Макияж. Уход за волосами. Уход за кожей

Макияж. Уход за волосами. Уход за кожей

» » Измерение солнечной радиации. Воздействие солнечной радиации на человека

Измерение солнечной радиации. Воздействие солнечной радиации на человека

  1. Общая характеристика солнечной радиации
  2. Прямая солнечная радиация
  3. Суммарная солнечная радиация
  4. Поглощение солнечной радиации в атмосфере

Лучистая энергия Солнца, или солнечная радиация, является основным источником тепла для поверхности Земли и для ее атмосферы. Радиация, поступающая от звезд и Луны, ничтожно мала по сравнению с солнечной радиацией и существенного вклада в тепловые процессы на Земле не вносит. Так же ничтожно мал поток тепла, направленный к поверхности из глубин планеты. Солнечная радиация распространяется по всем направлениям от источника (Солнца) в виде электромагнитных волн со скоростью, близкой к 300 000 км/сек. В метеорологии рассматривают преимущественно тепловую радиацию, определяемую температурой тела и его излучательной способностью. Тепловая радиация имеет длины волн от сотен микрометров до тысячных долей микрометра. Рентгеновское излучение и гамма-излучение в метеорологии не рассматриваются, так как в нижние слои атмосферы они практически не поступают. Тепловую радиацию принято подразделять на коротковолновую и длинноволновую. Коротковолновой радиацией называют радиацию в диапазоне длин волн от 0,1до 4 мкм, длинноволновой - от 4 до 100 мкм. Солнечная радиация, поступающая к поверхности Земли, на 99% является коротковолновой. Коротковолновую радиацию подразделяют на ультрафиолетовую (УФ), с длинами волн от 0,1 до 0,39 мкм; видимый свет (ВС) - 0,4 - 0,76 мкм; инфракрасную (ИК) - 0,76 - 4 мкм. ВС и ИК радиация дают наибольшую энергию: на ВС приходится 47% лучистой энергии, на ИК - 44%, а на УФ - только 9% лучистой энергии. Такое распределение тепловой радиации соответствует распределению энергии в спектре абсолютно черного тела с температурой в 6000К. Эту температуру считают условно близкой к фактической температуре на поверхности Солнца (в фотосфере, являющейся источником лучистой энергии Солнца). Максимум лучистой энергии при такой температуре излучателя, согласно закону Вина l= 0,2898/Т (см*град). (1) приходится на сине-голубые лучи с длинами около 0,475 мкм (l.- длина волны, Т - абсолютная температура излучателя). Общее количество излучаемой тепловой энергии пропорционально, согласно закону Стефана-Больцмана, четвертой степени абсолютной температуры излучателя: Е = sТ 4 (2) где s = 5,7*10-8 Вт/м 2 *К 4 (постоянная Стефана-Больцмана). Количественной мерой солнечной радиации, поступающей на поверхность, служит энергетическая освещенность, или плотность потока радиации. Энергетическая освещенность - это количество лучистой энергии, поступающей на единицу площади в единицу времени. Она измеряется в Вт/м 2 (или кВт/м 2). Это означает, что на 1 м 2 в секунду поступает 1 Дж (или 1 кДж) лучистой энергии. Энергетическую освещенность солнечной радиации, падающей на площадку единичной площади, перпендикулярную солнечным лучам в единицу времени на верхней границе атмосферы при среднем расстоянии от Земли до Солнца называют солнечной постоянной Sо. При этом под верхней границей атмосферы понимают условие отсутствия воздействия атмосферы на солнечную радиацию. Поэтому величина солнечной постоянной определяется только излучательной способностью Солнца и расстоянием между Землей и Солнцем. Современными исследованиями с помощью спутников и ракет установлено значение Sо, равное 1367 Вт/м 2 с ошибкой ±0,3%, среднее расстояние между Землей и Солнцем в этом случае определено как 149,6*106 км. Если учитывать изменения солнечной постоянной в связи с изменением расстояния между Землей и Солнцем, то при среднегодовом значении 1,37 кВт/м 2 , в январе она будет равна 1,41 кВт/м 2 , а в июне - 1,34 кВт/м 2 , следовательно, северное полушарие за летний день получает на границе атмосферы несколько меньше радиации, чем Южное полушарие за свой летний день. В связи с постоянным изменением солнечной активности солнечная постоянная, возможно, испытывает колебания из года в год. Но эти колебания, если они и существуют, настолько малы, что лежат в пределах точности измерений современных приборов. Но за время существования Земли солнечная постоянная, вероятнее всего, меняла свое значение. Зная солнечную постоянную, можно рассчитать количество солнечной энергии, поступающей на освещенное полушарие на верхней границе атмосферы. Оно равно произведению солнечной постоянной на площадь большого круга Земли. При среднем радиусе земли, равном 6371 км, площадь большого круга составляет p*(6371)2 = 1,275*1014 м 2 , а приходящая на нее лучистая энергия - 1,743*1017 Вт. За год это составит 5,49*1024 Дж. Приход солнечной радиации на горизонтальную поверхность на верхней границе атмосферы называют солярным климатом. Формирование солярного климата определяется двумя факторами - продолжительностью солнечного сияния и высотой Солнца. Количество радиации, приходящейся на границе атмосферы на единицу площади горизонтальной поверхности пропорционально синусу высоты Солнца, которая меняется не только в течение дня, но и зависит от времени года. Как известно, высота Солнца для дней солнцестояния определяется по формуле 900 - (j±23,50), для дней равноденствия - 900 -j, где j - широта места. Таким образом, высота Солнца на экваторе меняется в течение года от 90° до 66,50° , в тропиках - от 90 до 43° , на полярных кругах - от 47 до 0° и на полюсах - от 23,5° до 0° . В соответствии с таким изменением высоты Солнца зимой в каждом полушарии приток солнечной радиации на горизонтальную площадку быстро убывает от экватора к полюсам. Летом картина более сложная: в середине лета максимальные значения приходятся не на экватор, а на полюса, где продолжительность дня составляет 24 часа. В годовом ходе во внетропической зоне наблюдается один максимум (летнее солнцестояние) и один минимум (зимнее солнцестояние). В тропической зоне приток радиации достигает максимума два раза в год (дни равноденствия). Годовые количества солнечной радиации меняются от 133*102 МДж/м 2 (экватор) до 56*102 МДж/м 2 (полюса). Амплитуда годового хода на экваторе небольшая, во внетропической зоне - значительная.

2 Прямая солнечная радиация Прямой солнечной радиацией называют радиацию, приходящую к земной поверхности непосредственно от солнечного диска. Несмотря на то, что солнечная радиация распространяется от Солнца по всем направлениям, к Земле она приходит в виде пучка параллельных лучей, исходящих как бы из бесконечности. Приток прямой солнечной радиации на земную поверхность или на любой уровень в атмосфере характеризуется энергетической освещенностью - количеством лучистой энергии, поступающей за единицу времени на единицу площади. Максимальный приток прямой солнечной радиации будет поступать на площадку, перпендикулярную солнечным лучам. Во всех остальных случаях энергетическая освещенность будет определяться высотой Солнца, или синусом угла, который образует солнечный луч с поверхностью площадки S’=S sin hc (3) В общем случае S (энергетическая освещенность площадки единичной площади, перпендикулярной солнечным лучам) равно So. Поток прямой солнечной радиации, приходящийся на горизонтальную площадку, называется инсоляцией.

