Макияж. Уход за волосами. Уход за кожей

Макияж. Уход за волосами. Уход за кожей

» » Камю чума анализ произведения. История создания романа «Чума

Камю чума анализ произведения. История создания романа «Чума

Тема исследования

Применение интегрального исчисления в планировании расходов семьи

Актуальность проблемы

Все чаще в социальных и экономических сферах при вычислении степени неравенства в распределении доходов используется математика, а именно, интегральное исчисление. Изучая практическое применение интеграла мы узнаем:

  • Как интеграл и вычисление площади с помощью интеграла помогает в распределении материальных затрат?
  • Как интеграл поможет в накоплении денег на отпуск.

Цель

спланировать расходы семьи с использованием интегрального вычисления

Задачи

  • Изучить геометрический смысл интеграла.
  • Рассмотреть методы интегрирования в социальной и экономической сферах жизни.
  • Составить прогноз материальных затрат семьи при ремонте квартиры с использованием интеграла.
  • Рассчитать объем потребления энергии семьи на год с учетом интегрального исчисления.
  • Расчитать сумму накопительного вклада в Сбербанк на отпуск.

Гипотеза

интегральное исчисление помогает в экономичных расчетах при планировании доходов и расходов семьи.

Этапы исследования

  • Изучили геометрический смысл интеграла и методы интегрирования в социальной и экономической сферах жизни.
  • Произвели расчет материальных затрат, необходимых при ремонте квартиры с помощью интеграла.
  • Расчитали объем потребления электроэнегрии в квартире и затраты на электроэнергию семьи на год.
  • Рассмотрели один из вариантов полонения доходов семьи через вклады в Сбербанк с помощью интеграла.

Объект исследования

инегральное исчисление в социальной и экономических сферах жизни.

Методы

  • Анализ литературы по теме "Практическое применение интгрального исчисления"
  • Изучение методов интегрирования при решении задач на вычисление площадей и объемов фигур с помощью интеграла.
  • Анализ расходов и доходов семьи с помощью интегрального вычисления.

Ход работы

  • Обзор литературы по теме "Практическое применение интегрального исчисления"
  • Решение системы задач на вычисление площадей и объемов фигур с помощью интеграла.
  • Расчет расходов и доходов семьи с помощью интегрального вычисления: ремонт комнаты, объем электроэнергии, вклады в Сбербанк на отпуск.

Наши результаты

Как интеграл и вычисление объема с помощью интеграла помогает в прогнозировании объемов потребления электроэнергии?

Выводы

  • Экономический расчет необходимых средств при ремонте квартиры можно быстрее и более точно выполнить с помощью интегрального вычисления.
  • Расход объемов электроэнергии семьи легче и быстрее рассчитать с помощью интегрального вычисления и программы Microsoft Office Excel, а значит прогнозировать затраты семьи на оплату электроэнергии на год.
  • Прибыль от вкладов в сбербанк можно рассчитать с помощью интегрального вычисления, значит спланировать отпуск семьи.

Список ресурсов

Печатные издания:

  • Учебник. Алгебра и начала анализа 10-11 класс. А.Г. Мордкович. Мнемозина. М: 2007
  • Учебник. Алгебра и начала анализа 10-11 класс. А. Колмогоров Просвещение. М: 2007
  • Математика для социологов и экономистов. Ахтямов А.М. М.: ФИЗМАТЛИТ, 2004. - 464 с.
  • Интегральное вычисление.Справочник по Высшей Математике М. Я. Выгодского, Просвещение, 2000

Девиз урока: “Математика – язык, на котором говорят все точные науки” Н.И. Лобачевский

Цель урока: обобщить знания учащихся по теме “Интеграл”, “Применение интеграла”;расширить кругозор, знания о возможном применении интеграла к вычислению различных величин; закрепить навыки использовать интеграл для решения прикладных задач; прививать познавательный интерес к математике, развивать культуру общения и культуру математической речи; уметь учиться выступать перед учащимися и учителями.

Тип урока: повторительно-обобщающий.

Вид урока: урок – защита проекта “Применение интеграла”.

Оборудование: магнитная доска, плакаты “Применение интеграла”, карточки с формулами и заданиями для самостоятельной работы.

План урока:

1. Защита проекта:

  1. из истории интегрального исчисления;
  2. свойства интеграла;
  3. применение интеграла в математике;
  4. применение интеграла в физике;

2. Решение упражнений.

