регулируя центр тяжести для возможно более точного управления полетом.

Хотя Леонардо ничего не было известно об аэродинамической поверхности, и он лишь интуитивно предполагал существование давления, производимого сжатым или разреженным воздухом, изучение природы помогло ему найти достаточно верный путь.

Анатомия

О Леонардо говорил как о художнике, производящем вскрытия и исследующем, как гласит легенда, запретные тайны разлагающихся тел, при том, что сам он признавал отталкивающие стороны занятий «анатомией». Вероятно, это была запрещенная и святотатственная деятельность, которая поставила его вне законов церкви. Полностью доказанной диссекцией целого человеческого трупа, - возможно, единственной, произведенной им, - было вскрытие «столетнего» старика, свидетелем «тихой смерти» которого в больнице Санта Мария Нуова Леонардо был зимой 1507-08 года. Чаще он работал с животными, которые, как считалось, не слишком отличаются от людей, разве что конфигурацией тела и размерами.

При том, что Леонардо занимался вскрытиями и не уставал повторять о преимуществе «опыта» перед книжным знанием, может показаться удивительным, что его анатомические исследования базировались на традиционных знаниях. Например, он долгое время придерживался учения о двухкамерном сердце. Кроме того, для Леонардо анатомия была не «описательной» в современном понимании, а «функциональной»; иными словами, он всегда рассматривал форму с точки зрения функции. Леонардо не привнес никаких радикальных изменений в существовавшую до него физиологию, но создал цельную картину динамики живого тела в трех измерениях, рисунок у него служит одновременно и способом изображения, и формой исследования.

Похвала глазу

Не смотря на то, что взгляды Леонардо на внутреннее строение глаза менялись, Леонардо работал, исходя из принципа, что это инструмент, построенный с геометрической точностью в соответствии с законами оптики. Его первоначальное представление о строении глаза заключалось в том, что имеющее сферическую форму прозрачное и стекловидное тело глаза (представляющее собой линзу) окружено влагой и оболочками глаза. Зрачок регулирует угол зрения, таким образом, получается "визуальная пирамида" - то есть пучок лучей от предмета или поверхности - с вершиной в глазу. Глаз извлекает пирамиду из хаотической массы лучей, которые распространяются от предмета во все стороны. Чем дальше один и тот же предмет находится от глаза, тем уже угол, и тем меньшим он кажется. Если представить, что свет исходит от предмета в виде ряда концентрических волн, пирамида постепенно будет сужаться с каждой последующей удаляющейся от предмета волной. Размеры, как учит теория перспективы, которой пользовались художники, пропорциональны расстоянию от предмета до глаза. Он объяснял, что сила излучений от объекта, которые он называл в соответствии с традициями средневековой оптики "образами", - уменьшается пропорционально расстоянию от объекта. Эта оптическая теория объясняет не только постепенное уменьшение вещей в соответствии с правилами линейной перспективы, но также и уменьшение отчетливости и яркости цвета на больших расстояниях. Этой потерей четкости и интенсивности цвета, наряду со специфическими свойствами влажного воздуха, который обволакивает предметы, подобно вуали, объясняются магические эффекты "воздушной перспективы" его пейзажей - как в рисунке, так и в живописи.

Этого взгляда на глаз, которого Леонардо придерживался в 1490-е годы, он перешел около 1508 года к более сложной интерпретации формы и функции глаза. Важно также, что он убедился, что пирамида не может заканчиваться в одной точке глаза, поскольку точка не измерима - это означало бы неразделимость «образов» в оптическом поле. Леонардо считал, что глаз и его зрачок действуют подобно камере обскура. Он знал, что изображение, полученное при помощи камеры, перевернутое, и теоретически разработал ряд способов, как перевернуть изображение, вернуть его в нормальное положение.

По мере знакомства с посвященными оптике трудами крупнейших средневековых ученых Леонардо стал все больше понимать феномен «обмана зрения». Этот раздел оптики изучал такие явления, как наша неспособность видеть очень быстро движущиеся предметы и отчетливо различать что – либо чересчур яркое или, напротив, темное, «инерцию зрения», наблюдаемую, когда мы смотрим на то, что быстро движется.