3. Рассеянная солнечная радиация Проходя через атмосферу, прямая солнечная радиация испытывает рассеяние молекулами атмосферных газов и аэрозольных примесей. Прирассеянии частица, находящаяся на пути распространения электромагнитной волны, непрерывно поглощает энергию и переизлучает ее по всем направлениям. В результате поток параллельных солнечных лучей, идущих в определенном направлении, переизлучается по всем направлениям. Рассеяние происходит на всех длинах волн электромагнитного излучения, но его интенсивность определяется соотношением размера рассеивающих частиц и длин волн падающего излучения. В абсолютно чистой атмосфере, где рассеяние производится только молекулами газов, размеры которых меньше длин волн излучения, оно подчиняется закону Рэлея, который гласит, что спектральная плотность энергетической освещенности рассеянной радиации обратно пропорциональна четвертой степени длины волны рассеиваемых лучей Dl=a Sl /l 4 (4) где Sl - спектральная плотность энергетической освещенности прямой радиации с длиной волны l, Dl - спектральная плотность энергетической освещенности рассеянной радиации с той же длиной волны, а - коэффициент пропорциональности. В соответствии с законом Рэлея, в рассеянной радиации преобладают более короткие длины волн, так как красные лучи, будучи в два раза длиннее фиолетовых, рассеиваются в 14 раз меньше. Инфракрасная радиация рассеивается очень незначительно. Считают, что рассеянию подвергается около 26% общего потока солнечной радиации, 2/3 этой радиации приходит к земной поверхности. Так как рассеянная радиация поступает не от солнечного диска, а от всего небосвода, то ее энергетическую освещенность измеряют на горизонтальной поверхности. Единицей измерения энергетической освещенности рассеянной радиации является Вт/м 2 или кВт/м 2 . Если рассеяние происходит на частицах, соизмеримых с длинами волн излучения (аэрозольные примеси, кристаллы льда и капельки воды), то рассеяние не подчиняется закону Рэлея и энергетическая освещенность рассеянной радиации становится обратно пропорциональной не четвертой, аменьшим степеням длин волн - т.е. максимум рассеяния смещается в более длинноволновую часть спектра. При большом содержании в атмосфере крупных частиц рассеяние сменяется диффузным отражением, при котором поток света отражается частицами как зеркалами, без изменения спектрального состава. Поскольку падает белый свет, то и отражается тоже поток белого света. В результате цвет неба становится белесым. С рассеянием связаны два интересных явления - это голубой цвет неба и сумерки. Голубой цвет неба - это цвет самого воздуха, обусловленный рассеянием в нем солнечных лучей. Так как в чистом небе рассеяние подчиняется закону Рэлея, то максимум энергии рассеянной радиации, идущей от небесного свода, приходится на голубой цвет. Голубой цвет воздуха можно видеть, рассматривая отдаленные предметы, которые кажутся окутанными голубоватой дымкой. С высотой, по мере уменьшения плотности воздуха, цвет неба становится темнее и переходит в густо-синий, а в стратосфере - в фиолетовый. Чем больше примесей содержится в атмосфере, тем больше доля длинноволновой радиации в спектре солнечного света, тем белесоватее становится небо. Из-за рассеяния наиболее коротких волн прямая солнечная радиация обедняется волнами этого диапазона, поэтому максимум энергии в прямой радиации смещается в желтую часть и солнечный диск окрашивается в желтый цвет. При низких углах Солнца рассеяние происходит очень интенсивно, смещаясь в длинноволновую часть электромагнитного спектра, особенно при загрязненной атмосфере. Максимум прямой солнечной радиации смещается в красную часть, солнечный диск становится красным, и возникают яркие желто-красные закаты. После захода Солнца темнота наступает не сразу, аналогично утром, на земной поверхности становится светло за некоторое время до появления солнечного диска. Это явление неполной темноты при отсутствии солнечного диска получило название сумерек вечерних и утренних. Причиной этого является освещение Солнцем, находящимся под горизонтом, высоких слоев атмосферы и рассеяние ими солнечного света. Различают астрономические сумерки, которые продолжаются, пока Солнце не опустится ниже горизонта на 180 и при этом станет так темно, что будут различимы самые слабые звезды. Первая часть вечерних астрономических сумерек и последняя часть утренних астрономических сумерек называется гражданскими сумерками, при которых Солнце опускается под горизонт не ниже 80 . Продолжительность астрономических сумерек зависит от широты местности. Над экватором они короткие, до 1 часа, в умеренных широтах составляют 2 часа. В высоких широтах в летний сезон вечерние сумерки сливаются с утренними, образуя белые ночи.

4 Поглощение солнечной радиации в атмосфере. На верхнюю границу атмосферы солнечная радиация приходит в виде прямой радиации. Около 30% этой радиации отражается назад в космическое пространство, 70% - поступает в атмосферу. Проходя через атмосферу, эта радиация испытывает изменения, связанные с ее поглощением и рассеянием. Около 20-23% прямой солнечной радиации поглощается. Поглощение имеет избирательный характер и зависит от длин волн и вещественного состава атмосферы. Азот, основной газ атмосферы, поглощает радиацию только очень малых длин волн в ультрафиолетовой части спектра. Энергия солнечной радиации в этой части спектра очень мала и поглощение радиации азотом практически не отражается на величине общего потока энергии. Кислород поглощает несколько больше в двух узких участках видимой части спектра и в ультрафиолетовой части. Более энергично поглощает радиацию озон. Общее количество поглощенной озоном радиации достигает 3% прямой солнечной радиации. Основная доля поглощенной радиации приходится на ультрафиолетовую часть, на длины волн короче 0,29 мкм. В небольших количествах озон поглощает и радиацию видимого диапазона. Диоксид углерода поглощает радиацию в ИК диапазоне, но ввиду его малого количества, доля этой поглощенной радиации в целом невелика. Основными поглотителями прямой солнечной радиации являются водяной пар, облака и аэрозольные примеси, сосредоточенные в тропосфере. На долю водяного пара и аэрозолей приходится до 15% поглощенной радиации, на долю облаков до 5%. Так как основная доля поглощенной радиации приходится на такие переменные составляющие атмосферы, как водяной пар и аэрозоли, то уровень поглощения солнечной радиации меняется в значительных пределах и зависит от конкретных условий состояния атмосферы (ее влажности и загрязнения). Кроме того, количество поглощенной радиации зависит от высоты Солнца над горизонтом, т.е. от толщины слоя атмосферы, который проходит солнечный луч.

5. Видимость, закон ослабления радиации, фактор мутности. Рассеяние света в атмосфере приводит к тому, что отдаленные предметы на расстоянии становятся плохо различимыми не только из-за их уменьшения в размере, а и вследствие мутности атмосферы. Расстояние, на котором в атмосфере перестают различаться очертания предметов, называется дальность видимости, или просто видимость. Дальность видимости чаще всего определяют на глаз по определенным, заранее выбранным объектам (темным на фоне неба), расстояние до которых известно. В очень чистом воздухе дальность видимости может достигать сотен километров. В воздухе, содержащем много аэрозольных примесей, дальность видимости может понижаться до нескольких километров и даже метров. Так, при слабом тумане дальность видимости составляет 500-1000 м, а при сильном тумане или песчаной буре понижается до нескольких метров. Поглощение и рассеяние приводит к существенному ослаблению потока солнечной радиации, проходящего через атмосферу. Радиация ослабляется пропорционально самому потоку (при прочих равных условиях, чем больше поток, тем больше будет потеря энергии) и количеству поглощающих и рассеивающих частиц. Последнее зависит от длины пути луча сквозь атмосферу.. Для атмосферы, не содержащей аэрозольных примесей (идеальной атмосферы) коэффициент прозрачности р составляет 0,90-0,95. В реальной атмосфере его значения колеблются от 0,6 до 0,85 (зимой несколько выше, летом - ниже). С возрастанием содержания водяного пара и примесей коэффициент прозрачности убывает. С увеличением широты местности коэффициент прозрачности увеличивается в связи с убыванием давления водяного пара и меньшей запыленностью атмосферы. Все ослабление радиации в атмосфере можно разделить на две части: ослабление постоянными газами (идеальной атмосферой) и ослабление водяными парами и аэрозольными примесями. Соотношение этих процессов учитывается фактором мутности 6. Географические закономерности распределения прямой и рассеянной радиации . Поток прямой солнечной радиации зависит от высоты Солнца над горизонтом. Поэтому в течение дня поток солнечной радиации сначала быстро, потом медленно нарастает от восхода Солнца до полудня и сначала медленно, потом быстро уменьшается от полудня до захода Солнца. Но прозрачность атмосферы в течение дня меняется, поэтому кривая дневногохода прямой радиации не плавная, а имеет отклонения. Но в среднем за длительный период наблюдений изменения радиации в течение дня приобретают вид плавной кривой. В течение года энергетическая освещенность прямой солнечной радиации для основной части поверхности Земли существенно меняется, что связано с изменениями высоты Солнца. Для северного полушария минимальные значения как прямой радиации на перпендикулярную поверхность, так и инсоляции приходятся на декабрь, максимальные - не на летний период, а на весну, когда воздух менее замутнен продуктами конденсации и мало запылен. Средняя полуденная энергетическая освещенность в Москве в декабре составляет 0,54, апреле 1,05, июне-июле 0,86-0,99 кВт/м 2 . Суточные же значения прямой радиации максимальны летом, при максимальной продолжительности солнечного сияния. Максимальные значения прямой солнечной радиации для некоторых пунктов следующие (кВт/м 2): Бухта Тикси 0,91, Павловск 1,00, Иркутск 1,03, Москва 1,03, Курск 1,05, Тбилиси 1,05, Владивосток 1,02, Ташкент 1,06. Максимальные значения прямой солнечной радиации мало растут с убыванием широты, несмотря на рост высоты Солнца. Это связано с тем, что в южных широтах возрастает влагосодержание и запыленность воздуха. Поэтому на экваторе максимальные значения составляют чуть больше максимумов умеренных широт. Наибольшие на Земле годовые значения прямой солнечной радиации наблюдаются в Сахаре - до 1,10 кВТ/м 2 . Сезонные различия прихода прямой радиации следующие. В летний период наибольшие значения прямой солнечной радиации наблюдаются под 30-400 широты летнего полушария, к экватору и к полярным кругам значения прямой солнечной радиации уменьшаются. К полюсам для летнего полушария уменьшения прямой солнечной радиации небольшие, в зимнем - она становится равной нулю. Весной и осенью максимальные значения прямой солнечной радиации наблюдаются на 10-200 весеннего полушария и20-300 -осеннего. Только зимняя часть приэкваториальной зоны получает максимальные для данного периода значения прямой солнечной радиации. С высотой над уровнем моря максимальные значения радиации возрастают вследствие уменьшения оптической толщины атмосферы: на каждые 100 метров высоты величина радиации в тропосфере возрастает на 0,007-0,14 кВт/м 2 . Максимальные значения радиации, зафиксированные в горах, составляют 1,19 кВт/м 2 . Рассеянная радиация, поступающая на горизонтальную поверхность, также меняется в течение дня: возрастает до полудня и уменьшается после полудня. Величина потока рассеянной радиации в целом зависит от продолжительности дня и высоты Солнца над горизонтом, а также прозрачности атмосферы (уменьшение прозрачности приводит к увеличению рассеяния). Кроме того, рассеянная радиация в очень широких пределах меняется в зависимости от облачности. Отраженная облаками радиация также рассеивается. Рассеивается и отраженная снегом радиация, что увеличивает ее долю зимой. Рассеянная радиация при средней облачности более чем в два раза превосходит ее значения в безоблачный день. В Москве среднее полуденное значение рассеянной радиации летом при ясном небе составляет 0,15, а зимой при низком Солнце - 0,08 кВт/м 2 . При несплошной облачности эти значения составляют летом 0,28, а зимой 0,10 кВт/м 2 . В Арктике при сравнительно тонких облаках и снежном покрове эти значения летом могут достигать 0,70 кВт/м 2 . Очень велики значения рассеянной радиации в Антарктиде. С увеличением высоты рассеянная радиация убывает. Рассеянная радиация может существенно дополнять прямую радиацию, особенно при низком Солнце. Вследствие рассеянного света вся атмосфера днем служит источником освещения: днем светло и там, куда солнечные лучи непосредственно не падают, и тогда, когда Солнце скрыто облаками. Рассеянная радиация увеличивает не только освещенность, но и нагревание земной поверхности. Величины рассеянной радиации в общем меньше, чемпрямой, но порядок величин тот же. В тропических и средних широтах величина рассеянной радиации составляет от половины до двух третей значений прямой радиации. На 50-600 их значения близки, а ближе к полюсам рассеянная радиация преобладает.

