Макияж. Уход за волосами. Уход за кожей

Макияж. Уход за волосами. Уход за кожей

» » Решение игр в чистых стратегиях. Игры в чистых стратегиях

Решение игр в чистых стратегиях. Игры в чистых стратегиях

«Чистые» стратегии

Мы уже знакомы с косяками. Однако, что будет, если из цепочки какой-либо стратегии убрать косяки? Мы получим «чистую стратегию». Чистыми стратегиями являются те, в цепочке действий которых, начиная от самого корня и до результативной части, отсутствуют неэффективные подстратегии (косяки), а об этом может зачастую свидетельствовать только наличие всех звеньев в сознании.

Конечно с точки зрения всех возможных исходов применения стратегии нам сложно говорить о самой-самой эффективной, так как мы можем просто не обладать определенным опытом, а следовательно и определенными промежуточными стратегиями, однако именно со стороны нашего опыта, стратегия должна быть максимально эффективной.

Понятие чистых стратегий также является одним из ключевых в данных материалах, поэтому приведу пример:

Вечер. Вы в родном районе спешите домой. Молоко убегает. Пролетая мимо «подозрительного типа каких-много» вы слышите в свой адрес «Эй, ты, [вырезано цензурой]. Ты тут не ходи, снег башка попадет!».

Что вы сделаете? Вариантов может быть много. Кто-то пойдет выяснять отношения, кто-то испугается и ускорит шаг, кто-то крикнет что-то в ответ. Однако, давайте подумаем, какой в данном случае является чистая стратегия поведения?

Незнакомый вам человек, что-то кричит вам на улице. У вас есть свои дела, по которым вы собственно и идете. Судя по тексту, позитивные выгоды для вас от общения с этим человеком маловероятны. Логичный вывод: спокойно пойти дальше по своим делам. Обращаю внимание на то, что именно «спокойно», без тени негативных эмоций, а со здоровым безразличием к происходящему. Как много людей так поступят? Предполагаю, что подавляющее меньшинство. Почему?

Потому что большинство людей имеет целую прослойку подсознательных стратегий, привязанных в более нижних слоях к самосохранению, в частности таковыми могут быть: «Всегда отвечать на грубость грубостью», «Если кто-то говорит гадость, то надо бежать», «Если кто-то грубит - надо набить ему лицо», «Если кто-то грубит, значит есть опасность», и тому подобное в разных вариациях. Конечно не все предпримут какие-то активные действия, но эмоционально это заденет почти всех. И это косяк.

Чистые же стратегии всегда эмоционально нейтральны или позитивны, и это заложено в вашем мозге, остается только этим воспользоваться.

Немного про чистые стратегии вы можете прочитать в заметках «Почему именно чистые стратегии?» и «Хаус, Хопкинс, и прочее».

Из книги Стратегии гениев. Альберт Эйнштейн автора Дилтс Роберт

Стратегии 1. Определение термина “стратегия”:а) Происходит от греческого слова “strategos”, означающего: “военачальник”,“наука, искусство ведения войны”,“искусство руководства общественной, политической борьбой”.б) Детальный план достижения цели или выгодного

Из книги Стратегии гениев (Аристотель Шерлок Холмс Уолт Дисней Вольфганг Амадей Моцарт) автора Дилтс Роберт

Из книги Ты умеешь хорошо учиться?! Полезная книга для нерадивых учеников автора Карпов Алексей

СТРАТЕГИИ Твоя учеба пойдет на совершенно другом уровне качества, если ты подумаешь и выберешь стратегию действий.Стратегия - это общий план. Это общая линия с учетом реальных условий. Это цели, сроки, учет непредсказуемости и многообразия… Это само ощущение пульса

Из книги Стратегия разума и успеха автора Антипов Анатолий

Из книги Эмоциональный интеллект автора Гоулман Дэниел

Коэффициент умственного развития и эмоциональный интеллект: чистые типы Коэффициент умственного развития и эмоциональный интеллект - это не находящиеся в оппозиции, а скорее отдельные компетенции. Все мы сочетаем интеллект с остротой переживаний; люди с высоким

Из книги 12 христианских верований, которые могут свести с ума автора Таунсенд Джон

Правильные намерения или чистые помыслы Правильное намерение - это решение поступать правильно. Мы выбираем хороший, угодный Богу поступок, обычно не задумываясь о том, сильно ли мы хотим его совершить. Просто делаем это - и все. Многие евангелические проповедники

Из книги Вступая в жизнь: Сборник автора Автор неизвестен

Рудольф Иванович АБЕЛЬ: «ПОМНИТЕ, КАК ГОВОРИЛ ДЗЕРЖИНСКИЙ: «ЧИСТЫЕ РУКИ, ХОЛОДНАЯ ГОЛОВА И ГОРЯЧЕЕ СЕРДЦЕ...» Более тридцати лет Рудольф Иванович Абель отдал работе в советской разведке. Он был награжден орденом Ленина, двумя орденами Красного Знамени, орденом Трудового

Из книги Homo Sapiens 2.0 [Человек Разумный 2.0 http://hs2.me] автора Sapiens Homo

Стратегии

Из книги Homo Sapiens 2.0 автора Sapiens 2.0 Homo

"Чистые" стратегии Мы уже знакомы с косяками. Однако, что будет, если из цепочки какой-либо стратегии убрать косяки? Мы получим «чистую стратегию». Чистыми стратегиями являются те, в цепочке действий которых, начиная от самого корня и до результативной части, отсутствуют

Из книги Начни. Врежь страху по лицу, перестань быть «нормальным» и займись чем-то стоящим автора Эйкафф Джон

Из книги Человек как животное автора Никонов Александр Петрович

Стратегии Общее понятие стратегий В принципе, все в той или иной степени понимают, что такое стратегия. Обладая каким-то набором знаний, полученных в результате обретения и обработки опыта, мы строим определенные модели поведения.Стратегия - это модель достижения цели.