Ход урока

Учитель: Мощным средством исследования в математике, физике, механике и других дисциплинах является определенный интеграл – одно из основных понятий математического анализа. Геометрический смысл интеграла – площадь криволинейной трапеции. Физический смысл интеграла – 1) масса неоднородного стержня с плотностью, 2) перемещение точки, движущейся по прямой со скоростью за промежуток времени.

Учитель: Ребята нашего класса провели большую работу, они подобрали задачи, где применяется определенный интеграл. Им слово.

2 ученик: Свойства интеграла

3 ученик: Применение интеграла (на магнитной доске таблица).

4 ученик: Рассматриваем применение интеграла в математике для вычисления площади фигур.

Площадь всякой плоской фигуры, рассматриваемая в прямоугольной системе координат, может быть составлена из площадей криволинейных трапеций, прилежащих к оси Ох и оси Оу. Площадь криволинейной трапеции, ограниченной кривой у = f(х), осью Ох и двумя прямыми х=а и х=b, где а х b , f(х) 0 вычисляется по формуле см. рис. Если криволинейная трапеция прилегает к оси Оу , то её площадь вычисляется по формуле , см. рис. При вычислении площадей фигур могут представиться следующие случаи: а)Фигура расположена над осью Ох и ограничена осью Ох, кривой у=f(х) и двумя прямыми х=а и х=b.(См. рис. ) Площадь этой фигуры находится по формуле 1 или 2. б) Фигура расположена под осью Ох и ограничена осью Ох, кривой у=f(х) и двумя прямыми х=а и х=b (см. рис. ). Площадь находится по формуле . в) Фигура расположена над и под осью Ох и ограничена осью Ох, кривой у=f(х) и двумя прямыми х=а и х=b(рис. ). г) Площадь ограничена двумя пересекающимися кривыми у=f(х) и у = (х) (рис. )

5 ученик: Решим задачу

х-2у+4=0 и х+у-5+0 и у=0

7 ученик: Интеграл, широко применяющийся в физике. Слово физикам.

1. ВЫЧИСЛЕНИЕ ПУТИ, ПРОЙДЕННОГО ТОЧКОЙ

Путь, пройденный точкой при неравномерном движении по прямой с переменной скоростью за промежуток времени от до вычисляется по формуле .

Примеры:

1. Скорость движения точки м/с. Найти путь, пройденный точкой за 4-ю секунду.

Решение: согласно условию, . Следовательно,

2. Два тела начали двигаться одновременно из одной точки в одном направлении по прямой. Первое тело движется со скоростью м/с, второе - со скоростью v = (4t+5) м/с. На каком расстоянии друг от друга они окажутся через 5 с?

Решение: очевидно, что искомая величина есть разность расстояний, пройденных первым и вторым телом за 5 с:

3. Тело брошено с поверхности земли вертикально вверх со скоростью и = (39,2-9,8^) м/с. Найти наибольшую высоту подъема тела.

Решение: тело достигнет наибольшей высоты подъема в такой момент времени t, когда v = 0, т.е. 39,2-9,8t = 0, откуда I = 4 с. По формуле (1) на ходим

2. ВЫЧИСЛЕНИЕ РАБОТЫ СИЛЫ

Работа, произведенная переменной силой f(х) при перемещении по оси Ох материальной точки от х = а до х=b, находится по формуле При решении задач на вычисление работы силы часто используется закон Г у к а: F=kx, (3) где F - сила Н; х -абсолютное удлинение пружины, м, вызванное силой F , а k -коэффициент пропорциональности, Н/м.

Пример:

1. Пружина в спокойном состоянии имеет длину 0,2 м. Сила в 50 Н растягивает пружину на 0,01 м. Какую работу надо совершить, чтобы растянуть ее от 0,22 до 0,32 м?

Решение: используя равенство (3), имеем 50=0,01k, т. е. kК = 5000 Н/м. Находим пределы интегрирования: а = 0,22 - 0,2 = 0,02 (м), b=0,32 - 0,2 = 0,12(м). Теперь по формуле (2) получим

3. ВЫЧИСЛЕНИЕ РАБОТЫ, ПРОИЗВОДИМОЙ ПРИ ПОДНЯТИИ ГРУЗА

Задача. Цилиндрическая цистерна с радиусом основания 0,5 м и высотой 2 м заполнена водой. Вычислить работу, которую необходимо произвести, чтобы выкачать воду из цистерны.