7 Суммарная радиация Всю солнечную радиацию, приходящую к земной поверхности, называют суммарной солнечной радиацией При безоблачном небе суммарная солнечная радиация имеет суточный ход с максимумом около полудня и годовой ход с максимумом летом. Частичная облачность, не закрывающая диск Солнца, увеличивает суммарную радиацию по сравнению с безоблачным небом, полная облачность, наоборот, уменьшает ее. В среднем же, облачность уменьшает радиацию. Поэтому летом приход суммарной радиации в дополуденные часы больше, чем в послеполуденные и в первую половину года больше, чем во вторую. Полуденные значения суммарной радиации в летние месяцы под Москвой при безоблачном небе в среднем составляют 0,78, при открытом Солнце и облаках 0,80, при сплошной облачности - 0,26 кВТ/м 2. Распределение значений суммарной радиации по земному шару отклоняется от зонального, что объясняется влиянием прозрачности атмосферы и облачности. Максимальные годовые значения суммарной радиации составляют 84*102 – 92*102 МДж/м 2 и наблюдаются в пустынях Северной Африки. Над областями приэкваториальных лесов с большой облачностью значения суммарной радиации снижены до 42*102 – 50*102 МДж/м 2 . К более высоким широтам обоих полушарий значения суммарной радиации убывают, составляя под 60-й параллелью 25*102 – 33*102 МДж/м 2 . Но затем снова растут - мало над Арктикой и значительно - над Антарктидой, где в центральных частях материка составляют 50*102 – 54*102 МДж/м 2 . Надокеанами в целом значения суммарной радиации ниже, чем над соответствующими широтами суши. В декабре наибольшие значения суммарной радиации отмечаются в пустынях Южного полушария (8*102 – 9*102 МДж/м 2). Над экватором значения суммарной радиации снижаются до 3*102 – 5*102 МДж/м 2 . В Северном полушарии радиация быстро убывает к полярным районам и за полярным кругом равна нулю. В Южном полушарии суммарная радиация убывает к югу до 50-600 ю.ш. (4*102 МДж/м 2), а затем возрастает до 13*102 МДж/м 2 в центре Антарктиды. В июле наибольшие значения суммарной радиации (свыше 9*102 МДж/м 2) наблюдаются над северо-восточной Африкой и Аравийским полуостровом. Над экваториальной областью значения суммарной радиации невысоки и равны декабрьским. К северу от тропика суммарная радиация убывает медленно до 600 с.ш., а затем возрастает до 8*102 МДж/м 2 в Арктике. В южном полушарии суммарная радиация от экватора быстро убывает к югу, достигая нулевых значений у полярного круга.

8. Отражение солнечной радиации. Альбедо Земли. При поступлении на поверхность суммарная радиация частично поглощается в верхнем тонком слое почвы или воды и переходит в тепло, а частично отражается. Условия отражения солнечной радиации от земной поверхности характеризуются величиной альбедо, равной отношению отраженной радиации к приходящему потоку (к суммарной радиации). А = Qотр / Q (8) Теоретически значения альбедо могут меняться от 0 (абсолютно черная поверхность) до 1(абсолютно белая поверхность). Имеющиеся материалы наблюдений показывают, что величины альбедо подстилающих поверхностей меняются в широких пределах, причем их изменения охватывают почти полностью возможный интервал значений отражательнойспособности различных поверхностей. В экспериментальных исследованиях найдены значения альбедо почти для всех распространенных естественных подстилающих поверхностей. Эти исследования прежде всего показывают, что условия поглощения солнечной радиации на суше и на водоемах заметно различаются. Наибольшие значения альбедо наблюдаются для чистого и сухого снега (90-95%). Но так как снежный покров редко бывает совершенно чистым, то средние значения альбедо снега в большинстве случаев равны 70- 80%. Для влажного и загрязненного снега эти значения еще ниже - 40-50%. При отсутствии снега наибольшие альбедо на поверхности суши свойственны некоторым пустынным районам, где поверхность покрыта слоем кристаллических солей (дно высохших озер). В этих условиях альбедо имеет значение 50%. Немногим меньше значения альбедо в песчаных пустынях. Альбедо влажной почвы меньше альбедо сухой почвы. Для влажных черноземов значения альбедо составляют предельно малые величины - 5%. Альбедо естественных поверхностей со сплошным растительным покровом изменяется в сравнительно небольших пределах - от 10 до 20-25%. При этом альбедо леса (особенно хвойного) в большинстве случаев меньше, чем альбедо луговой растительности. Условия поглощения радиации на водоемах отличаются от условий поглощения на поверхности суши. Чистая вода сравнительно прозрачна для коротковолновой радиации, вследствие чего солнечные лучи, проникающие в верхние слои, многократно рассеиваются и только после этого в значительной мере поглощаются. Поэтому процесс поглощения солнечной радиации зависит от высоты Солнца. Если оно стоит высоко - значительная часть приходящей радиации проникает в верхние слои воды и, в основном, поглощается. Поэтому альбедо водной поверхности составляет первые единицы процента при высоком Солнце, а при низком Солнце альбедо возрастает до нескольких десятков процентов. Альбедо системы «Земля-атмосфера» имеет более сложную природу. Приходящая в атмосферу солнечная радиация частично отражается врезультате обратного рассеивания атмосферы. При наличии облаков значительная часть радиации отражается от их поверхности. Альбедо облаков зависит от толщины их слоя и составляет в среднем 40-50%. При полном или частичном отсутствии облаков альбедо системы «Земля- атмосфера» существенно зависит от альбедо самой земной поверхности. Характер географического распределения планетарного альбедо по наблюдениям со спутников показывает существенные различия между альбедо высоких и средних широт Северного и Южного полушарий. В тропиках наибольшие значения альбедо наблюдаются над пустынями, в зонах конвективной облачности над Центральной Америкой и над акваториями океанов. В Южном полушарии, в отличие от Северного, наблюдается зональный ход альбедо вследствие более простого распределения суши и моря. Наиболее высокие значения альбедо находятся в полярных широтах. Преобладающая часть радиации, отраженной земной поверхностью и верхней границей облаков, уходит в мировое пространство. Также уходит и треть рассеянной радиации. Отношение уходящей в космос отраженной и рассеянной радиации к общему количеству солнечной радиации, поступающей к атмосфере, носит название планетарного альбедо Земли или альбедо Земли. Его значение оценивают в 30%. Основную часть планетарного альбедо составляет радиация, отраженная облаками. 6.1.8. Собственное излучение. Встречное излучение. Эффективное излучение. Солнечная радиация, поглощаясь верхним слоем Земли, нагревает его, в результате чего почва и поверхностные воды сами излучают длинноволновую радиацию. Эту земную радиацию называют собственным излучением земной поверхности. Интенсивность этого излучения с некоторым допущением подчиняется закону Стефана-Больцмана дляабсолютно черного тела с температурой 150С. Но так как Земля не абсолютно черное тело (ее излучение соответствует излучению серого тела), при расчетах необходимо вводить поправку, равную e=0,95. Таким образом, собственное излучение Земли можно определить по формуле Ез = esТ 4 (9) Определено, что при среднепланетарной температуре Земли 150С собственное излучение Земли Ез = 3.73*102 Вт/м2. Столь большая отдача радиации с земной поверхности приводила бы к очень быстрому ее охлаждению, если бы этому не препятствовал обратный процесс - поглощение солнечной и атмосферной радиации земной поверхностью. Абсолютные температуры на земной поверхности лежат в пределах 190- 350К. При таких температурах собственное излучение имеет длины волн в пределах 4-120 мкм, а максимум энергии приходится на 10-15 мкм. Атмосфера, поглощая как солнечную радиацию, так и собственное излучение земной поверхности, нагревается. Кроме того, атмосфера нагревается нерадиационным путем (путем теплопроводности, при конденсации водяного пара). Нагретая атмосфера становится источником длинноволнового излучения. Большая часть этого излучения атмосферы (70%) направлена к земной поверхности и носит название встречного излучения (Еа). Другая часть излучения атмосферы поглощается вышележащими слоями, но по мере уменьшения содержания водяного пара, количество поглощенной атмосферой радиации уменьшается, и часть ее уходит в мировое пространство. Земная поверхность поглощает встречное излучение почти целиком (95- 99%). Таким образом, встречное излучение является для земной поверхности важным источником тепла в дополнение к поглощенной солнечной радиации. При отсутствии облаков длинноволновое излучение атмосферы определяется наличием водяного пара и диоксида углерода. Влияние атмосферного озона, по сравнению с этими факторами, незначительно. Водяной пар и диоксид углерода поглощают длинноволновое излучение в диапазоне от 4,5 до 80 мкм, но не сплошь, а в определенных узких спектральных областях. Наиболее сильное поглощение излучения водяными парами происходит в области длин волн 5-7,5 мкм, тогда как в области 9,5-12 мкм Рис. 4.1. Окна прозрачности атмосферы в оптическом диапазоне поглощение практически отсутствует. Этот диапазон длин волн называют окном прозрачности атмосферы. Диоксид углерода имеет несколько полос поглощения, из которых наиболее существенна полоса с длинами волн 13-17 мкм, на которые приходится максимум земного излучения. Следует отметить, что содержание углекислого газа сравнительно постоянно, тогда как количество водяного пара меняется очень значительно, в зависимости от метеорологических условий. Поэтому изменение влажности воздуха оказывает значительное влияние на величину излучения атмосферы. Например, наибольшее встречное излучение - 0,35-0,42 кВт/м 2 в среднем годовом у экватора, а к полярным районам оно убывает до 0,21 кВТ/м 2 , на равнинных территориях Еа составляет 0,21-0,28кВТ/м 2 и 0,07-0,14 кВт/м 2 - в горах. Уменьшение встречного излучения в горах объясняется уменьшением содержания водяного пара с высотой. Встречное излучение атмосферы обычно значительно возрастает при наличии облаков. Облака нижнего и среднего ярусов, как правило, являютсядостаточно плотными и излучают как абсолютно черное тело при соответствующей температуре. Высокие облака в связи с их малой плотностью обычно излучают меньше, чем черное тело, поэтому они мало влияют на соотношение собственного и встречного излучений. Поглощение водяным паром и другими газами длинноволнового собственного излучения создает «парниковый эффект», т.е. сохраняет солнечное тепло в земной атмосфере. Рост концентрации этих газов и прежде всего диоксида углерода в результате хозяйственной деятельности человека может привести к увеличению доли остающегося на планете тепла, к увеличению среднепланетарных температур и изменению глобального климата Земли, последствия которого пока трудно предсказуемы. Но следует заметить, что основную роль в поглощении земного излучения и формировании встречного играет водяной пар. Через окно прозрачности часть длинноволнового земного излучения уходит через атмосферу в мировое пространство. Совместно с излучением атмосферы эта радиация называется уходящей радиацией. Если за 100 единиц принять приток солнечной радиации, то уходящая радиация составит 70 единиц. С учетом 30 единиц отраженной и рассеянной радиации (планетарное альбедо Земли) Земля отдает в космическое пространство столько же радиации, сколько и получает, т.е. находится в состоянии лучистого равновесия.