Из книги Включите свою рабочую память на полную мощь автора Эллоуэй Трейси

Почему именно чистые стратегии? Львиная доля материала данного проекта постоянно указывает на тот момент, что необходимо использовать для перезаписи именно чистые стратегии и обязательно искать косяк исходя из них. Данный момент является неочевидным на первый взгляд и

Из книги Интроверт в экстравертном мире автора Романцева Елизавета

Из книги автора

Из книги автора

Стратегии Компьютерные стратегии требуют от игрока сосредоточенности, умения планировать свои действия и решать разнообразные задачи. Последние исследования свидетельствуют о том, что стратегии помогают улучшать когнитивные навыки игроков любого возраста. Согласно

Из книги автора

Чистые типы Существует такое понятие – «чистый психологический тип». Собственно, понятие есть, а предметов, то есть людей, идеально подходящих под это понятие, практически нет. Нет чистокровных интровертов и однозначных экстравертов. Тем более, что мы с вами договорились

5. ТЕОРИЯ ИГР И СТАТИСТИЧЕСКИХ РЕШЕНИЙ

5.1. Матричная игра с нулевой суммой

Экономико-математическое моделирование осуществляется в условиях:

Определенности;

Неопределенности.

Моделирование в условиях определенности предполагает наличие всех необходимых для этого исходных нормативных данных (матричное моделирование, сетевое планирование и управление).

Моделирование в условиях риска проводится при стохастической неопределенности, когда значения некоторых исходных данных случайны и известны законы распределения вероятностей этих случайных величин (регрессионный анализ, теория массового обслуживания).

Моделирование в условиях неопределенности соответствует полному отсутствию некоторых необходимых для этого данных (теория игр).

Математические модели принятия оптимальных решений в конфликтных ситуациях строятся в условиях неопределенности.

В теории игр оперируют следующими основными понятиями:

Стратегия;

Функция выигрыша.

Ходом будем называть выбор и осуществление игроком одного из предусмотренных правилами игры действий.

Стратегия - это технология выбора варианта действий при каждом ходе в зависимости от сложившейся ситуации.

Функция выигрыша служит для определения величины платежа проигравшего игрока выигравшему.

В матричной игре функция выигрыша представляется в виде платежной матрицы :

где - величина платежа игроку I, выбравшему ход , от игрока II, выбравшего ход .

В такой парной игре значения функций выигрыша обоих игроков в каждой ситуации равны по величине и противоположны по знаку, т. е. и такую игру называют с нулевой суммой .

Процесс "игры в матричную игру" представляется следующим образом:

Задается платежная матрица ;

Игрок I независимо от игрока II выбирает одну из строк этой матрицы, например, -ую;

Игрок II независимо от игрока I выбирает один из столбцов этой матрицы, например, - ый;

Элемент матрицы определяет, сколько получит игрок I от игрока II. Разумеется, если , то речь идет о фактическом проигрыше игрока I.

Антагонистическую парную игру с платежной матрицей будем называть игрой .

Пример

Рассмотрим игру .

Задана платежная матрица:

.

Пусть игрок I независимо от игрока II выбирает 3-ю строку этой матрицы, а игрок II независимо от игрока I выбирает 2-ой столбец этой матрицы:

Тогда игрок I получит 9 единиц от игрока II.

5.2. Оптимальная чистая стратегия в матричной игре

Оптимальной стратегией называется такая стратегия игрока I, при которой он не уменьшит своего выигрыша при любом выборе стратегии игроком II, и такая стратегия игрока II, при которой он не увеличит своего проигрыша при любом выборе стратегии игроком I.

Выбирая в качестве хода -ую строку платежной матрицы, игрок I обеспечивает себе выигрыш не менее величины в наихудшем случае, когда игрок II будет стараться минимизировать эту величину. Поэтому игрок I выберет такую -ую строку, которая обеспечит ему максимальный выигрыш:

.

Игрок II рассуждает аналогично и может наверняка обеспечить себе минимальный проигрыш:

.

Всегда справедливо неравенство:

Величину называют нижней ценой игры .

Величину называют верхней ценой игры .

Оптимальные стратегии и называются чистыми , если для них выполняются равенства:

,

.

Величину называют чистой ценой игры , если .

Оптимальные чистые стратегии и образуют седловую точку платежной матрицы .

Для седловой точки выполняются условия:

т. е. элемент является наименьшим в строке и наибольшим в столбце.

Таким образом, если платежная матрица имеет седловую точку , то можно найти оптимальные чистые стратегии игроков.