Какими бы переменчивыми и сложными ни были его поздние теории восприятия, неизменным оставалось то, что глаз работал согласно законам геометрии.

Теория перспективы

Леонардо систематически изучал эффекты освещения одного и многих предметов из одного и нескольких источников разных размеров, очертаний и удаленности. Именно на этой основе он реформировал свет и цвет в живописи, развивая «тональную» систему, в которой свет и тень имели преимущество перед цветом в передаче рельефности. Он наблюдал за тем, как уменьшалась интенсивность теней по мере удаления от непрозрачного предмета, отбрасывающего их, в соответствии с законами пропорционального уменьшения, который применим повсеместно к свету и другим динамическим системам. Он вычислял относительную интенсивность света на поверхностях в зависимости от угла падения и вычерчивал схемы вторичного отражения света от освещенных поверхностей на затененных местах. Последний феномен он использовал, чтобы объяснить серый цвет теневой стороны луны, который, как он доказал, является результатом отражения света от поверхности земли. Его штудии света, падающего на лицо из одной точки и подчеркивающего контуры, показывают нам, что он пытался моделировать формы согласно некой системе, напоминающей ту, которой следует луч в компьютерной графике. Чем более прямой угол «перкуссии», тем больше интенсивность освещения, хотя на самом деле здесь действует, как мы теперь знаем, установленный в 18 веке Ламбертом закон косинуса, а не простое правило пропорций Леонардо. Для да Винчи результат всегда пропорционален углу падения луча. Таким образом, скользящий свет не будет освещать поверхность так же сильно, как тот, который падает на ней перпендикулярно.

По Леонардо, в пропорциях нашло выражение совершенство замысла Бога в отношении всех форм и сил природы. Красота пропорций была важнейшей задачей для флорентийских архитекторов, скульпторов и художников. Леонардо был первым, кто вписал представление художника о красоте пропорций в общую картину пропорционального устройства природы. Самым авторитетным трудом об архитектурных пропорциях был трактат об архитектуре древнеримского автора Витрувия. В качестве идеала красоты в архитектуре Витрувий выбрал человеческое тело, с раскинутыми в стороны ногами и руками, вписанное в круг и квадрат – два наиболее совершенные геометрические фигуры. Внутри этой схемы части тела можно определить в соответствии с системой относительных размеров, в которой каждая часть, например лицо, находится в простом пропорциональном отношении к другой части. Воспроизведенная Леонардо витрувианская схема тела человека получила свое законченное визуальное воплощение и широкое распространение как символ «космического» замысла строения человека. Как говорил Леонардо, пропорциональное строение человеческого тела – это аналог музыкальных гармоний, которые были основаны на космических соотношениях, выстроенных греческим математиком Пифагором. Именно математическая основа музыки позволяла ей с большим основанием, чем другим искусствам, соперничать с живописью, хотя он всячески старался подчеркнуть, что музыкальные созвучия необходимо слушать последовательно, тогда как картину можно охватить одним взглядом.



Наибольший вклад да Винчи сделал в область механики. Перу Леонардо Да Винчи принадлежат исследования о падении тела по наклонной плоскости, о центрах тяжести пирамид, об ударе тел, о движении песка на звучащих пластинках; о законах трения. Леонардо писал также сочинения по гидравлике.

Некоторые историки, исследования которых относятся к эпохе Возрождения, высказывали мнение, что, хотя Леонардо да Винчи был талантливым во многих областях, он, тем не менее, не внес значительного вклада в такую точную науку, как теоретическая механика. Однако тщательный анализ его недавно обнаруженных рукописей и в особенности имеющихся в них рисунков убеждает в обратном. Работы Леонардо да Винчи по изучению действия различных видов оружия, в частности арбалета, по-видимому, были одной из причин его интереса к механике. Предметами его интереса в этой области, говоря современным языком, были законы сложения скоростей и сложения сил, понятие нейтральной плоскости и положение центра тяжести при движении тела.