9. Радиационный баланс земной поверхности Радиационным балансом земной поверхности называют разницу между приходом радиации на земную поверхность (в виде поглощенной радиации) и ее расходом в результате теплового излучения (эффективное излучение). Радиационный баланс меняется от ночных отрицательных значений к дневным положительным в летнее время при высоте Солнца 10-15 градусов и наоборот, от положительных к отрицательным - перед заходом при тех же высотах Солнца. Зимой переход значений радиационного баланса через ноль происходит при больших углах Солнца (20-25 градусов). В ночное время при отсутствии суммарной радиации радиационный баланс отрицателен и равен эффективному излучению. Распределение радиационного баланса по земному шару достаточно равномерно. Годовые значения радиационного баланса положительны повсюду, кроме Антарктиды и Гренландии. Положительные годовые значения радиационного баланса означают, что избыток поглощенной радиации уравновешивается нерадиационной передачей тепла от земной поверхности к атмосфере. Это означает, что для земной поверхности радиационного равновесия нет (приход радиации больше, чем ее отдача), но существует тепловое равновесие, обеспечивающее стабильность тепловых характеристик атмосферы. Наибольшие годовые значения радиационного баланса наблюдаются в экваториальной зоне между 200 северной и южной широты. Здесь он составляет более 40*102 МДж/м 2 . К более высоким широтам значения радиационного баланса убывают и около 60-й параллели составляют от 8*102 до 13*102 МДж/м 2 . Далее к полюсам радиационный баланс еще более уменьшается и составляет в Антарктиде – 2*102 – 4*102 МДж/м 2 . Над океанами радиационный баланс больше, чем над сушей в тех же широтах. Существенные отклонения от зональных значений имеются и в пустынях, где баланс ниже широтного значения из-за большого эффективного излучения. В декабре радиационный баланс отрицателен на значительной части Северного полушария севернее 40-параллели. В Арктике он достигает значений 2*102 МДж/м 2 и ниже. К югу от 40-й параллели он возрастает до Южного тропика (4*102 – 6*102 МДж/м 2), а затем понижается к Южному полюсу, составляя на побережье Антарктиды 2*102 МДж/м 2 В июне радиационный баланс максимален над Северным тропиком (5*102 – 6*102 МДж/м 2). К северу он понижается, оставаясь положительнымдо Северного полюса, а к югу уменьшается, становясь отрицательным у берегов Антарктиды (-0,4 -0,8*102 МЖд/м 2).

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-06-30

Энергия, излучаемая Солнцем, носит название солнечной радиации. Поступая на Землю, солнечная радиация в большей своей части превращается в тепло.

Солнечная радиация является практически единственным источником энергии для Земли и атмосферы. По сравнению с солнечной энергией значение других источников энергии для Земли ничтожно мало. Например, температура Земли в среднем с глубиной возрастает (примерно 1 о С на каждые 35 м). Благодаря этому поверхность Земли получает некоторое количество тепла из внутренних частей. Подсчитано, что в среднем 1см 2 земной поверхности получает из внутренних частей Земли около 220 Дж в год. Это количество в 5000 раз меньше тепла, получаемого от Солнца. Некоторое количество тепла Земля получает от звезд и планет, но и она во много раз (приблизительно в 30 млн.) меньше тепла, поступающего от Солнца.

Количество энергии, посылаемой Солнцем на Землю, огромно. Так, мощность потока солнечной радиации, поступающей на площадь в 10 км 2, составляет в летний безоблачный (с учетом ослабления атмосферы) 7-9 кВт. Это больше, чем мощность Красноярской ГЭС. Количество лучистой энергии, поступающей от Солнца за 1 секунду на площадь 15Ч15 км (это меньше площади Ленинграда) в околополуденные часы летом, превышает мощность всех электростанций распавшегося СССР (166 млн кВт) .

Рисунок 1 - Солнце - источник радиации

Виды солнечной радиации

В атмосфере солнечная радиация на пути к поверхности земли частично поглощается, а частично рассеивается и отражается от облаков и земной поверхности. В атмосфере наблюдается три вида солнечной радиации: прямая, рассеянная и суммарная.

Прямая солнечная радиация - радиация, приходящая к земной поверхности непосредственно от диска Солнца. Солнечная радиация распространяется от Солнца по всем направлениям. Но расстояние от Земли до Солнца так велико, что прямая радиация падает на любую поверхность на Земле в виде пучка параллельных лучей, исходящего как бы из бесконечности. Даже весь земной шар в целом так мал в сравнении с расстоянием до Солнца, что всю солнечную радиацию, падающую на него, без заметной погрешности можно считать пучком параллельных лучей.

На верхнюю границу атмосферы приходит только прямая радиация. Около 30 % падающей на Землю радиации отражается в космическое пространство. Кислород, азот, озон, диоксид углерода, водяные пары (облака) и аэрозольные частицы поглощают 23 % прямой солнечной радиации в атмосфере. Озон поглощает ультрафиолетовую и видимую радиацию. Несмотря на то, что его содержание в воздухе очень мало, он поглощает всю ультрафиолетовую часть радиации (это примерно 3 %). Таким образом, у земной поверхности ее вообще не наблюдается, что очень важно для жизни на Земле.

Прямая солнечная радиация на пути сквозь атмосферу также рассеивается. Частица (капля, кристалл или молекула) воздуха, находящаяся на пути электромагнитной волны, непрерывно «извлекает» энергию из падающей волны и переизлучает ее по всем направлениям, становясь излучателем энергии.

Около 25 % энергии общего потока солнечной радиации проходя через атмосферу, рассеивается молекулами атмосферных газов и аэрозолем и превращается в атмосфере в рассеянную солнечную радиацию. Таким образом рассеянная солнечная радиация - солнечная радиация, претерпевшая рассеяние в атмосфере. Рассеянная радиация приходит к земной поверхности не от солнечного диска, а от всего небесного свода. Рассеянная радиация отлична от прямой по спектральному составу, так как лучи различных длин волн рассеиваются в разной степени.