Чистая стратегия игрока I может быть представлена упорядоченным набором чисел (вектором), в котором все числа равны нулю, кроме числа, стоящего на - ом месте, которое равно единице.

Чистая стратегия игрока II может быть представлена упорядоченным набором чисел (вектором), в котором все числа равны нулю, кроме числа, стоящего на - ом месте, которое равно единице.

Пример

.

Выбирая в качестве хода какую-нибудь строку платежной матрицы, игрок I обеспечивает себе выигрыш в наихудшем случае не менее величины в столбце, обозначенном :

Поэтому игрок I выберет 2-ую строку платежной матрицы, обеспечивающую ему максимальный выигрыш независимо от хода игрока II, который будет стараться минимизировать эту величину:

Игрок II рассуждает аналогично и выберет в качестве хода 1-ый столбец:

Таким образом, имеется седловая точка платежной матрицы:

соответствующая оптимальной чистой стратегии для игрока I и для игрока II, при которой игрок I не уменьшит своего выигрыша при любом изменении стратегии игроком II и игрок II не увеличит своего проигрыша при любом изменении стратегии игроком I.

5.3. Оптимальная смешанная стратегия в матричной игре

Если платежная матрица не имеет седловой точки, то любому игроку нерационально использовать одну чистую стратегию. Выгоднее использовать "вероятностные смеси" чистых стратегий. Тогда в качестве оптимальных определяются уже смешанные стратегии.

Смешанная стратегия игрока характеризуется распределением вероятности случайного события, заключающегося в выборе этим игроком хода.

Смешанной стратегией игрока I называют такой упорядоченный набор чисел (вектор), который удовлетворяет двум условиям:

1) для , т. е. вероятность выбора каждой строки платежной матрицы неотрицательна;

2) , т. е. выбор каждой из строк платежной матрицы в совокупности представляет полную группу событий.

Смешенной стратегией игрока II будет упорядоченный набор чисел (вектор), удовлетворяющий условиям:

Величина платежа игроку I, выбравшему смешанную стратегию

от игрока II, выбравшему смешанную стратегию

,

представляет собой среднюю величину

.

Оптимальными называют смешанные стратегии

и ,

если для любых произвольных смешанных стратегий и выполняется условие:

т. е. при оптимальной смешанной стратегии выигрыш игрока I наибольший, а проигрыш игрока II наименьший.

Если в платежной матрице нет седловой точки, то

,

т. е. существует положительная разность (нераспределенная разность )

- ³ 0,

и игрокам нужно искать дополнительные возможности для уверенного получения в свою пользу большей доли этой разности.

Пример

Рассмотрим игру , заданную платежной матрицей:

.

Определим, есть ли седловая точка:

, .

Оказывается, что в платежной матрице нет седловой точки и нераспределенная разность равна :

.

5.4. Отыскание оптимальных смешанных стратегий

для игр 2×2

Определение оптимальных смешанных стратегий для платежной матрицы размерностью осуществляется методом нахождения точек оптимума функции двух переменных.

Пусть вероятность выбора игроком I первой строки платежной матрицы

равна . Тогда вероятность выбора второй строки равна .

Пусть вероятность выбора игроком II первого столбца равна . Тогда вероятность выбора второго столбца равно .

Величина платежа игроку I игроком II равна:

Экстремальная величина выигрыша игрока I и проигрыша игрока II соответствует условиям:

;

.

Таким образом, оптимальные смешанные стратегии игроков I и II соответственно равны:

5.5. Геометрическое решение игр 2× n

При увеличении размерности платежной матрицы с до уже нельзя определение оптимальных смешанных стратегий свести к нахождению оптимума функции двух переменных. Однако учитывая то, что один из игроков имеет только две стратегии, можно использовать геометрическое решение.

Основные этапы нахождения решения игры сводятся к следующему.

На плоскости введем систему координат. На оси отложим отрезок . Из левого и правого концов этого отрезка проведем перпендикуляры.


Левый и правый концы единичного отрезка соответствуют двум стратегиям и , имеющимся у игрока I. На проведенных перпендикулярах будем откладывать выигрыши этого игрока. Например, для платежной матрицы


такими выигрышами игрока I при выборе стратегии будут и , а при выборе стратегии будут и .

Соединим отрезками прямой точки выигрыша игрока I, соответствующие стратегиям игрока II. Тогда образованная ломанная линия, ограничивающая график снизу, определяет нижнюю границу выигрыша игрока I.



Находим оптимальную смешанную стратегию игрока I

,

которая соответствует точке на нижней границе выигрыша игрока I с максимальной ординатой.

Обратим внимание на то, что в рассматриваемом примере, пользуясь только двумя стратегиями и , соответствующими прямым, пересекающимся в найденной точке на нижней границе выигрыша игрока I, игрок II может воспрепятствовать игроку I получить больший выигрыш.

Таким образом, игра сводится к игре и оптимальной смешанной стратегией игрока II в рассматриваемом примере будет

,

где вероятность находится так же, как в игре :

5.6. Решение игр m × n

Если матричная игра не имеет решения в чистых стратегиях (т. е. нет седловой точки) и из-за большой размерности платежной матрицы не может быть решена графически, то для получения решения используют метод линейного программирования .