Вклад Леонардо да Винчи в теоретическую механику может быть оценен в большей степени путем более внимательного изучения его рисунков, а не текстов рукописей и имеющихся в них математических выкладок.

Начнем с примера, отражающего настойчивые попытки Леонардо да Винчи решить задачи, связанные с усовершенствованием конструкции оружия (никогда полностью не решенные), вызвавшие у него интерес к законам сложения скоростей и сложения сил. Несмотря на быстрое развитие порохового оружия в период жизни Леонардо да Винчи, лук, арбалет и копье еще продолжали оставаться распространенными видами оружия. Особенно много внимания Леонардо да Винчи уделял такому старинному оружию, как арбалет. Часто бывает, что конструкция той или иной системы достигает совершенства только после того, как ею заинтересуются потомки, причем процесс совершенствования этой системы может приводить к фундаментальным научным результатам.

Плодотворные экспериментальные работы по совершенствованию арбалетов проводились и раньше, до Леонардо да Винчи. Например, в арбалете стали использовать укороченные стрелы, которые имели примерно в 2 раза лучшие аэродинамические характеристики, чем обычные лучные стрелы. Кроме того, было положено начало изучению основных принципов, лежащих в основе стрельбы из арбалета.

Стремясь не ограничиваться традиционными конструктивными решениями, Леонардо да Винчи обдумывал такую конструкцию арбалета, которая позволяла бы стрелять только наконечником стрелы, оставляя ее древко неподвижным. По-видимому, он понимал, что за счет уменьшения массы снаряда можно увеличить его начальную скорость.

В некоторых из своих конструкций арбалетов он предлагал использовать несколько дуг, действующих либо одновременно, либо последовательно. В последнем случае самая большая и массивная дуга приводила бы в действие меньшую по размерам и более легкую дугу, а та и свою очередь еще меньшую и т.д. Выстрел стрелой производился бы на последней дуге. Очевидно, что Леонардо да Винчи рассматривал этот процесс с точки зрения сложения скоростей. Например, он отмечает, что дальность стрельбы из арбалета будет максимальной, если произвести выстрел на скаку с лошади, мчащейся галопом, и в момент выстрела податься вперед. В действительности это не привело бы к значительному увеличению скорости стрелы. Тем не менее, идеи Леонардо да Винчи имели прямое отношение к разгоравшемуся спору относительно того, возможно ли бесконечное увеличение скорости. Позже ученые начали склоняться к выводу, что этот процесс не имеет предела. Такая точка зрения существовала до тех пор, пока Эйнштейн не выдвинул свой постулат, из которого следовало, что ни одно тело не может двигаться со скоростью, превышающей скорость света. Однако при скоростях, много меньших скорости света, закон сложения скоростей (на основе принципа относительности Галилея) остается справедливым.

Закон сложения сил, или параллелограмм сил, был открыт уже после Леонардо да Винчи. Этот закон рассматривается в том разделе механики, который позволяет ответить на вопрос, что происходит, когда две или более сил взаимодействуют под различными углами.

При изготовлении арбалета важно добиться симметричности усилий, возникающих в каждом крыле. В противном случае стрела может сместиться при выстреле в сторону из своей канавки, и точность стрельбы тем самым будет нарушена. Обычно арбалетчики, подготавливая свое оружие к стрельбе, проверяли, одинаков ли изгиб крыльев его дуги. Сегодня таким образом проверяются все луки и арбалеты. Оружие подвешивается на стене так, чтобы его тетива была горизонтальна, а дуга выпуклой частью обращена вверх. К середине тетивы подвешиваются различные грузы. Каждый груз вызывает определенный изгиб дуги, что позволяет проверить симметричность действия крыльев. Легче всего это сделать, наблюдая, опускается ли при увеличении груза центр тетивы по вертикали или отходит от нее.

Этот способ, возможно, навел Леонардо да Винчи на мысль использовать диаграммы (обнаружены в "Мадридских рукописях"), в которых смешение концов дуги (с учетом положения центра тетивы) представлено в зависимости от величины подвешенного груза. Он понимал, что сила, необходимая для того, чтобы дуга начала сгибаться, поначалу невелика и возрастает с увеличением смешения концов дуги. (В основе этого явления лежит закон, сформулированный гораздо позже Робертом Гуком: абсолютная величина смешения в результате деформации тела пропорциональна приложенной силе).