Так как первоисточником рассеянной радиации является прямая солнечная радиация, поток рассеянной зависит от тех же факторов, которые влияют на поток прямой радиации. В частности, поток рассеянной радиации возрастает по мере увеличение высоты Солнца и наоборот. Он возрастает также с увеличением в атмосфере количества рассеивающих частиц, т.е. со снижением прозрачности атмосферы, и уменьшается с высотой над уровнем моря в связи с уменьшение количества рассеивающих частиц в вышележащих слоях атмосферы. Очень большое влияние на рассеянную радиацию оказывают облачность и снежный покров, которые за счет рассеяния и отражения падающей на них прямой и рассеянной радиации и повторного рассеяния их в атмосфере могут в несколько раз увеличить рассеянную солнечную радиацию.

Рассеянная радиация существенно дополняет прямую солнечную радиацию и значительно увеличивает поступление солнечной энергии на земную поверхность. Особенно велика ее роль в зимнее время в высоких широтах и в других районах с повышенной облачностью, где доля рассеянной радиации может превышать долю прямой. Например, в годовой сумме солнечной энергии на долю рассеянной радиации приходится в Архангельске - 56 %, в Санкт-Петербурге - 51 %.

Суммарная солнечная радиация - это сумма потоков прямой и рассеянной радиаций, поступающих на горизонтальную поверхность. До восхода и после захода Солнца, а также днем при сплошной облачности суммарная радиация полностью, а при малых высотах Солнца преимущественно состоит из рассеянной радиации. При безоблачном или малооблачном небе с увеличением высоты Солнца доля прямой радиации в составе суммарной быстро возрастает и в дневные часы поток ее многократно превышает поток рассеянной радиации. Облачность в среднем ослабляет суммарную радиацию (на 20-30 %), однако при частичной облачности, не закрывающей солнечного диска, поток ее может быть больше, чем при безоблачном небе. Существенно увеличивает поток суммарной радиации снежный покров за счет увеличения потока рассеянной радиации.

Суммарная радиация, падая на земную поверхность, большей частью поглощается верхним слоем почвы или более толстым слоем воды (поглощенная радиация) и переходит в тепло, а частично отражается (отраженная радиация) .

Солнце – источник тепла и света, дарящий силы и здоровье. Однако не всегда его воздействие является положительным. Нехватка энергии или ее переизбыток могут расстроить естественные процессы жизнедеятельности и спровоцировать различные проблемы. Многие уверены, что загорелая кожа выглядит намного красивее, чем бледная, однако если долгое время провести под прямыми лучами, можно получить сильный ожог. Солнечная радиация – это поток поступающей энергии, распространяющийся в виде электромагнитных волн, проходящих через атмосферу . Измеряется мощностью переносимой ею энергии на единицу площади поверхности (ватт/м 2). Зная, как влияет солнце на человека, можно предотвратить его отрицательное воздействие.

Что представляет собой солнечная радиация

О Солнце и его энергии написано множество книг. Солнце является главным источником энергии всех физико-географических явлений на Земле . Одна двухмиллиардная доля света проникает в верхние слои атмосферы планеты, большая же часть оседает в мировом пространстве.

Лучи света – первоисточники других видов энергии. Попадая на поверхность земли и в воду, они формируются в тепло, воздействуют на климатические особенности и погоду.

Степень воздействия световых лучей на человека зависит от уровня радиации, а также периода, проведенного под солнцем. Многие типы волн люди применяют себе на пользу, пользуясь рентгеновским облучением, инфракрасными лучами, а также ультрафиолетом. Однако солнечные волны в чистом виде в большом количестве могут негативно отразиться на здоровье человека.

Количество радиации зависит от:

  • положения Солнца. Наибольшее количество облучения приходится на равнины и пустыни, где солнцестояние довольно высокое, а погода безоблачная . Полярные области получают минимальное количество света, так как облачность поглощает значительную часть светового потока;
  • длительности дня. Чем ближе к экватору, тем продолжительнее день. Именно там люди получают больше тепла;
  • свойств атмосферы: облачности и влажности. На экваторе повышенная облачность и влажность, что является препятствием для прохождения света. Именно поэтому количество светового потока там меньше, чем в тропических зонах.

Распределение

Распределение солнечного света по земной поверхности неравномерное и имеет зависимость от:

  • плотности и влажности атмосферы. Чем они больше, тем уменьшается облучение;
  • географической широты местности. Количество получаемого света повышается от полюсов к экватору ;
  • движения Земли. Объем излучения меняется в зависимости от времени года;
  • характеристик земной поверхности. Большое количество светового потока отражается в светлых поверхностях, например, снеге. Наиболее слабо отражает световую энергию чернозем.

Из-за протяженности своей территории уровень излучения в России значительно варьируется. Солнечное облучение в северных регионах примерно такое — 810 кВт-час/м 2 за 365 дней, в южных – более 4100 кВт-час/м 2 .

Немаловажное значение имеет длительность часов, на протяжении которых светит солнце . Эти показатели разнообразны в различных регионах, на что влияет не только географическая широта, но и наличие гор. На карте солнечной радиации России хорошо заметно, что в некоторых регионах не целесообразно устанавливать линии электроснабжения, так как естественный свет вполне способен обеспечить потребности жителей в электричестве и тепле.

Виды

Световые потоки достигают Земли различными путями. Именно от этого зависят виды солнечной радиации:

  • Исходящие от солнца лучи называются прямой радиацией . Их сила имеет зависимость от высоты расположения солнца над уровнем горизонта. Максимальный уровень наблюдается в 12 часов дня, минимальный – в утреннее и вечернее время. Кроме того, интенсивность воздействия имеет связь с временем года: наибольшая возникает летом, наименьшая – зимой. Характерно, что в горах уровень радиации больше, чем на равнинных поверхностях. Также грязный воздух снижает прямые световые потоки. Чем ниже солнце над уровнем горизонта, тем меньше ультрафиолета.
  • Отраженная радиация – это излучение, которое отражается водой или поверхностью земли.
  • Рассеянная солнечная радиация формируется при рассеивании светового потока. Именно от нее зависит голубая окраска неба при безоблачной погоде.

Поглощенная солнечная радиация имеет зависимость от отражательной способности земной поверхности – альбедо.

Спектральный состав излучения многообразен:

  • цветные или видимые лучи дают освещенность и имеют большое значение в жизни растений;
  • ультрафиолет должен проникать в тело человека умеренно, так как его переизбыток или нехватка могут нанести вред;
  • инфракрасное облучение дает ощущение тепла и воздействует на рост растительности.

Суммарная солнечная радиация – это проникающие на землю прямые и рассеянные лучи . При отсутствии облачности, примерно около 12 часов дня, а также в летнее время года она достигает своего максимума.

Истории наших читателей

Владимир
61 год

Как происходит воздействие

Электромагнитные волны состоят из различных частей. Есть невидимые, инфракрасные и видимые, ультрафиолетовые лучи. Характерно, что радиационные потоки имеют разную структуру энергии и по-разному влияют на людей.


Световой поток может оказывать благотворное, целебное воздействие на состояние человеческого тела
. Проходя через зрительные органы, свет регулирует метаболизм, режим сна, влияет на общее самочувствие человека. Кроме того, световая энергия способна вызывать ощущение тепла. При облучении кожи в организме происходят фотохимические реакции, способствующие правильному обмену веществ.

Высокой биологической способностью обладает ультрафиолет, имеющий длину волны от 290 до 315 нм. Эти волны синтезируют витамин D в организме, а также способны уничтожать вирус туберкулеза за несколько минут, стафилококк – в течение четверти часа, палочки брюшного тифа – за 1 час.

Характерно, что безоблачная погода снижает длительность возникающих эпидемий гриппа и других заболеваний, например, дифтерии, имеющих способность передаваться воздушно-капельным путем.

Естественные силы организма защищают человека от внезапных атмосферных колебаний: температуры воздуха, влажности, давления. Однако иногда подобная защита ослабевает, что под воздействием сильной влажности совместно с повышенной температурой приводит к тепловому удару.

Воздействие облучения имеет связь от степени его проникновения в организм. Чем длиннее волны, тем сильнее сила излучения . Инфракрасные волны способны проникать до 23 см под кожу, видимые потоки – до 1 см, ультрафиолет – до 0,5-1 мм.

Все виды лучей люди получают во время активности солнца, когда пребывают на открытых пространствах. Световые волны позволяют человеку адаптироваться в мире, именно поэтому для обеспечения комфортного самочувствия в помещениях необходимо создать условия оптимального уровня освещения.

Воздействие на человека

Влияние солнечного излучения на здоровье человека определяется различными факторами. Имеет значение место жительства человека, климат, а также количество времени, проведенного под прямыми лучами.

При нехватке солнца у жителей Крайнего Севера, а также у людей, чья деятельность связана с работой под землей, например у шахтеров, наблюдаются различные расстройства жизнедеятельности, снижается прочность костей, возникают нервные нарушения.

Дети, недополучающие света, страдают рахитом чаще, чем остальные . Кроме того, они более подвержены заболеваниям зубов, а также имеют более длительное протекание туберкулеза.

Однако слишком продолжительное воздействие световых волн без периодической смены дня и ночи может пагубно отразиться на состоянии здоровья. Например, жители Заполярья часто страдают раздражительностью, утомлением, бессонницей, депрессиями, снижением трудоспособности.

