Макияж. Уход за волосами. Уход за кожей

Макияж. Уход за волосами. Уход за кожей

» » Расстояние между точками по координатам. Расстояние между двумя точками плоскости.Системы координат

Расстояние между точками по координатам. Расстояние между двумя точками плоскости.Системы координат


Расстояние от точки до точки - это длина отрезка, соединяющего эти точки, в заданном масштабе. Таким образом, когда речь идет об измерении расстояния, то требуется знать масштаб (единицу длины), в котором будут проводиться измерения. Поэтому, задачу нахождения расстояния от точки до точки обычно рассматривают либо на координатной прямой, либо в прямоугольной декартовой системе координат на плоскости или в трехмерном пространстве. Другими словами, наиболее часто приходится вычислять расстояние между точками по их координатам.

В этой статье мы, во-первых, напомним, как определяется расстояние от точки до точки на координатной прямой. Далее получим формулы для вычисления расстояния между двумя точками плоскости или пространства по заданным координатам. В заключении, подробно рассмотрим решения характерных примеров и задач.

Навигация по странице.

Расстояние между двумя точками на координатной прямой.

Давайте для начала определимся с обозначениями. Расстояние от точки А до точки В будем обозначать как .

Отсюда можно заключить, что расстояние от точки А с координатой до точки В с координатой равно модулю разности координат , то есть, при любом расположении точек на координатной прямой.

Расстояние от точки до точки на плоскости, формула.

Получим формулу для вычисления расстояния между точками и , заданными в прямоугольной декартовой системе координат на плоскости.

В зависимости от расположения точек А и В возможны следующие варианты.

Если точки А и В совпадают, то расстояние между ними равно нулю.

Если точки А и В лежат на прямой, перпендикулярной оси абсцисс, то точки и совпадают, а расстояние равно расстоянию . В предыдущем пункте мы выяснили, что расстояние между двумя точками на координатной прямой равно модулю разности их координат, поэтому, . Следовательно, .

Аналогично, если точки А и В лежат на прямой, перпендикулярной оси ординат, то расстояние от точки А до точки В находится как .

В этом случае треугольник АВС – прямоугольный по построению, причем и . По теореме Пифагора мы можем записать равенство , откуда .

Обобщим все полученные результаты: расстояние от точки до точки на плоскости находится через координаты точек по формуле .

Полученную формулу для нахождения расстояния между точками, можно использовать когда точки А и В совпадают или лежат на прямой, перпендикулярной одной из координатных осей. Действительно, если А и В совпадают, то . Если точки А и В лежат на прямой, перпендикулярной оси Ох , то . Если А и В лежат на прямой, перпендикулярной оси Оу , то .

Расстояние между точками в пространстве, формула.

Введем прямоугольную систему координат Оxyz в пространстве. Получим формулу для нахождения расстояния от точки до точки .

В общем случае, точки А и В не лежат в плоскости, параллельной одной из координатных плоскостей. Проведем через точки А и В плоскости, перпендикулярные координатным осям Ох , Оу и Oz . Точки пересечения этих плоскостей с координатными осями дадут нам проекции точек А и В на эти оси. Обозначим проекции .


Искомое расстояние между точками А и В представляет собой диагональ прямоугольного параллелепипеда, изображенного на рисунке. По построению, измерения этого параллелепипеда равны и . В курсе геометрии средней школы было доказано, что квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений, поэтому, . Опираясь на информацию первого раздела этой статьи, мы можем записать следующие равенства , следовательно,

откуда получаем формулу для нахождения расстояния между точками в пространстве .

Эта формула также справедлива, если точки А и В

  • совпадают;
  • принадлежат одной из координатных осей или прямой, параллельной одной из координатных осей;
  • принадлежат одной из координатных плоскостей или плоскости, параллельной одной из координатных плоскостей.

Нахождение расстояния от точки до точки, примеры и решения.

Итак, мы получили формулы для нахождения расстояния между двумя точками координатной прямой, плоскости и трехмерного пространства. Пришло время рассмотреть решения характерных примеров.

Число задач, при решении которых конечным этапом является нахождение расстояния между двумя точками по их координатам, поистине огромно. Полный обзор таких примеров выходит за рамки данной статьи. Здесь мы ограничимся примерами, в которых известны координаты двух точек и требуется вычислить расстояние между ними.