Зависимость между смещением концов дуги арбалета и величиной подвешенного к тетиве груза Леонардо да Винчи называл "пирамидальной", поскольку, как в пирамиде противоположные грани расходятся по мере удаления от точки пересечения, так и эта зависимость становится все более заметной по мере смещения концов дуги. Отмечая изменение положения тетивы в зависимости от величины груза, он, однако, заметил нелинейности. Одна из них состояла в том, что, хотя смещение концов дуги линейно зависело от величины груза, между смешением тетивы и величиной груза линейная зависимость отсутствовала. На основании этого наблюдения Леонардо да Винчи, по-видимому, пытался найти объяснение тому факту, что в некоторых арбалетах тетива, отпущенная после приложения к ней силы определенной величины, движется сначала быстрее, чем в момент приближения к своему исходному положению.

Такая нелинейность, возможно, и наблюдалась при пользовании арбалетами с плохо изготовленными дугами. Вероятно, что выводы Леонардо да Винчи основаны на ошибочном рассуждении, а не на расчетах, хотя иногда он все же прибегал к вычислениям. Тем не менее, эта задача вызвала у него глубокий интерес к анализу конструкции арбалета. Действительно ли стрела, быстро набравшая скорость в начале выстрела, начинает двигаться быстрее тетивы и оторвется от нее до того, как тетива возвратится в исходное положение?

Не имея четкого представления о таких понятиях, как инерция, сила и ускорение, Леонардо да Винчи, естественно, не мог найти окончательного ответа на этот вопрос. На страницах его рукописи встречаются рассуждения противоположного характера: в некоторых из них он склонен ответить на этот вопрос положительно, в других - отрицательно. Интерес Леонардо да Винчи к этой проблеме привел его к дальнейшим попыткам усовершенствовать конструкцию арбалета. Это говорит о том, что интуитивно он догадывался о существовании закона, впоследствии получившего название "закон сложения сил".

Леонардо да Винчи не ограничился только проблемой скорости движения стрелы и действия сил натяжения в арбалете. Например, его интересовало также, увеличится ли дальность полета стрелы в два раза, если в два раза увеличить вес дуги арбалета. Если измерить суммарный вес всех стрел, расположенных одна за другой впритык и составляющих непрерывную линию, длина которой равна максимальной дальности полета, то будет ли этот вес равен силе, с которой тетива действует на стрелу? Иногда Леонардо да Винчи действительно смотрел глубоко, например, в поисках ответа на вопрос, свидетельствует ли вибрация тетивы сразу после выстрела о потере энергии дугой?

В итоге в "Мадридской рукописи", касаясь соотношения между усилием на дуге и смещением тетивы, Леонардо да Винчи утверждает: "Сила, вынуждающая тетиву арбалета двигаться, увеличивается по мере уменьшения угла в центре тетивы". Тот факт, что это утверждение больше не встречается нигде в его записях, может означать, что такой вывод был сделан им окончательно. Несомненно, он применял его в многократных попытках усовершенствовать конструкцию арбалета с так называемыми блочными дугами.

Блочные дуги, в которых тетива пропущена через блоки, известны современным стрелкам из лука. Эти дуги позволяют достичь высокой скорости полета стрелы. Законы, лежащие в основе их действия, сейчас хорошо известны. Леонардо да Винчи не имел столь же полного представления о действии блочных дуг, однако он изобрел арбалеты, в которых тетива пропускалась через блоки. В его арбалетах блоки обычно имели жесткое крепление: они не перемещались вместе с концами дуги, как в современных арбалетах и луках. Поэтому дуга в конструкции арбалета Леонардо да Винчи не оказывала такого же действия, как в современных блочных дугах. Так или иначе, Леонардо да Винчи, очевидно, намеревался изготовить дугу, конструкция которой позволяла бы решить проблему "тетива - угол", т.е. увеличение силы, действующей на стрелу, достигалось бы за счет уменьшения угла в центре тетивы. Кроме того, он пытался уменьшить потери энергии при стрельбе из арбалета.