Решение: выделим на глубине х горизонтальный слой высотой dх (рис. ). Работа А, которую надо произвести, чтобы поднять слой воды весом Р на высоту х, равна Рх.

Изменение глубины х на малую величину dх вызовет изменение объема V на величину dV = пr 2 dх и изменение веса Р на величину * dР = 9807 r 2 dх; при этом совершаемая работа А изменится на величину dА=9807пr 2 хdх. Проинтегрировав это равенство при изменении x от 0 до Н, получим

4. ВЫЧИСЛЕНИЕ СИЛЫ ДАВЛЕНИЯ ЖИДКОСТИ

Значение силы Р давления жидкости на горизонтальную площадку зависит от глубины погружения х этой площадки, т. е. от расстояния площадки до поверхности жидкости.

Сила давления (Н) на горизонтальную площадку вычисляется по формуле Р =9807 S x,

где - плотность жидкости, кг/м 3 ; S - площадь площадки, м 2 ; х - глубина погружения площадки, м.

Если площадка, испытывающая давление жидкости, не горизонтальна, то давление на нее различно на разных глубинах, следовательно, сила давления на площадку есть функция глубины ее погружения Р (х).

5. ДЛИНА ДУГИ

Пусть плоская кривая АВ (рис.) задана уравнением у =f(x) (a x b), причем f(x) и f ?(x) - непрерывные функции в промежутке [а,b]. Тогда дифференциал dl длины дуги АВ выражается формулой или , а длина дуги АВ вычисляется по формуле (4)

где а и b-значения независимой переменной х в точках А и В. Если кривая задана уравнением х = (у)(с у d), то длина дуги АВ вычисляется по формуле (5) где с и д значения независимой переменной у в точках А и В.

6. ЦЕНТР МАСС

При нахождении центра масс пользуются следующими правилами:

1) Координата х? центра масс системы материальных точек А 1 , А 2 ,..., А n с массами m 1 , m 2 , ..., m n , расположенных на прямой в точках с координатами х 1 , х 2 , ..., х n , находятся по формуле

(*); 2) При вычислении координаты центра масс можно любую часть фигуры заменить на материальную точку, поместив ее в центр масс этой части, и приписать ей массу, равную массе рассматриваемой части фигуры. Пример. Пусть вдоль стержня-отрезка [а;b] оси Ох - распределена масса плотностью (х), где (х) - непрерывная функция. Покажем, что а) суммарная масса М стержня равна ; б) координата центра масс х" равна .

Разобьем отрезок [а; b] на n равных частей точками а= х 0 < х 1 < х 2 < ... <х n = b (рис. ). На каждом из n этих отрезков плотность можно считать при больших n постоянно и примерно равной (х k - 1) на k-м отрезке (в силу непрерывности (х). Тогда масса k-ого отрезка примерно равна а масса всего стержня равна

Сведения из истории появления производной:Лозунгом многих математиков XVII в. был: «Двигайтесь вперёд, и вера в правильность результатов к вам
придёт».
Термин «производная» - (франц. deriveе - позади, за) ввёл в 1797 г. Ж. Лагранж. Он же ввёл
современные обозначения y " , f ‘.
обозначение lim –сокращение латинского слова limes (межа, граница). Термин «предел» ввёл И. Ньютон.
И. Ньютон называл производную флюксией, а саму функцию - флюентой.
Г. Лейбниц говорил о дифференциальном отношении и обозначал производную так:
Лагранж Жозеф Луи (1736-1813)
французский математик и механик

Ньютон:

« Был этот мир глубокой тьмой окутан. Да будет свет! И вот
явился Ньютон.» А.Поуг.
Исаак Ньютон (1643-1727) один из создателей
дифференциального исчисления.
Главный его труд- «Математические начала
натуральной философии»-оказал колоссальное
влияние на развитие естествознания, стал
поворотным пунктом в истории естествознания.
Ньютон ввёл понятие производной, изучая законы
механики, тем самым раскрыл её механический
смысл.

Что называется производной функции?

Производной функции в данной точке называется предел
отношения приращения функции в этой точке к
приращению аргумента, когда приращение аргумента
стремится к нулю.

Физический смысл производной.