Решение задач по математике у учащихся часто сопровождается многими трудностями. Помочь учащемуся справиться с этими трудности, а так же научить применять имеющиеся у него теоретические знания при решении конкретных задач по всем разделам курса предмета «Математика» – основное назначение нашего сайта.

Приступая к решению задач по теме , учащиеся должны уметь строить точку на плоскости по ее координатам, а так же находить координаты заданной точки.

Вычисление расстояния между взятыми на плоскости двумя точками А(х А; у А) и В(х В; у В), выполняется по формуле d = √((х А – х В) 2 + (у А – у В) 2) , где d – длина отрезка, который соединяет эти точки на плоскости.

Если один из концов отрезка совпадает с началом координат, а другой имеет координаты М(х М; у М), то формула для вычисления d примет вид ОМ = √(х М 2 + у М 2).

1. Вычисление расстояния между двумя точками по данным координатам этих точек

Пример 1 .

Найти длину отрезка, который соединяет на координатной плоскости точки А(2; -5) и В(-4; 3) (рис. 1).

Решение.

В условии задачи дано: х А = 2; х В = -4; у А = -5 и у В = 3. Найти d.

Применив формулу d = √((х А – х В) 2 + (у А – у В) 2), получим:

d = АВ = √((2 – (-4)) 2 + (-5 – 3) 2) = 10.

2. Вычисление координат точки, которая равноудалена от трех заданных точек

Пример 2.

Найти координаты точки О 1 , которая равноудалена от трех точек А(7; -1) и В(-2; 2) и С(-1; -5).

Решение.

Из формулировки условия задачи следует, что О 1 А = О 1 В = О 1 С. Пусть искомая точка О 1 имеет координаты (а; b). По формуле d = √((х А – х В) 2 + (у А – у В) 2) найдем:

О 1 А = √((а – 7) 2 + (b + 1) 2);

О 1 В = √((а + 2) 2 + (b – 2) 2);

О 1 С = √((а + 1) 2 + (b + 5) 2).

Составим систему из двух уравнений:

{√((а – 7) 2 + (b + 1) 2) = √((а + 2) 2 + (b – 2) 2),
{√((а – 7) 2 + (b + 1) 2) = √((а + 1) 2 + (b + 5) 2).

После возведения в квадрат левой и правой частей уравнений запишем:

{(а – 7) 2 + (b + 1) 2 = (а + 2) 2 + (b – 2) 2 ,
{(а – 7) 2 + (b + 1) 2 = (а + 1) 2 + (b + 5) 2 .

Упростив, запишем

{-3а + b + 7 = 0,
{-2а – b + 3 = 0.

Решив систему, получим: а = 2; b = -1.

Точка О 1 (2; -1) равноудалена от трех заданных в условии точек, которые не лежат на одной прямой. Эта точка – есть центр окружности, проходящей через три заданные точки (рис. 2) .

3. Вычисление абсциссы (ординаты) точки, которая лежит на оси абсцисс (ординат) и находится на заданном расстоянии от данной точки

Пример 3.

Расстояние от точки В(-5; 6) до точки А, лежащей на оси Ох равно 10. Найти точку А.

Решение.

Из формулировки условия задачи следует, что ордината точки А равна нулю и АВ = 10.

Обозначив абсциссу точки А через а, запишем А(а; 0).

АВ = √((а + 5) 2 + (0 – 6) 2) = √((а + 5) 2 + 36).

Получаем уравнение √((а + 5) 2 + 36) = 10. Упростив его, имеем

а 2 + 10а – 39 = 0.

Корни этого уравнения а 1 = -13; а 2 = 3.

Получаем две точки А 1 (-13; 0) и А 2 (3; 0).

Проверка:

А 1 В = √((-13 + 5) 2 + (0 – 6) 2) = 10.

А 2 В = √((3 + 5) 2 + (0 – 6) 2) = 10.

Обе полученные точки подходят по условию задачи (рис. 3).

4. Вычисление абсциссы (ординаты) точки, которая лежит на оси абсцисс (ординат) и находится на одинаковом расстоянии от двух заданных точек

Пример 4.