Пусть задана платежная матрица размерности :

.

Необходимо найти вероятности , с которыми игрок I должен выбирать свои ходы для того, чтобы данная смешанная стратегия гарантировала ему выигрыш не менее величины независимо от выбора ходов игроком II.

Для каждого выбранного хода игроком II выигрыш игрока I определяется зависимостями:

Разделим обе части неравенств на и введем новые обозначения:

Равенство

Примет вид:

Поскольку игрок I стремится максимизировать выигрыш , то обратную величину нужно минимизировать. Тогда задача линейного программирования для игрока I примет вид:

при ограничениях

Аналогично строится задача для игрока II как двойственная:

при ограничениях

Решая задачи симплекс-методом, получаем:

,

5.7. Особенности решения матричных игр

Прежде, чем решать задачу по отысканию оптимальных стратегий, следует проверить два условия:

Можно ли упростить платежную матрицу;

Имеет ли платежная матрица седловую точку.

Рассмотрим возможность упрощения платежной матрицы:

В связи с тем, что игрок I стремится получить наибольший выигрыш, то из платежной матрицы можно вычеркнуть - ую строку, т. к. он никогда не воспользуется этим ходом, если выполняется следующее соотношение с любой другой - ой строкой:

Аналогично, стремясь к наименьшему проигрышу, игрок II никогда не выберет в качестве хода - ый столбец в платежной матрице и этот столбец можно вычеркнуть, если выполняется следующее соотношение с любым другим - ым столбцом:

Наиболее простым решением игры является наличие в упрощенной платежной матрице седловой точки, которая отвечает следующему условию (по определению):

Пример

Дана платежная матрица:

.

Упрощение платежной матрицы:

Наличие седловой точки:

5.8. Игра с природой

В отличие от задач теории игр в задачах теории статистических решений неопределенная ситуация не имеет антагонистической конфликтной окраски и зависит от объективной действительности, которую принято называть "природой" .

В матричных играх с природой в качестве игрока II выступает совокупность неопределенных факторов, влияющих на эффективность принимаемых решений.

Матричные игры с природой отличаются от обычных матричных игр только тем, что при выборе оптимальной стратегии игроком I уже нельзя ориентироваться на то, что игрок II будет стремиться минимизировать свой проигрыш. Поэтому наряду с платежной матрицей вводится матрица рисков :

гдe - величина риска игрока I при использовании хода в условиях, равная разности между выигрышем , который игрок I получил бы, если бы знал, что установится условие , т. е. , и выигрышем , который он получит, не зная при выборе хода , что установится условие .

Таким образом, платежная матрица однозначно преобразуется в матрицу рисков, а обратное преобразование неоднозначно.

Пример

Матрица выигрышей:

.

Матрица рисков:

Возможны две постановки задачи о выборе решения в матричной игре с природой :

Максимизация выигрыша;

Минимизация риска.

Задача принятия решений может быть поставлена для одного из двух условий:

- в условиях риска , когда известна функция распределения вероятностей стратегий природы, например, случайной величины появления каждой из предполагаемых конкретных экономических ситуаций;

- в условиях неопределенности , когда такая функция распределения вероятностей неизвестна.

5.9. Решение задач теории статистических решений

в условиях риска

При принятии решений в условиях риска игроку I известны вероятности наступления состояний природы.

Тогда игроку I целесообразно выбрать ту стратегию, для которой среднее значение выигрыша, взятое по строке, максимально :

.

При решении этой задачи с матрицей риска получаем такое же решение, соответствующее минимальному среднему риску :

.

5.10. Решение задач теории статистических решений

в условиях неопределенности

При принятии решений в условиях неопределенности можно воспользоваться следующими критериями :

Максиминным критерием Вальда;

Критерием минимального риска Севиджа;

Критерием пессимизма - оптимизма Гурвица;

Принципом недостаточного основания Лапласа.

Рассмотрим максиминный критерий Вальда .

Игра с природой ведется как с разумным агрессивным противником, т. е. осуществляется перестраховочный подход с позиции крайнего пессимизма для платежной матрицы:

.

Рассмотрим критерий минимального риска Севиджа .

Аналогичный предыдущему подход с позиции крайнего пессимизма для матрицы риска:

.

Рассмотрим критерий пессимизма - оптимизма Гурвица .

Предлагается возможность не руководствоваться ни крайним пессимизмом и ни крайним оптимизмом:

где степень пессимизма ;

при - крайний оптимизм,

при - крайний пессимизм.

Рассмотрим принцип недостаточного основания Лапласа .

Полагается, что все состояния природы равновероятны:

,

.

Выводы по пятому разделу

В матричной игре участвуют два игрока и функция выигрыша, служащая для определения величины платежа проигравшего игрока выигравшему, представляется в виде платежной матрицы. Условились, что игрок I - выбирает в качестве хода одну из строк платежной матрицы, а игрок II – один из ее столбцов. Тогда на пересечении выбранных строки и столбца этой матрицы стоит числовая величина платежа игроку I от игрока II (если эта величина положительна, то игрок I действительно выиграл, а если она отрицательна, то выиграл по существу игрок II).