В основной конструкции арбалета Леонардо да Винчи очень гибкая дуга укреплялась на станине. На некоторых рисунках видно, что при максимальном натяжении тетивы дуга изгибалась почти в окружность. От концов дуги тетива с каждой стороны пропускалась через пару блоков, укрепленных впереди станины рядом с направляющей канавкой для стрелы, а затем шла к спусковому устройству.

Леонардо да Винчи, по-видимому, нигде не дал объяснения своей конструкции, однако ее схема неоднократно встречается в его рисунках вместе с изображением арбалета (также с сильно изогнутой дугой), в котором натянутая тетива, идущая от концов дуги к спусковому устройству, имеет V-образную форму.

Представляется наиболее вероятным, что Леонардо да Винчи стремился максимально уменьшить угол в центре тетивы с тем, чтобы стрела при выстреле получала большее ускорение. Возможно, что и блоки он использовал для того, чтобы угол между тетивой и крыльями арбалета оставался как можно дольше близким к 90°. Интуитивное представление о законе сложения сил помогло ему радикально изменить проверенную временем конструкцию арбалета на основе количественного соотношения между энергией, "запасенной" в дуге арбалета, и скоростью движения стрелы. Несомненно, он имел представление о механической эффективности своей конструкции и пытался дополнительно усовершенствовать ее.

Блочная дуга Леонардо да Винчи, видимо, была непрактичной, поскольку резкое натяжение тетивы приводило к значительному ее изгибу. Такую значительную деформацию могли выдержать лишь составные дуги, изготовленные особым образом.

Составные дуги использовались при жизни Леонардо да Винчи и, возможно, именно они вызвали у него интерес к той проблеме, попытки решить которую привели его к представлению о том, что именуется нейтральной плоскостью. Исследование этой проблемы было связано и с более глубоким изучением поведения материалов под действием механического напряжения.

В типичной составной дуге, применявшейся в эпоху Леонардо да Винчи, внешняя и внутренняя стороны крыльев арбалета изготавливались из различных материалов. Внутренняя сторона, испытывавшая сжатие, обычно изготавливалась из рога, а внешняя, работавшая на растяжение, - из сухожилий. Каждый из этих материалов прочнее дерева. Между внешней и внутренней сторонами дуги использовался деревянный слой, достаточно прочный, чтобы придать крыльям жесткость. Крылья такой дуги можно было сгибать более чем на 180°. Леонардо да Винчи имел некоторое представление о том, как изготавливали такую дугу, а проблема выбора материалов, которые могли бы выдерживать сильное натяжение и сжатие, возможно, привела его к глубокому пониманию того, как возникают напряжения в той или иной конструкции.

На двух небольших рисунках (обнаруженных в "Мадридской рукописи") он изобразил плоскую пружину в двух состояниях - деформированном и недеформированном. В центре деформированной пружины он начертил две параллельные линии, симметричные относительно центральной точки. При сгибании пружины эти линии расходятся с выпуклой стороны и сходятся - с вогнутой.

Эти рисунки сопровождает подпись, в которой Леонардо да Винчи отмечает, что при сгибании пружины выпуклая часть становится толще, а вогнутая - тоньше. "Такая модификация является пирамидальной и, следовательно, никогда не будет изменяться в центре пружины". Иными словами, расстояние между первоначально параллельными линиями будет возрастать в верхней части по мере его уменьшения в нижней. Центральная часть пружины служит своего рода балансом между двумя сторонами и представляет собой зону, где напряжение равно нулю, т.е. нейтральную плоскость. Леонардо да Винчи понимал также, что как натяжение, так и сжатие увеличиваются пропорционально расстоянию до нейтральной зоны.