Найти на оси Оу точку, которая находится на одинаковом расстоянии от точек А(6; 12) и В(-8; 10).

Решение.

Пусть координаты нужной по условию задачи точки, лежащей на оси Оу, будут О 1 (0; b) (у точки, лежащей на оси Оу, абсцисса равна нулю). Из условия следует, что О 1 А = О 1 В.

По формуле d = √((х А – х В) 2 + (у А – у В) 2) находим:

О 1 А = √((0 – 6) 2 + (b – 12) 2) = √(36 + (b – 12) 2);

О 1 В = √((а + 8) 2 + (b – 10) 2) = √(64 + (b – 10) 2).

Имеем уравнение √(36 + (b – 12) 2) = √(64 + (b – 10) 2) или 36 + (b – 12) 2 = 64 + (b – 10) 2 .

После упрощения получим: b – 4 = 0, b = 4.

Необходимая по условию задачи точка О 1 (0; 4) (рис. 4).

5. Вычисление координат точки, которая находится на одинаковом расстоянии от осей координат и некоторой заданной точки

Пример 5.

Найти точку М, расположенную на координатной плоскости на одинаковом расстоянии от осей координат и от точки А(-2; 1).

Решение.

Необходимая точка М, как и точка А(-2; 1), располагается во втором координатном углу, так как она равноудалена от точек А, Р 1 и Р 2 (рис. 5) . Расстояния точки М от осей координат одинаковые, следовательно, ее координатами будут (-a; a), где а > 0.

Из условия задачи следует, что МА = МР 1 = МР 2 , МР 1 = а; МР 2 = |-a|,

т.е. |-a| = а.

По формуле d = √((х А – х В) 2 + (у А – у В) 2) находим:

МА = √((-а + 2) 2 + (а – 1) 2).

Составим уравнение:

√((-а + 2) 2 + (а – 1) 2) = а.

После возведения в квадрат и упрощения имеем: а 2 – 6а + 5 = 0. Решим уравнение, найдем а 1 = 1; а 2 = 5.

Получаем две точки М 1 (-1; 1) и М 2 (-5; 5), удовлетворяющие условию задачи.

6. Вычисление координат точки, которая находится на одинаковом заданном расстоянии от оси абсцисс (ординат) и от данной точки

Пример 6.

Найти точку М такую, что расстояние ее от оси ординат и от точки А(8; 6) будет равно 5.

Решение.

Из условия задачи следует, что МА = 5 и абсцисса точки М равна 5. Пусть ордината точки М равна b, тогда М(5; b) (рис. 6).

По формуле d = √((х А – х В) 2 + (у А – у В) 2) имеем:

МА = √((5 – 8) 2 + (b – 6) 2).

Составим уравнение:

√((5 – 8) 2 + (b – 6) 2) = 5. Упростив его, получим: b 2 – 12b + 20 = 0. Корни этого уравнения b 1 = 2; b 2 = 10. Следовательно, есть две точки, удовлетворяющие условию задачи: М 1 (5; 2) и М 2 (5; 10).

Известно, что многие учащиеся при самостоятельном решении задач нуждаются в постоянных консультациях по приемам и методам их решения. Зачастую, найти путь к решению задачи без помощи преподавателя учащемуся не под силу. Необходимые консультации по решению задач учащийся и может получить на нашем сайте.

Остались вопросы? Не знаете, как найти расстояние между двумя точками на плоскости?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ

1. Метод координат: числовая прямая, координаты на прямой; прямоугольная (декартовая) система координат на плоскости; полярные координаты.

Рассмотрим какую–нибудь прямую. Выберем на ней направление (тогда она станет осью) и некоторую точку 0 (начало координат). Прямая с выбранным направлением и началом координат называется координатной прямой (при этом считаем, что единица масштаба выбрана).

Пусть М – произвольная точка на координатной прямой. Поставим в соответствии точке М вещественное число x , равное величине ОМ отрезка : x=ОМ. Число x называется координатой точки М .

Таким образом, каждой точке координатной прямой соответствует определенное вещественное число – ее координата. Справедливо и обратное, каждому вещественному числу x соответствует некоторая точка на координатной прямой, а именно такая точка М , координата которой равна x. Такое соответствие называется взаимно однозначным.