Если в платежной матрице имеется седловая точка, то игроки обладают оптимальными чистыми стратегиями, т. е. для выигрыша каждый из них должен повторять свой один оптимальный ход. Если же седловой точки нет, то для выигрыша каждый из них должен воспользоваться оптимальной смешанной стратегией, т. е. использовать смесь ходов, каждый из которых должен производиться с оптимальной вероятностью.

Отыскание оптимальных смешанных стратегий для игр 2×2 производится вычислением оптимальных вероятностей по известным формулам. С помощью геометрического решения игр 2×n определение оптимальных смешанных стратегий в них сводится к отысканию оптимальных смешанных стратегий для игр 2×2. Для решения игр m×n используют метод линейного программирования для нахождения оптимальных смешанных стратегий в них.

Некоторые платежные матрицы поддаются упрощению, в результате которого уменьшается их размерность за счет удаления строк и столбцов, соответствующих неперспективным ходам.

Если в качестве игрока II выступает совокупность неопределенных факторов, зависящих от объективной действительности и не имеющих антагонистической конфликтной окраски, то такую игру называют игрой с природой, а для ее решения используют задачи теории статистических решений. Тогда наряду с платежной матрицей вводится матрица рисков и возможны две постановки задачи о выборе решения в матричной игре с природой: максимизация выигрыша и минимизация риска.

Решение задач теории статистических решений в условиях риска показывает, что игроку I целесообразно выбрать ту стратегию, для которой среднее значение (математическое ожидание) выигрыша, взятое по строке платежной матрицы, максимально, или (что то же самое) среднее значение (математическое ожидание) риска, взятое по строке матрицы рисков, минимально. При принятии решений в условиях неопределенности используют следующие критерии: максиминный критерий Вальда, критерий минимального риска Севиджа, критерий пессимизма-оптимизма Гурвица, принцип недостаточного основания Лапласа.

Вопросы для самопроверки

Как определяются основные понятия теории игр: ход, стратегия и функция выигрыша?

В виде чего представляется в матричной игре функция выигрыша?

Почему матричную игру называют с нулевой суммой?

Как представляется процесс игры в матричную игру?

Какая игра называется игрой m×n?

Какая стратегия матричной игры называется оптимальной?

Какая оптимальная стратегия матричной игры называется чистой?

Что означает седловая точка платежной матрицы?

Какая оптимальная стратегия матричной игры называется смешенной?

Как представляется смешанная стратегия игрока?

Что представляет собой величина платежа игроку I от игрока II, выбравшим смешанные стратегии?

Какие смешанные стратегии называют оптимальными?

Что означает нераспределенная разность?

С помощью какого метода находятся оптимальные смешанные стратегии для игр 2×2?

Каким образом находятся оптимальные смешанные стратегии для игр 2×n?

С помощью какого метода находятся оптимальные смешанные стратегии для игр m×n?

В чем заключаются особенности решения матричных игр?

Что означает упрощение платежной матрицы и при каких условиях оно может быть осуществлено?

Какую матричную игру легче решать, когда платежная матрица имеет или не имеет седловую точку?

Какие задачи теории игр относятся к задачам теории статистических решений?

Как платежная матрица преобразуется в матрицу рисков?

Какие две постановки задачи о выборе решений возможны в матричной игре с природой?

Для каких двух условий могут быть поставлены задачи принятия решений в матричной игре с природой?

Какую стратегию целесообразно выбрать игроку I при решении задачи теории статистических решений в условиях риска?

Какими критериями принятия решений можно воспользоваться при решении задач теории статистических решений в условиях неопределенности?

Примеры решения задач

1. В платежной матрице указаны величины прибыли предприятия при реализации им разных видов изделий (столбцы) в зависимости от установившегося спроса (строки). Необходимо определить оптимальную стратегию предприятия по выпуску изделий разных видов и соответствующий максимальный (в среднем) доход от их реализации.

Обозначим заданную матрицу через и введем переменные . Будем также использовать матрицу (вектор) . Тогда и , т. е. .

Рассчитывается обратная матрица :

Находятся значения:

.

Рассчитываются вероятности:

Определяется средний доход от реализации:

.

2. Фирма «Фармацевт» - производитель медикаментов и биомедицинских изделий в регионе. Известно, что пик спроса на некоторые лекарственные препараты приходится на летний период (препараты сердечно-сосудистой группы, анальгетики), на другие – на осенний и весенний периоды (антиинфекционные, противокашлевые).

Затраты на 1 усл. ед. продукции за сентябрь-октябрь составили: по первой группе (препараты сердечно-сосудистые и анальгетики) – 20 р.; по второй группе (антиинфекционные, противокашлевые препараты) – 15 р.

По данным наблюдений за несколько последних лет службой маркетинга фирмы установлено, что она может реализовать в течение рассматриваемых двух месяцев в условиях теплой погоды 3050 усл. ед. продукции первой группы и 1100 усл. ед. продукции второй группы; в условиях холодной погоды – 1525 усл. ед. продукции первой группы и 3690 усл. ед. второй группы.

В связи с возможными изменениями погоды ставится задача – определить стратегию фирмы в выпуске продукции, обеспечивающую максимальный доход от реализации при цене продажи 40 р. за 1 усл. ед. продукции первой группы и 30 р. – второй группы.