Радиация в Российской Федерации имеет меньшую активность, чем, к примеру, в Австралии.

Таким образом, люди, которые находятся под длительным излучением:

  • подвержены высокой вероятности возникновения рака кожных покровов;
  • имеют повышенную склонность к сухости кожи, что, в свою очередь, ускоряет процесс старения и появление пигментации и ранних морщин;
  • могут страдать ухудшением зрительных способностей, катарактой, конъюнктивитом;
  • обладают ослабленным иммунитетом.

Нехватка витамина D у человека является одной из причин злокачественных новообразований, нарушений обмена веществ , что приводит к излишней массе тела, эндокринным нарушениям, расстройству сна, физическому истощению, плохому настроению.

Человек, который систематически получает свет солнца и не злоупотребляет солнечными ванными, как правило, не испытывает проблем со здоровьем:

  • имеет стабильную работу сердца и сосудов;
  • не страдает нервными заболеваниями;
  • обладает хорошим настроением;
  • имеет нормальный обмен веществ;
  • редко болеет.

Таким образом, только дозированное поступление излучения способно положительно отразиться на здоровье человека.

Как защититься


Переизбыток облучения может спровоцировать перегрев организма, ожоги, а также обострение некоторых хронических болезней
. Любителям принимать солнечные ванны необходимо позаботиться о выполнении нехитрых правил:

  • с осторожностью загорать на открытых пространствах;
  • во время жаркой погоды скрываться в тени под рассеянными лучами. В особенности это касается маленьких детей и пожилых людей, страдающих туберкулезом и заболеваниями сердца.

Следует помнить, что загорать необходимо в безопасное время суток, а также не находиться длительное время под палящим солнцем. Кроме того, стоит оберегать от теплового удара голову, нося головной убор, солнцезащитные очки, закрытую одежду, а также использовать различные средства от загара.

Солнечная радиация в медицине

Световые потоки активно применяют в медицине:

  • при рентгене используется способность волн проходить через мягкие ткани и костную систему;
  • введение изотопов позволяет зафиксировать их концентрацию во внутренних органах, обнаружить многие патологии и очаги воспаления;
  • лучевая терапия способна разрушать рост и развитие злокачественных новообразований .

Свойства волн успешно используют во многих физиотерапевтических аппаратах:

  • Приборы с инфракрасным излучением применяют для теплолечения внутренних воспалительных процессов, заболеваний костей, остеохондроза, ревматизма, благодаря способности волн восстанавливать клеточные структуры.
  • Ультрафиолетовые лучи могут отрицательно сказываться на живых существах, угнетать рост растений, подавлять микроорганизмы и вирусы.

Гигиеническое значение солнечной радиации велико. Аппараты с ультрафиолетовым излучением используют в терапии:

  • различных травм кожных покровов: ран, ожогов;
  • инфекций;
  • болезней ротовой полости;
  • онкологических новообразований.

Кроме того, радиация имеет положительное влияние на организм человека в целом: способна придать сил, укрепить иммунную систему, восполнить нехватку витаминов .

Солнечный свет является важным источником полноценной жизни человека. Достаточное его поступление приводит к благоприятному существованию всех живых существ на планете. Человек не может снизить степень радиации, однако в силах оградить себя от его отрицательного воздействия.

Энергетическая освещенность, создаваемая излучением, поступающим на Землю непосредственно от солнечного диска в виде пучка параллельных солнечных лучей, называется прямой солнечной радиацией .
Прямая солнечная радиация, поступающая на верхнюю границу атмосферы, изменяется во времени в небольших пределах, поэтому ее называют солнечной постоянной (S0). При среднем расстоянии от Земли до Солнца 149,5·106 км составляет около 1400 Вт/м кв.
При прохождении потока прямой солнечной радиации через атмосферу происходит его ослабление, вызванное поглощением (около 15%) и рассеянием (около 25%) энергии газами, аэрозолями, облаками.

Согласно закону ослабления Буге прямая солнечная радиация, поступающая на поверхность Земли при отвесном (перпендикулярном) падении лучей,

Формула

где? – коэффициент прозрачности атмосферы; m – число оптических масс атмосферы.

Ослабление солнечного потока в атмосфере зависит от высоты Солнца над горизонтом Земли и прозрачности атмосферы. Чем меньше высота его над горизонтом, тем большее число оптических масс атмосферы проходит солнечный луч. За одну оптическую массу атмосферы принимают массу, которую проходят лучи при положении Солнца в зените (рис. 3.1).

Рисунок 3.1 . Схема пути солнечного луча в атмосфере при разной высоте Солнца (доступно при скачивании полной версии учебника)

Таблица (доступно при скачивании полной версии учебника)

Чем больший путь в атмосфере проходят солнечные лучи, тем сильнее их поглощение и рассеяние и тем больше изменяется их интенсивность.
Коэффициент прозрачности зависит от содержания в атмосфере водяного пара и аэрозолей: чем их больше, тем меньше коэффициент прозрачности при одинаковом числе проходимых оптических масс. В среднем для всего потока радиации в идеально чистой атмосфере? на уровне моря составляет около 0,9, в действительных атмосферных условиях – 0,70-0,85, зимой он несколько больше, чем летом.

Приход прямой радиации на земную поверхность зависит от угла падения солнечных лучей . Поток прямой солнечной радиации, падающей на горизонтальную поверхность, называют инсоляцией :

Формула (доступно при скачивании полной версии учебника)

где h0 – высота солнца

Энергетическая освещенность прямой радиации зависит от высоты Солнца и прозрачности атмосферы и возрастает с увеличением высоты места над уровнем моря. В основных земледельческих районах России летом полуденные значения энергетической освещенности прямой радиации находятся в пределах 700-900 Вт/м кв. На высоте 1 км увеличение составляет 70-140 Вт/м кв. На высоте 4-5 км освещенность прямой радиации превышает 1180 Вт/м кв. Облака нижнего яруса обычно почти полностью не пропускают прямую радиацию.
Приход прямой солнечной радиации зависит от высоты солнца над горизонтом, которая меняется как в течение суток, так и в течение года. Это обуславливает суточный и годовой ход прямой радиации.
Изменение прямой радиации в течение безоблачного дня (суточный ход) выражается одновершинной кривой с максимумом в истинный солнечный полдень. Летом над сушей максимум может наступить до полудня, так как к полудню увеличивается запыленность атмосферы.
Годовой ход прямой радиации наиболее резко выражен на полюсах, так как зимой солнечная радиация здесь вообще отсутствует, а летом ее приход достигает 900 Вт/м кв. В средних широтах максимум прямой радиации иногда наблюдается не летом, а весной, так как в летние месяцы, вследствие увеличения содержания водяного пара и пыли, уменьшается прозрачность атмосферы. Минимум приходится на период, близкий к дню зимнего солнцестояния (декабрь). На экваторе наблюдаются два максимума равные примерно 920 Вт/м кв. в дни весеннего и осеннего равноденствия, и два минимума (около 55- Вт/м кв.) в дни летнего и зимнего солнцестояния.

Скачать полную версию учебника (с рисунками, формулами, картами, схемами и таблицами) одним файлом в формате MS Office Word

Солнечная радиация - излучение, свойственное светилу нашей планетной системы. Солнце - главная звезда, вокруг которой обращается Земля, а также соседние планеты. Фактически это огромный раскаленный газовый шар, постоянно испускающий в пространство вокруг себя потоки энергии. Именно их и называют радиацией. Смертельная, одновременно именно эта энергия - один из основных факторов, делающих возможной жизнь на нашей планете. Как и все в этом мире, польза и вред солнечной радиации для органической жизни тесно взаимосвязаны.

Общее представление

Чтобы понять, что представляет собой солнечная радиация, необходимо сперва разобраться, что же такое Солнце. Основной источник тепла, обеспечивающий условия для органического существования на нашей планете, во вселенских просторах представляет собой лишь небольшую звездочку на галактических окраинах Млечного Пути. А вот для землян Солнце - это центр мини-вселенной. Ведь именно вокруг этого газового сгустка обращается наша планета. Солнце дает нам тепло и освещение, то есть поставляет формы энергии, без которых наше существование было бы невозможно.

В древности источник солнечной радиации - Солнце - было божеством, объектом, достойным поклонения. Солнечная траектория по небу людям казалась очевидным доказательством божьей воли. Попытки вникнуть в суть явления, объяснить, что представляет собой это светило, предпринимались с давних пор, и особенно значимый вклад в них внес Коперник, сформировав идею гелиоцентризма, разительно отличавшуюся от общепринятого в ту эпоху геоцентризма. Впрочем, доподлинно известно, что и в древности ученые не раз задумывались над тем, что же такое Солнце, почему оно столь важно для любых форм жизни на нашей планете, почему передвижение этого светила именно таково, каким мы его видим.

Прогресс технологий позволил глубже понять, что представляет собой Солнце, какие процессы происходят внутри звезды, на ее поверхности. Ученые познали, что представляет собой солнечная радиация, каким образом газовый объект воздействует на планеты в своей зоне влияния, в частности, на земной климат. Сейчас человечество располагает достаточно объемной базой знаний, чтобы с уверенностью говорить: удалось выяснить, что такое по своей сути радиация, излучаемая Солнцем, как измерить этот энергетической поток и как сформулировать особенности его воздействия на разные формы органической жизни на Земле.