Из рисунков Леонардо да Винчи видно, что представление о нейтральной плоскости возникло у него и при изучении действия арбалета. Примером является его рисунок гигантской катапульты для стрельбы камнями. Сгибание дуги этого оружия производилось с помощью винтового ворота; камень вылетал из кармана, расположенного в центре сдвоенной тетивы. Как ворот, так и карман для камня нарисованы (в увеличенном масштабе) такими же, как и на рисунках арбалета. Однако Леонардо да Винчи, по-видимому, понимал, что увеличение размера дуги приведет к сложным проблемам. Судя по рисункам Леонардо да Винчи, на которых изображена нейтральная зона, ему было известно, что (для данного угла сгибания) напряжения в дуге увеличиваются пропорционально ее толщине. Чтобы напряжения не достигали критической величины, он изменил конструкцию гигантской дуги. Передняя (фронтальная) ее часть, испытывавшая растяжение, по его представлениям, должна изготавливаться из цельного бревна, а задняя ее часть (тыльная), работающая на сжатие, - из отдельных блоков, закрепленных позади передней части. Форма этих блоков была такова, что они могли соприкасаться друг с другом только при максимальном изгибе дуги. Эта конструкция, так же как и другие, показывает, что Леонардо да Винчи считал, что силы растяжения и сжатия следует рассматривать отдельно друг от друга. В рукописи "Трактата о полете птиц" и других своих записях Леонардо да Винчи отмечает, что устойчивость полета птицы достигается только тогда, когда ее центр тяжести находится впереди центра сопротивления (точки, в которой давление спереди и сзади одинаково). Этот функциональный принцип, использовавшийся Леонардо да Винчи в теории полета птиц, и сейчас имеет важное значение в теории полета самолетов и ракет.

Как ни странно, лишь одно изобретение да Винчи получило признание при его жизни — колесцовый замок для пистолета, который заводился ключом. Сначала этот механизм был мало распространён, но уже к середине XVI века приобрёл популярность у дворян, особенно в кавалерии, что даже отразилось на конструкции латы: максимилиановские доспехи ради стрельбы из пистолетов стали делать с перчатками вместо рукавиц. Колесцовый замок для пистолета, изобретённый Леонардо да Винчи, был настолько совершенен, что продолжал встречаться и в XIX веке.

Но, как это часто бывает, признание к гениям приходит спустя века: многие его изобретения были дополнены и модернизированы, а сейчас используются в повседневной жизни.

Например, Леонардо да Винчи создал устройство, способное сжимать воздух и прогонять его по трубам. У этого изобретения очень широкий спектр применения: от разжигания печей до … вентиляции комнат.

Леонардо — не первый ученый, которого заинтересовала возможность человека долгое время оставаться под водой. Например, Леон Баттиста Альберти планировал поднять некоторые римские суда со дна озера Неми. Леонардо же пошел дальше просто планов: он создал проект водолазного костюма, который изготавливался из водонепроницаемой кожи.

Он должен был иметь большой нагрудный карман, который заполнялся воздухом для увеличения объема, что облегчало подъем водолаза на поверхность. Водолаз у Леонардо был снабжен гибкой дыхательной трубкой, которая соединяла его шлем с защитным плавучим куполом на поверхности воды (сделанным, предпочтительно, из тростника с кожаными соединениями).

Общеизвестно, что Леонардо да Винчи также разработал чертеж «предка» современного вертолета. Радиус винта должен был составлять 4,8 м. По плану ученого он имел металлическую окантовку и полотняное покрытие. Винт приводился в движение людьми, которые шли вокруг оси и толкали рычаги. «Я думаю, что если этот винтовой механизм добротно сделан, т. е. сделан из накрахмаленного полотна (во избежание разрывов) и быстро раскручен, то он найдет себе поддержку в воздухе и взлетит высоко вверх», — писал да Винчи в своих работах.

Одна из самых необходимых вещей для обучения человека плаванию — спасательный круг. Это изобретение Леонардо осталось практически без изменений.

Для ускорения плавания ученый разработал схему перепончатых перчаток, которые со временем превратились в общеизвестные ласты.