РЕШЕНИЕ. Фирма располагает двумя стратегиями:

В этом году будет теплая погода;

Погода будет холодная.

Если фирма примет стратегию и в действительности будет теплая погода (стратегия природы ), то выпущенная продукция (3050 усл. ед. препаратов первой группы и 1100 усл. ед. второй группы) будет полностью реализована и доход составит

3050×(40-20)+1100×(30-15)=77500 р.

В условиях прохладной погоды (стратегия природы ) препараты второй группы будут проданы полностью, а первой группы только а количестве 1525 усл. ед. и часть препаратов останется нереализованной. Доход составит

1525×(40-20)+1100×(30-15)-20×()=16500 р.

Аналогично, если форма примет стратегию и в действительности будет холодная погода, то доход составит

1525×(40-20)+3690×(30-15)=85850 р.

При теплой погоде доход составит

1525×(40-20)+1100×(30-15)-() ×15=8150 р.

Рассматривая фирму и погоду в качестве двух игроков, получим платежную матрицу

,

Цена игры лежит в диапазоне

Из платежной матрицы видно, что при всех условиях доход фирмы будет не меньше 16500 р., но если погодные условия совпадут с выбранной стратегией, то доход фирмы может составить 77500 р.

Найдем решение игры.

Обозначим вероятность применения фирмой стратегии через , стратегии - через , причем . Решая игру графически методом, получим , при этом цена игры р.

Оптимальный план производства лекарственных препаратов составит

Таким образом, фирме целесообразно производить в течение сентября и октября 2379 усл. ед. препаратов первой группы и 2239,6 усл. ед. препаратов второй группы, тогда при любой погоде она получит доход не менее 46986 р.

В условиях неопределенности, если не представляется возможным фирме использовать смешанную стратегию (договоры с другими организациями), для определения оптимальной стратегии фирмы используем следующие критерии:

Критерий Вальде:

Критерий Гурвица: для определенности примем , тогда для стратегии фирмы

для стратегии

фирме целесообразно использовать стратегию .

Критерий Сэвиджа. Максимальный элемент в первом столбце – 77500, во втором столбце – 85850.

Элементы матрицы рисков находятся из выражения

,

откуда , ,

Матрица рисков имеет вид

,

целесообразно использовать стратегию или .

Следовательно, фирме целесообразно применять стратегию или .

Отметим, что каждый из рассмотренных критериев не может быть признан вполне удовлетворительным для окончательного выбора решений, однако их совместный анализ позволяет более наглядно представить последствия принятия тех или иных управленческих решений.

При известном распределении вероятностей различных состояний природы критерием принятия решения является максимум математического ожидания выигрыша.

Пусть известно для рассматриваемой задачи, что вероятности теплой и холодной погоды равны и составляют 0,5, тогда оптимальная стратегия фирмы определяется так:

Фирме целесообразно использовать стратегию или .

Задания для самостоятельной работы

1. Предприятие может выпускать три вида продукции (А, Б и В), получая при этом прибыль, зависящую от спроса. Спрос в свою очередь может принимать одно из четырех состояний (I, II, III и IV). В следующей матрице элементы характеризуют прибыль, которую получит предприятие при выпуске -ой продукции и -ом состоянии спроса:

Если игра не имеет седловой точки, то возникают затруднения в определении цены игры и оптимальных стратегий игроков. Рассмотрим, например, игру:

В этой игре и . Следовательно, первый игрок может гарантировать себе выигрыш, равный 4, а второй может ограничить свой проигрыш 5. Область между и является как бы ничейной и каждый игрок может попытаться улучшить свой результат за счет этой области. Каковы же должны быть в этом случае оптимальные стратегии игроков?

Если каждый из игроков применяет отмеченную звездочкой стратегию (и ), то выигрыш первого игрока и проигрыш второго будут равны 5. Это невыгодно второму игроку, так как первый выигрывает больше, чем оно может себе гарантировать. Однако если второй игрок каким-либо образом раскроет замысел первого о намерении использовать стратегию , то он может применить стратегию и уменьшить выигрыш первого до 4. Правда, если первый игрок раскроет замысел второго применить стратегию , то, используя стратегию , он увеличит свой выигрыш до 6. Таким образом, возникает ситуация, когда каждый игрок должен хранить в секрете ту стратегию, которую он собирается использовать. Однако, как это сделать? Ведь если партия играется многократно и второй игрок применяет все время стратегию , то первый игрок скоро разгадает замысел второго и, применив стратегию , будет иметь добавочный выигрыш. Очевидно, что второй игрок должен менять стратегию в каждой новой партии, но делать это он должен так, чтобы первый не догадался, какую стратегию применит он в каждом случае.

Для механизма случайного выбора выигрыши и проигрыши игроков будут случайными величинами. Результат игры в этом случае можно оценить средней величиной проигрыша второго игрока. Вернемся к примеру. Так, если второй игрок использует стратегию и случайным образом с вероятностями 0.5; 0.5, то при стратегии первого игрока среднее значение его проигрыша будет:

а при стратегии первого игрока

Следовательно, второй игрок может ограничить свой средний проигрыш значением 4,5 независимо от стратегии, применяемой первым игроком.