Скорость есть производная от пути по времени:
v(t) = S′(t)
Ускорение есть производная
скорости по времени:
a(t) = v′(t) = S′′(t)

Геометрический смысл производной:

Угловой коэффициент касательной к графику
функции равен производной этой функции,
вычисленной в точке касания.
f′(x) = k = tga

Производная в электротехнике:

В наших домах, на транспорте, на заводах: всюду работает
электрический ток. Под электрическим током понимают
направленное движение свободных электрически заряженных
частиц.
Количественной характеристикой электрического тока является сила
тока.
В
цепи электрического тока электрический заряд меняется с
течением времени по закону q=q (t). Сила тока I есть производная
заряда q по времени.
В электротехнике в основном используется работа переменного тока.
Электрический ток, изменяющийся со временем, называют
переменным. Цепь переменного тока может содержать различные
элементы: нагревательные приборы, катушки, конденсаторы.
Получение переменного электрического тока основано на законе
электромагнитной индукции, формулировка которого содержит
производную магнитного потока.

Производная в химии:

◦ И в химии нашло широкое применение дифференциальное
исчисление для построения математических моделей химических
реакций и последующего описания их свойств.
◦ Химия – это наука о веществах, о химических превращениях
веществ.
◦ Химия изучает закономерности протекания различных реакций.
◦ Скоростью химической реакции называется изменение
концентрации реагирующих веществ в единицу времени.
◦ Так как скорость реакции v непрерывно изменяется в ходе
процесса, ее обычно выражают производной концентрации
реагирующих веществ по времени.

Производная в географии:

Идея социологической модели Томаса Мальтуса состоит в том, что прирост населения
пропорционально числу населения в данный момент времени t через N(t), . Модель
Мальтуса неплохо действовала для описания численности населения США с 1790 по 1860
годы. Ныне эта модель в большинстве стран не действует.

Интеграл и его применение:

Немного из истории:

История понятия интеграла уходит корнями
к математикам Древней Греции и Древнего
Рима.
Известны работы учёного Древней Греции Евдокса Книдского (ок.408-ок.355 до н.э.) на
нахождение объёмов тел и вычисления
площадей плоских фигур.

Большое распространение интегральное исчисление получило в XVII веке. Учёные:
Г. Лейбниц (1646-1716) и И. Ньютон (1643-1727) открыли независимо друг от
друга и практически одновременно формулу, названную в последствии формулой
Ньютона - Лейбница, которой мы пользуемся. То, что математическую формулу
вывели философ и физик никого не удивляет, ведь математика-язык, на котором
говорит сама природа.

Символ введен
Лейбницем (1675 г.). Этот знак является
изменением латинской буквы S
(первой буквы слова сумма). Само слово интеграл
придумал
Я. Бернулли (1690 г.). Вероятно, оно происходит от
латинского integero, которое переводится как
приводить в прежнее состояние, восстанавливать.
Пределы интегрирования указал уже Л.Эйлер
(1707-1783). В 1697 году появилось название
новой ветви математики - интегральное
исчисление. Его ввёл Бернулли.

В математическом анализе интегралом функции называют
расширение понятия суммы. Процесс нахождения интеграла
называется интегрированием. Этот процесс обычно используется при
нахождений таких величин как площадь, объём, масса, смещение и т.
д., когда задана скорость или распределение изменений этой величины
по отношению к некоторой другой величине (положение, время и т. д.).

Что такое интеграл?

Интеграл - одно из важнейших понятий математического анализа, которое
возникает при решении задач о нахождении площади под кривой, пройденного пути при
неравномерном движении, массы неоднородного тела, и т. п., а также в задаче о
восстановлении функции по её производной

Ученые стараются все физические
явления выразить в виде
математической формулы. Как
только у нас есть формула, дальше
уже можно при помощи нее
посчитать что угодно. А интеграл
- это один из основных
инструментов работы с
функциями.

Методы интегрирования:

1.Табличный.
2.Сведение к табличному преобразованием подынтегрального
выражения в сумму или разность.
3.Интегрирование с помощью замены переменной (подстановкой).
4.Интегрирование по частям.

Применение интеграла:

◦ Математика
◦ Вычисления S фигур.
◦ Длина дуги кривой.
◦ V тела на S параллельных
сечений.
◦ V тела вращения и т.д
Физика
Работа А переменной силы.
S – (путь) перемещения.
Вычисление массы.
Вычисление момента инерции линии,
круга, цилиндра.
◦ Вычисление координаты центра
тяжести.
◦ Количество теплоты и т.д.