Трудно поверить, но для облегчения труда рабочих Леонардо придумал… экскаваторы, которые скорее были предназначены для подъема и транспортировки вырытого материала, чем для рытья как такового. Как предполагают ученые, экскаваторы могли быть нужны для проекта отведения реки Арно. Предполагалось вырыть ров шириной 18м и длиной 6м.

Рисунки изобретателя дают представление о размерах машины и канала, который предстояло выкопать. Подъемный кран со штангами разной длины был интересен тем, что мог использоваться с несколькими противовесами на двух или более уровнях экскавации. Стрелы крана развертывались на 180° и перекрывали всю ширину канала. Экскаватор устанавливался на рельсы и, по мере продвижения работ, передвигался вперед при помощи винтового механизма на центральном рельсе.

Один из самых знаменитых рисунков Леонардо представляет древние разработки автомобиля. Самодвижущаяся телега должна была двигаться с помощью сложного арбалетного механизма, который передавал бы энергию приводам, соединенным с рулем. Задние колеса имели дифференцированные приводы и могли двигаться независимо. Четвертое колесо соединено с рулем, при помощи которого можно управлять телегой.

Первоначально это транспортное средство предназначалось для увеселения королевского двора и относилось к тому ряду самодвижущихся машин, которые были созданы другими инженерами средневековья и Возрождения.

Некоторые изобретения ученого человечество отваживается испытать только сейчас: например, в норвежском городке Ас в 2001 году был открыт 100-метровый пешеходный мост, созданный по проекту Леонардо да Винчи. Это был первый случай за 500 лет, когда архитектурный проект Мастера, намного опередившего свое время, получил реальное воплощение..

Леонардо да Винчи спроектировал это сооружение для турецкого султана: мост должен был быть перекинут через залив Золотой Рог в Стамбуле. Если бы проект был реализован, этот мост был бы самым длинным мостом своего времени — его длина составляла 346 метров. Однако Леонардо не удалось реализовать свой проект — султан Баязет II отказался от предложений флорентийского художника.

Правда, новый мост уступает своему средневековому прототипу в длине — 100 м вместо 346 — однако он в точности повторяет все конструкторские и эстетические достоинства проекта Леонардо. Этот мост служит в качестве пешеходного перехода, перекинутого на высоте 8 м над автострадой Е-18, в 35 км к югу от Осло. При его строительстве пришлось поступиться только одной задумкой Леонардо да Винчи — в качестве строительного материала было использовано дерево, тогда как 500 лет назад мост планировалось построить из камня.

В 2002 году в Великобритании также было воссоздано одно из изобретений великого Леонардо да Винчи: в небе над графством Суррей был успешно испытан прообраз современного дельтаплана, собранный точно его по чертежам.

Испытательные полеты с холмов Суррея осуществила дважды чемпион мира по дельтапланеризму Джуди Лиден. Ей удалось поднять «протодельтаплан» да Винчи на максимальную высоту в 10 м и продержаться в воздухе 17 секунд. Этого было достаточно, чтобы доказать, что аппарат на самом деле работает.

Полеты были проведены в рамках экспериментального телевизионного проекта. Аппарат воссоздал по знакомым всему миру рисункам 42-летний механик из Бедфордшира Стив Робертс.

Средневековый дельтаплан напоминает сверху скелет птицы. Он сделан из итальянского тополя, тростника, сухожилий животных и льна, обработанного глазурью, полученной на основе выделений жуков.

Сама по себе летательная машина оказалась далека от совершенства. «Управлять ею было почти невозможно. Я летела туда, куда дул ветер, и не могла ничего с этим поделать. Наверное, так же чувствовал себя испытатель первого в истории автомобиля», — рассказала Джуди.

Как считал Леонардо да Винчи, «если у человека есть тент из плотной ткани, каждая из сторон которого составляет 12 длин руки, и высота — 12, то он может прыгнуть, не разбившись, с любой значительной высоты». Испытать этот аппарат ему самому не удалось, тем не менее, в декабре 2000 года британский парашютист Адриан Николас в Южной Африке спустился с высоты 3 тыс. метров с воздушного шара на парашюте, сделанном по эскизу Леонардо да Винчи. Спуск прошел успешно.