Итак, вещественные числа можно изображать точками координатной прямой, т.е. координатная прямая служит изображением множества всех вещественных чисел. Поэтому множество всех вещественных чисел называют числовой прямой , а любое число – точкой этой прямой. Около точки на числовой прямой часто указывают число – ее координату.

Прямоугольная (или декартовая) система координат на плоскости.

Две взаимно перпендикулярные оси О x и О y , имеющие общее начало О и одинаковую единицу масштаба, образуют прямоугольную (или декартовую) систему координат на плоскости.

Ось ОХ называется осью абсцисс, ось ОY – осью ординат. Точка О пересечения осей называется началом координат. Плоскость, в которой расположены оси ОХ и ОY , называется координатной плоскостью и обозначается О xy .

Итак, прямоугольная система координат на плоскости устанавливает взаимно однозначное соответствие между множеством всех точек плоскости и множеством пар чисел, которое дает возможность при решении геометрических задач применить алгебраические методы. Оси координат разбивают плоскость на 4 части их называют четвертями , квадратными или координатными углами .

Полярные координаты.

Полярная система координат состоит из некоторой точки О , называемой полюсом , и исходящего из нее луча ОЕ , называемого полярной осью. Кроме того, задается единица масштаба для измерения длин отрезков. Пусть задана полярная система координат и пусть М – произвольная точка плоскости. Обозначим через Р – расстояние точки М от точки О , а через φ – угол, на который луч повернуть против часовой стрелки полярную ось для совмещения с лучом ОМ .

Полярными координатами точки М называют числа Р и φ . Число Р считают первой координатой и называют полярным радиусом , число φ – второй координатой и называют полярным углом .

Точка М с полярными координатами Р и φ обозначаются так: М( ;φ). Установим связь между полярными координатами точки и ее прямоугольными координатами.
При этом будем предполагать, что начало прямоугольной системы координат находится в полюсе, а положительная полуось абсцисс совпадает с полярной осью.

Пусть точка М имеет прямоугольные координаты X и Y и полярные координаты Р и φ .

(1)

Доказательство.

Опусти из точек М 1 и М 2 перпендикуляры М 1 В и М 1 А, . так как (x 2 ; y 2) . По теореме, если М 1 (х 1) и М 2 (х 2) – любые две точки и α– расстояние между ними, то α = ‌‌‌‍‌‌|x 2 - x 1 | .

При помощи линейки. Предпочтительно, чтобы она была изготовлена из как можно более тонкого листового материала. В случае, если поверхность, на которой расстелена , не является плоской, поможет портновский метр. А при отсутствии тонкой линейки, и если карту не жалко прокалывать, удобно использовать для измерения циркуль, желательно с двумя иголками. Потом его можно перенести на миллиметровую бумагу и измерить длину отрезка по ней.

Дороги между двумя точками на редко прямыми. Измерить длину линии поможет удобный прибор - курвиметр. Чтобы им воспользоваться, вначале вращением ролика совместите стрелку с нулем. Если курвиметр электронный, устанавливать его на нуль вручную необязательно - достаточно нажать кнопку сброса. Придерживая ролик, прижмите его к начальной точке отрезка так, чтобы риска на корпусе (она расположена над роликом) указывала прямо на эту точку. Затем ведите ролик по линии, пока риска не окажется совмещена с конечной точкой. Прочитайте показания. Учтите, что у некоторых курвиметров имеются две шкалы, одна из которых имеет градуировку в сантиметрах, а другая - в дюймах.

Найдите на карте указатель масштаба - обычно он расположен в правом нижнем углу. Иногда этот указатель представляет собой отрезок калиброванной длины, рядом с которым указано, какому расстоянию он соответствует. Измерьте длину этого отрезка линейкой. Если окажется, например, что он имеет длину в 4 сантиметра, а рядом с ним указано, что соответствует 200 метрам, поделите второе число на первое, и вы узнаете, что каждому на карте соответствует 50 метров на местности. На некоторых вместо отрезка присутствует готовая фраза, которая может выглядеть, например, следующим образом: «В одном сантиметре 150 метров». Также масштаб может быть указан в виде соотношения следующего вида: 1:100000. В этом случае можно подсчитать, что сантиметру на карте соответствует 1000 метров на местности, поскольку 100000/100(сантиметров в метре)=1000 м.