О терминах

Наиболее важный шаг в освоении сути понятия был сделан в прошлом столетии. Именно тогда именитый астроном А. Эддингтон сформулировал предположение: в солнечных глубинах происходит термоядерный синтез, что позволяет выделяться огромному количеству энергии, излучаемому в пространство вокруг звезды. Пытаясь оценить величину солнечной радиации, были предприняты усилия для определения фактических параметров среды на светиле. Так, температура ядра, по расчетам ученых, достигает 15 миллионов градусов. Этого достаточного, чтобы справиться со взаимным отталкивающим влиянием протонов. Столкновение единиц приводит к формированию гелиевых ядер.

Новые сведения привлекли внимание многих видных ученых, включая А. Эйнштейна. В попытках оценить величину солнечной радиации научные деятели выяснили, что гелиевые ядра по своей массе уступают суммарной величине 4 протонов, необходимых для формирования новой структуры. Так была выявлена особенность реакций, получившая название «дефект масс». Но ведь в природе ничто не может пропасть бесследно! В попытке отыскать «сбежавшие» величины ученые сравнили энергетическое излечение и специфику изменения массы. Именно тогда удалось выявить, что разность излучается гамма-квантами.

Излучаемые объекты пробиваются от ядра нашей звезды к ее поверхности сквозь многочисленные газовые атмосферные слои, что приводит к дроблению элементов и формированию на их основе электромагнитного излучения. Среди прочих видов солнечной радиации - свет, воспринимаемый человеческим глазом. Приблизительные оценки позволили предположить, что процесс прохождения гамма-квантов занимает около 10 миллионов лет. Еще восемь минут - и излученная энергия достигает поверхности нашей планеты.

Как и что?

Солнечной радиацией называют суммарный комплекс электромагнитного излучения, которому свойственен довольно обширный диапазон. Сюда входит так называемый солнечный ветер, то есть энергетический поток, сформированный электронами, легкими частицами. На пограничном слое атмосферы нашей планеты постоянно наблюдается одинаковая интенсивности излучения Солнца. Энергия звезды дискретна, ее перенос осуществляется через кванты, при этом корпускулярный нюанс настолько малозначим, что можно рассматривать лучи в качестве электромагнитных волн. А их распространение, как выяснили физики, происходит равномерно и по прямой линии. Таким образом, чтобы описать солнечную радиацию, необходимо определить свойственную ей длину волны. На основании этого параметра принято выделять несколько типов излучения:

  • тепло;
  • радиоволна;
  • белый свет;
  • ультрафиолет;
  • гамма;
  • рентген.

Соотношение инфракрасных, видимых, ультрафиолетовых лучшей оценивается следующим образом: 52%, 43%, 5%.

Для количественной радиационной оценки необходимо рассчитать плотность потока энергии, то есть количество энергии, которое в заданный временной промежуток достигает ограниченного участка поверхности.

Как показали исследования, солнечная радиация преимущественно поглощается планетарной атмосферой. Благодаря этому происходит нагрев до температуры, комфортной для органической жизни, свойственной Земле. Имеющаяся оболочка из озона позволяет пройти лишь одной сотой ультрафиолетового излучения. При этом полностью блокируются волны короткой длины, опасные для живых существ. Атмосферные слои способны рассеять почти треть лучей Солнца, еще 20% поглощаются. Следовательно, поверхности планеты достигает не более половины всей энергии. Именно этот «остаток» в науке назвали прямой солнечной радиацией.

А если поподробнее?

Известно несколько аспектов, от которых зависит, насколько интенсивным будет прямое излучение. Наиболее значимыми считаются угол падения, зависящий от широты (географическая характеристика местности на земном шаре), время года, определяющее, как велико расстояние до конкретной точки от источника излучения. Многое зависит от особенностей атмосферы - насколько она загрязнена, как много в заданный момент облаков. Наконец, играет роль характер поверхности, на которую падает луч, а именно, ее способности отражать поступившие волны.

Суммарной солнечной радиацией называют величину, объединяющую рассеянные объемы и прямое излучение. Параметр, используемый для оценки интенсивности, оценивается в калориях в расчете на единицу территории. При этом помнят, что в разное время суток значения, свойственные излучению, отличаются. Кроме того, энергия не может распределяться по поверхности планеты равномерно. Чем ближе к полюсу, тем интенсивность выше, при этом снежные покровы обладают высокой отражающей способностью, а значит, воздух не получает возможности прогреться. Следовательно, чем дальше от экватора, тем суммарные показатели солнечного волнового излучения будут меньше.

Как удалось выявить ученым, энергия солнечной радиации оказывает серьезное воздействие на планетарный климат, подчиняет себе жизнедеятельность разнообразных организмов, существующих на Земле. В нашей стране, а также на территории ближайших соседей, как и в прочих странах, расположенных в северном полушарии, зимой преимущественная доля принадлежит рассеянному излучению, а вот летом доминирует прямое.

Инфракрасные волны

Из общего количества суммарной солнечной радиации внушительный процент принадлежит именно инфракрасному спектру, не воспринимаемому глазом человека. За счет таких волн нагревается поверхность планеты, постепенно передающая тепловую энергию воздушным массам. Это помогает сохранять комфортный климат, поддерживать условия для существования органической жизни. Если не происходит каких-то серьезных сбоев, климат остается условно неизменным, а значит, все существа могут обитать в привычных им условиях.

Наше светило - не единственный источник волн инфракрасного спектра. Аналогичное излучение свойственно любому нагретому объекту, включая обычную батарею в человеческом доме. Именно на принципе восприятия инфракрасного излучения работают многочисленные приборы, дающие возможность видеть в темноте, иных некомфортных для глаз условиях нагретые тела. Кстати говоря, по аналогичному принципу работают ставшие столь популярными в последнее время компактные приборы для оценки, через какие участки здания происходят наибольшие теплопотери. Эти механизмы особенно широко распространены в среде строителей, а также владельцев частных домов, поскольку помогают выявить, через какие участки тепло теряется, организовать их защиту и предупредить лишний расход энергии.

Не стоит недооценивать влияние солнечной радиации инфракрасного спектра на человеческий организм только по причине того, что наши глаза не могут воспринимать такие волны. В частности, излучение активно используется в медицине, поскольку позволяет повысить концентрацию лейкоцитов в кровеносной системе, а также привести в норму кровоток за счет увеличения просветов кровеносных сосудов. Приборы, основанные на ИК-спектре, применяются в качестве профилактических против кожных патологий, терапевтических при воспалительных процессах в острой и хронической форме. Наиболее современные препараты помогают справиться с коллоидными рубцами и трофическими ранами.

Это любопытно

На основе изучения факторов солнечной радиации удалось создать поистине уникальные приборы, называемые термографами. Они дают возможность своевременно обнаружить различные болезни, не доступные для выявления иными способами. Именно так можно найти рак или тромб. ИК в некоторой степени защищает от ультрафиолета, опасного для органической жизни, что позволило использовать волны такого спектра для восстановления здоровья продолжительное время находившихся в космосе астронавтов.

Природа вокруг нас и по сей день загадочна, касается это и излучения различных длин волн. В частности, инфракрасный свет все еще исследован не досконально. Ученые знают, что его неправильное применение может стать причиной вреда здоровью. Так, недопустимо использовать оборудование, формирующее такой свет, для терапии гнойных воспаленных участков, кровотечений и злокачественных новообразований. Инфракрасный спектр противопоказан людям, страдающим нарушениями функционирования сердца, сосудов, включая расположенные в мозге.

Видимый свет

Один из элементов суммарной солнечной радиации - видимый человеческому глазу свет. Волновые пучки распространяются по прямым линиям, поэтому не происходит наложения друг на друга. В свое время это стало темой немалого количества научных работ: ученые задались целью понять, по какой причине вокруг нас так много оттенков. Оказалось, что свою роль играют ключевые параметры света:

  • преломление;
  • отражение;
  • поглощение.

Как выяснили ученые, объекты не способны сами по себе быть источниками видимого света, но могут поглощать излучение и отражать его. Варьируются углы отражения, частота волн. На протяжении многих веков способность человека видеть постепенно совершенствовалась, но определенные ограничения обусловлены биологическим строением глаза: сетчатка такова, что может воспринять лишь определенные лучи отраженных световых волн. Это излучение - небольшой промежуток между ультрафиолетом и инфракрасными волнами.

Многочисленные любопытные и загадочные световые особенности не только стали темой множества работ, но и были основанием для зарождения новой физической дисциплины. Одновременно появились ненаучные практики, теории, приверженцы которых считают, что цвет способен повлиять на физическое состояние человека, психику. На основании таких предположений люди окружают себя предметами, наиболее приятными для их глаза, делая бытовую повседневность комфортнее.

Ультрафиолет

Не менее важный аспект суммарной солнечной радиации - ультрафиолетовое изучение, сформированное волнами большой, средней и малой длины. Они отличны друг от друга как по физическим параметрам, так и по особенностям влияния на формы органической жизни. Длинные ультрафиолетовые волны, к примеру, в атмосферных слоях в основном рассеиваются, а до земной поверхности добирается лишь незначительный процент. Чем короче длина волны, тем глубже такое излучение может проникнуть в человеческую (и не только) кожу.