Таким образом, в ряде случаев оказывается целесообразным не намечать заранее стратегию, а выбирать ту или иную случайным образом, используя какой-либо механизм случайного выбора. Стратегию, основанную на случайном выборе, называют смешанной стратегией , в отличие от намеченных стратегий, которые называются чистыми стратегиями .

Дадим более строгое определение чистых и смешанных стратегий.



Пусть имеется игра без седловой точки:

Обозначим частоту использования чистой стратегии первого игрока через , (вероятность использования i-ой стратегии). Аналогично обозначим частоту использования чистой стратегии второго игрока через , (вероятность использования j-ой стратегии). Для игры с седловой точкой существует решение в чистых стратегиях . Для игры без седловой точки существует решение в смешанных стратегиях, то есть когда выбор стратегии осуществляется на основании вероятностей. Тогда

Множество чистых стратегий 1-го игрока;

Множество смешанных стратегий 1-го игрока;

Множество чистых стратегий 2-го игрока;

Множество смешанных стратегий 2-го игрока.

Рассмотрим пример: пусть имеется игра

Второй игрок выбирает вероятность . Оценим средний проигрыш второго игрока при применении им стратегий и соответственно.

Матричная игра двух игроков с нулевой суммой может рассматриваться как следующая абстрактная игра двух игроков.

Первый игрок имеет m стратегий i = 1,2,...,m , второй имеет n стратегий j = 1,2,...,n . Каждой паре стратегий (i , j ) поставлено в соответствие число а ij , выражающее выигрыш игрока 1 за счёт игрока 2, если первый игрок примет свою i - ю стратегию, а 2 – свою j -ю стратегию.

Каждый из игроков делает один ход: игрок 1 выбирает свою i -ю стратегию (i = ), 2– свою j -ю стратегию (j =
), после чего игрок 1 получает выигрыш а ij за счёт игрока 2 (если а ij < 0, то это значит, что игрок 1 платит второму сумму |а ij |). На этом игра заканчивается.

Каждая стратегия игрока i =
;
j =
часто называется чистой стратегией.

Если рассмотреть матрицу

А =

то проведение каждой партии матричной игры с матрицей А сводится к выбору игроком 1 i -й строки, а игроком 2 j -го столбца и получения игроком 1 (за счёт игрока 2) выигрыша а ij .

Главным в исследовании игр является понятие оптимальных стратегий игроков. В это понятие интуитивно вкладывается такой смысл: стратегия игрока является оптимальной, если применение этой стратегии обеспечивает ему наибольший гарантированный выигрыш при всевозможных стратегиях другого игрока. Исходя из этих позиций, игрок 1 исследует матрицу выигрышей А следующим образом: для каждого значения i (i =
) определяется минимальное значение выигрыша в зависимости от применяемых стратегий игрока 2

а ij (i =
)

т.е. определяется минимальный выигрыш для игрока 1 при условии, что он примет свою i -ю чистую стратегию, затем из этих минимальных выигрышей отыскивается такая стратегия i = i о , при которой этот минимальный выигрыш будет максимальным, т.е. находится


а ij =
=(1)

Определение . Число , определённое по формуле (1) называется нижней чистой ценой игры и показывает, какой минимальный выигрыш может гарантировать себе игрок 1, применяя свои чистые стратегии при всевозможных действиях игрока 2.

Игрок 2 при оптимальном своём поведении должен стремится по возможности за счёт своих стратегий максимально уменьшить выигрыш игрока 1. Поэтому для игрока 2 отыскивается

а ij

т.е. определяется max выигрыш игрока 1, при условии, что игрок 2 применит свою j -ю чистую стратегию, затем игрок 2 отыскивает такую свою j = j 1 стратегию, при которой игрок 1 получит min выигрыш, т.е. находит


a ij =
=(2).

Определение . Число , определяемое по формуле (2), называется чистой верхней ценой игры и показывает, какой максимальный выигрыш за счёт своих стратегий может себе гарантировать игрок 1.

Другими словами, применяя свои чистые стратегии игрок 1 может обеспечить себе выигрыш не меньше , а игрок 2 за счёт применения своих чистых стратегий может не допустить выигрыш игрока 1 больше, чем .

Определение . Если в игре с матрицей А =, то говорят, что эта игра имеет седловую точку в чистых стратегиях и чистую цену игры

 = =.

Седловая точка – это пара чистых стратегий (i о , j о ) соответственно игроков 1 и 2, при которых достигается равенство =. В это понятие вложен следующий смысл: если один из игроков придерживается стратегии, соответствующей седловой точке, то другой игрок не сможет поступить лучше, чем придерживаться стратегии, соответствующей седловой точке. Математически это можно записать и иначе:


где i , j – любые чистые стратегии соответственно игроков 1 и 2; (i о , j о ) – стратегии, образующие седловую точку.

Таким образом, исходя из (3), седловой элемент
является минимальным в i о -й строке и максимальным в j о -м столбце в матрице А. Отыскание седловой точки матрицы А происходит следующим образом: в матрице А последовательно в каждой строке находят минимальный элемент и проверяют, является ли этот элемент максимальным в своём столбце . Если да, то он и есть седловой элемент, а пара стратегий, ему соответствующая, образует седловую точку. Пара чистых стратегий (i о , j о ) игроков 1 и 2, образующая седловую точку и седловой элемент
, называется решением игры . При этом i о и j о называются оптимальными чистыми стратегиями соответственно игроков 1 и 2.