Измеренное линейкой или курвиметром расстояние, выраженное в сантиметрах, умножьте на указанное на карте или рассчитанное количество метров или в одном сантиметре. В результате получится реальное расстояние, выраженное, соответственно, или километрах.

Любая карта представляет собой уменьшенное изображение какой-то территории. Коэффициент, показывающий, насколько изображение уменьшено по отношению к реальному объекту, называется масштабом. Зная его, можно определить расстояние по . Для реально существующих карт на бумажной основе масштаб – величина фиксированная. Для виртуальных, электронных карт эта величина меняется вместе с изменением увеличения изображения карты на экране монитора.

Инструкция

Расстояние по карте можно измерить с помощью инструмента «Линейка» геоинформационных пакетах Google Earth и Yandex Maps, подосновой для карт в которых являются космические спутниковые . Просто включите этот инструмент и кликните мышкой по точке, отмечающей начало вашего маршрута и той, где его планируете завершить. Значение расстояния можно будет узнать в любых заданных единицах измерения.

Составить маршрут. Как проехать от и до. Расчет расстояний между городами на автомобиле, машине. Проложить маршрут на карте от и до самому между городами. Создать маршрут на машине по точкам на карте из нескольких точек. Калькулятор топлива. Расчет маршрута пешком, на велосипеде.

Создать маршрут на машине по точкам и распечатать. Навигатор онлайн поможет Вам создать маршрут, рассчитать расстояние пешком на карте, проложить маршрут от и до, вы узнаете сколько пешком нужно пройти из пукнта А в пункт Б или рассчитаете расстояние маршрут от точки А до точки В, также можно проложить маршрут через один дополнительный пункт, через который возможно будет проходить ваш маршрут. Вы сможете проложить карту маршрута рассчитать расстояние и время и увидеть данные этого маршрута прямо на карте, также покажет Вам погоду в месте прибытия, калькулятор топлива рассчитает расход бензина на 100 км. После нажатия на кнопку "Рассчитать" - справа появиться описание маршрута, по сути текстовый навигатор: если вы выбирали доп.пункт маршрута, навигатор разделит его участки и посчитает расстояние в каждом участке, а также рассчитает общее расстояние (километраж) от пункта отправления в пункт назначения, также отобразит время в пути. Навигатор онлайн покажет Вам как проехать от и до на машине, автомобиле по Москве, Санкт-Петербургу, СПБ, Владивостоку, Уфе, Челябинску, Казани, Новосибирску, Нижнему Новгороду, Омску, Екатеринбургу, Перми из пункта А в пункт Б. Проложить маршрут можно нескольких видов, в зависимости от способа передвижения, например пешком, на автомобиле, на транспорте (автобус, поезд, метро), на велосипеде (данный способ плохо работает в России из-за отсутствия велосипедных дорожек). Для этого нужно выбрать способ из выпадающего списка и вы с легкостью проложите маршрут и узнаете как доехать до пункта назначения. Здесь сможете узнать, как доехать на авто проложить путь и рассчитать расстояние

Как доехать проложить маршрут на машине до Москвы, Санкт-Петербурга, Новосибирска, Екатеринбурга, Нижнего Новгорода, Казани, Челябинска, Омска, Самары, Ростова-на-Дону, Уфы, Красноярска, Перми, Воронежа, Волгограда, Саратова, Краснодара, Тольятти, Тюмени, Ижевска, Барнаула, Иркутска, Ульяновска, Хабаровска, Владивостока, Ярославля, Махачкалы, Томска, Оренбурга, Новокузнецка, Кемерово, Астрахани, Рязани, Набережные Челны, Пензы, Липецка, Кирова, Тулы, Чебоксар, Калининграда, Курска, Улан-Удэ, Ставрополя, Магнитогорска, Сочи, Белгорода, Нижнего Тагила, Владимира, Архангельска, Калуги, Сургута, Читы, Грозного, Стерлитамака, Костромы, Петрозаводска, Нижневартовска, Йошкар-Олы, Новороссийска