С одной стороны, ультрафиолет опасен, но без него невозможно существование многообразной органической жизни. Такое излучение отвечает за формирование кальциферола в организме, а этот элемент необходим для строительства костной ткани. УФ-спектр - это мощная профилактика рахита, остеохондроза, что особенно важно в детском возрасте. Кроме того, такое излучение:

  • приводит в норму метаболизм;
  • активизирует производство незаменимых ферментов;
  • усиливает регенеративные процессы;
  • стимулирует кровоток;
  • расширяет кровеносные сосуды;
  • стимулирует иммунную систему;
  • приводит к формированию эндорфина, а значит, уменьшается нервное перевозбуждение.

Обратная сторона медали

Выше было указано, что суммарной солнечной радиацией называют количество излучения, достигшего поверхности планеты и рассеянного в атмосфере. Соответственно, элементом этого объема является ультрафиолет всех длин. Нужно помнить, что этот фактор имеет как положительные, так и отрицательные стороны влияния на органическую жизнь. Солнечные ванны, зачастую полезные, могут быть источником опасности для здоровья. Слишком продолжительное нахождение под прямым солнечным светом, особенно в условиях повышенной активности светила, вредно и опасно. Продолжительное влияние на организм, а также слишком высокая активность облучения становятся причиной:

  • ожогов, покраснений;
  • отеков;
  • гиперемии;
  • жара;
  • тошноты;
  • рвоты.

Продолжительное ультрафиолетовое облучение провоцирует нарушение аппетита, функционирования ЦНС, иммунной системы. Кроме того, начинает болеть голова. Описанные признаки - классические проявления солнечного удара. Сам человек не всегда может осознать, что происходит - состояние ухудшается постепенно. Если заметно, что кому-то поблизости стало плохо, следует оказать первую помощь. Схема следующая:

  • помочь перейти из-под прямого света в прохладное затененное место;
  • положить больного на спину так, чтобы ноги были выше головы (это поможет привести в норму кровоток);
  • охладить водой шею, лицо, а на лоб положить холодный компресс;
  • расстегнуть галстук, ремень, снять тесную одежду;
  • через полчаса после приступа дать выпить прохладной воды (небольшое количество).

Если пострадавший потерял сознание, важно сразу обратиться за помощью к доктору. Бригада скорой помощи переместит человека в безопасное место и сделает инъекцию глюкозы или витамина С. Лекарство вводят в вену.

Как загорать правильно?

Чтобы не узнать на своем опыте, каким неприятным может быть излишнее количество солнечной радиации, получаемое при загаре, важно соблюдать правила безопасного времяпрепровождения на солнце. Ультрафиолет инициирует выработку меланина - гормона, помогающего кожным покровам защититься от негативного влияния волн. Под воздействием этого вещества кожа становится темнее, а оттенок переходит в бронзовый. И по сей день не стихают споры о том, насколько это полезно и вредно для человека.

С одной стороны, загар - попытка организма защититься от излишнего воздействия излучения. При этом повышается вероятность формирования злокачественных новообразований. С другой стороны, загар считается модным и красивым. Чтобы минимизировать для себя риски, разумно перед началом пляжных процедур разобрать, чем опасно количество солнечной радиации, получаемое во время солнечных ванн, как минимизировать риски для себя. Чтобы впечатления были максимально приятными, любители загорать должны:

  • пить много воды;
  • пользоваться защищающими кожу средствами;
  • загорать вечером или утром;
  • проводить под прямыми лучами солнышка не больше часа;
  • не употреблять спиртное;
  • включить в меню богатые селеном, токоферолом, тирозином продукты. Не стоит забывать и о бета-каротине.

Значение солнечной радиации для человеческого организма исключительно велико, не стоит упускать из внимания и положительные, и отрицательные аспекты. Следует осознавать, что у разных людей биохимические реакции происходят с индивидуальными особенностями, поэтому для кого-то и получасовые солнечные ванны могут быть опасны. Разумно перед пляжным сезоном проконсультироваться с доктором, оценить тип, состояние кожных покровов. Это поможет предупредить вред здоровью.

По возможности следует избегать загара в преклонном возрасте, в период вынашивания малыша. Не сочетаются с солнечными ваннами раковые заболевания, нарушения психики, кожные патологии и недостаточность функционирования сердца.

Суммарная радиация: где недостача?

Довольно интересным для рассмотрения является процесс распределения солнечной радиации. Как выше было упомянуто, лишь около половины всех волн могут достигнуть поверхности планеты. Куда же пропадают остальные? Свою роль играют разные слои атмосферы и микроскопические частицы, из которых они сформированы. Внушительная часть, как было указано, поглощается озоновым слоем - это все волны, длина которых менее 0,36 мкм. Дополнительно озон способен поглотить некоторые типы волн из видимого человеческому глазу спектра, то есть промежутка 0,44-1,18 мкм.

Ультрафиолет в некоторой степени поглощается кислородным слоем. Это свойственно излучению с длиной волны 0,13-0,24 мкм. Углекислый газ, пар воды могут поглотить небольшой процент инфракрасного спектра. Аэрозоль атмосферы поглощает некоторую часть (ИК-спектр) от общего количества солнечной радиации.

Волны из категории коротких рассеиваются в атмосфере из-за наличия здесь микроскопических неоднородных частиц, аэрозоля, облаков. Неоднородные элементы, частицы, чьи габариты уступают длине волны, провоцируют молекулярное рассеивание, а для более крупных свойственно явление, описываемое индикатрисой, то есть аэрозольное.

Прочее количество солнечной радиации достигает земной поверхности. Оно сочетает прямое излучение, рассеянное.

Суммарная радиация: важные аспекты

Суммарная величина - это количество солнечной радиации, получаемое территорией, а также поглощенное в атмосфере. Если на небе нет облаков, суммарная величина излучения зависит от широты местности, высоты положения небесного тела, типа поверхности земли на этом участке, а также уровня прозрачности воздуха. Чем больше в атмосфере рассеяно аэрозольных частиц, тем ниже прямое излучение, зато возрастает доля рассеянного. В норме при отсутствии облачности в суммарной радиации рассеянная - это одна четвертая часть.

Наша страна принадлежит к числу северных, поэтому большую часть года в южных регионах излучение существенно больше, чем в северных. Это обусловлено положением светила на небе. А вот короткий временной промежуток май-июль - это уникальный период, когда даже на севере суммарная радиация довольно внушительная, поскольку солнце находится высоко в небе, а продолжительность светового дня больше, чем в прочие месяцы года. При этом в среднем на азиатской половине страны при отсутствии облачности суммарная радиация существеннее, нежели на западе. Максимальная сила волнового излучения наблюдается в полдень, а годовой максимум приходится на июнь, когда солнце выше всего в небе.

Суммарной солнечной радиацией называют количество солнечной энергии, достигающей нашей планеты. При этом нужно помнить, что разные атмосферные факторы приводят к тому, что годовой приход суммарной радиации меньше, нежели мог бы быть. Самая большая разница между реально наблюдаемым и максимально возможным характерна для дальневосточных регионов в летний период. Муссоны провоцируют исключительно плотную облачность, поэтому суммарная радиация уменьшается приблизительно вполовину.

Любопытно знать

Наибольший процент от максимально возможного облучения солнечной энергией в реальности наблюдается (в расчете на 12 месяцев) на юге страны. Показатель достигает 80%.

Облачность не всегда приводит к одинаковому показателю рассеивания солнечного излучения. Играет роль форма облаков, особенности солнечного диска в конкретный момент времени. Если таковой открыт, тогда облачность становится причиной уменьшения прямого излучения, одновременно рассеянное резко возрастает.

Возможны и такие дни, когда прямое излучение по своей силе приблизительно такое же, как рассеянное. Суточная суммарная величина может быть даже больше, нежели излучение, свойственное совсем безоблачному дню.

В расчете на 12 месяцев особенное внимание необходимо уделять астрономическим явлениям как определяющим общие численные показатели. При этом облачность приводит к тому, что реально радиационный максимум может наблюдаться не в июне, а месяцем раньше или позже.

Радиация в космосе

С границы магнитосферы нашей планеты и дальше в космические пространства солнечная радиация становится фактором, сопряженным со смертельной опасностью для человека. Еще в 1964 был выпущен важный научно-популярный труд, посвященный методам защиты. Его авторами выступили советские ученые Каманин, Бубнов. Известно, что для человека доза облучения в расчете на неделю должна быть не более 0,3 рентгена, при этом за год - в пределах 15 Р. При кратковременном облучении пределом для человека обозначено 600 Р. Полеты в космос, особенно в условиях непредсказуемой солнечной активности, могут сопровождаться значительным облучением астронавтов, что обязывает принимать дополнительные меры защиты от волн разной длины.

После миссий "Аполлон", в ходе которых тестировались способы защиты, исследовались факторы, влияющие на человеческое здоровье, прошло не одно десятилетие, но и по сей день ученые не могут найти результативные, надежные методы прогнозирования геомагнитных бурь. Можно составить прогноз в расчете на часы, иногда - на несколько дней, но даже для недельного предположения шансы реализации - не более 5%. Солнечный ветер - еще более непредсказуемое явление. С вероятностью один к трем космонавты, отправляясь в новую миссию, могут попасть в мощные потоки излучений. Это делает еще более важным вопрос как исследования и прогнозирования радиационных особенностей, так и разработки методов защиты от него.