Пример 1

Седловой точкой является пара (i о = 3;j о = 1), при которой === 2.

Заметим, что хотя выигрыш в ситуации (3;3) также равен 2 ==, она не является седловой точкой, т.к. этот выигрыш не является максимальным среди выигрышей третьего столбца.

Пример 2

Из анализа матрицы выигрышей видно, что
, т.е. данная матрица не имеет седловой точки. Если игрок 1 выбирает свою чистую максиминную стратегию i = 2, то игрок 2, выбрав свою минимаксную j = 2, проиграет только 20. В этом случае игроку 1 выгодно выбрать стратегию i = 1, т.е. отклониться от своей чистой максиминной стратегии и выиграть 30. Тогда игроку 2 будет выгодно выбрать стратегию j = 1, т.е. отклониться от своей чистой минимаксной стратегии и проиграть 10. В свою очередь игрок 1 должен выбрать свою 2-ю стратегию, чтобы выиграть 40, а игрок 2 ответит выбором 2-й стратегии и т.д.

Рассмотрим пример. Пусть дана матрица игры (4):

Требуется найти нижнюю цену игры α, верхнюю цену игры β и минимаксные стратегии и проверить, являются ли они устойчивыми. Решение. Из анализа дополнительных столбца и строки получаем: α = 5, β = 5. Максимин равен минимаксу! Случай особый. Что же из этого следует? Возьмем пару минимаксных стратегий: К 2 и С 3 . Если оба держатся этих стратегий, то выигрыш будет равен 5. Теперь, допустим, мы узнали о поведении противника. Что будем делать? А ничего! Мы по-прежнему будем держаться стратегии К 2 , потому что любое отступление от нее нам невыгодно. Знаем мы или не знаем о поведении противника - все равно будем держаться стратегии К 2 ! То же относится и к «синим» - им нет смысла менять свою стратегию С 3 . В данном примере пара стратегий К 2 и С 3 устойчива, т. е. представляет собой положение равновесия и дает решение игры. Почему так получилось? Потому что в матрице имеется особый элемент 5; он является минимальным в своей строке и одновременно максимальным в своем столбце. Такой элемент называется седловой точкой . Если матрица имеет седловую точку (т. е. нижняя цена игры равна верхней), то игра имеет решение в чистых стратегиях: это - пара стратегий, пересекающихся в седловой точке. Сама же седловая точка дает цену игры - в нашем примере она равна 5. Класс игр, имеющих седловую точку, имеет большое значение в теории игр. В частности, доказано, что если по правилам игры каждый из игроков знает результат всех предыдущих ходов, как своих, так и противника (так называемая игра с полной информацией), то игра имеет седловую точку и, значит, имеет решение в чистых стратегиях . Примерами игр с полной информацией могут служить: шахматы, шашки, «крестики и нолики» и т. п. Приведем пример игры с полной информацией, решение которой легко найти. Два игрока - К и С - поочередно кладут одинаковые монеты на круглый стол. Положение каждой монеты выбирается произвольно, лишь бы она не перекрывалась другими. Выигрывает тот из игроков, который положит монету последним (когда места для других уже не остается). Стоит немножко подумать, чтобы убедиться, что исход этой игры всегда предрешен и что существует вполне определенная стратегия, гарантирующая выигрыш тому из игроков, который кладет монету первым (пусть это будет К). А именно К должен положить первую монету в центр стола, а далее на каждый ход С отвечать в точности симметричным относительно центра стола ходом! Бедный С может при этом вести себя как угодно, спасения ему все равно нет... Очевидно, такая игра имеет смысл только для тех, кто не знает решения. Любопытно, что совершенно так же обстоит дело и с такой популярной игрой, как шахматы! Эта игра имеет смысл только до тех пор, пока не найдено ее решение. Теоретически доказано, что решение существует и исход шахматной игры в сущности предрешен: если каждая сторона будет пользоваться своей оптимальной стратегией, то игра либо всегда будет кончаться выигрышем белых, либо всегда выигрышем черных, либо всегда ничьей! Но чем же именно? Мы пока этого не знаем, так как число возможных стратегий слишком велико, чтобы можно было построить матрицу шахматной игры и найти в ней седловую точку... Наверное, любители шахмат заинтересованы в том, чтобы шахматная игра была решена еще не скоро. Заметим в заключение, что седловых точек в матрице может быть не одна, а несколько; тог да решений игры в чистых стратегиях существует столько, сколько имеется седловых точек. Каждое из них дает выигрыш, равный цене игры.

Математические методы и модели в экономике

Матричные игры

Введение

В экономической практике часто возникают ситуации, в которых различные стороны преследуют различные цели. Например, отношения между продавцом и покупателем, поставщиком и потребителем, банком и вкладчиком и т.д. Такие конфликтные ситуации возникают не только в экономике, но в других видах деятельности. Например, при игре в шахматы, шашки, домино, лото и т.д.

Игра – это математическая модель конфликтной ситуации с участием не менее двух лиц, использующих несколько различных способов для достижения своих целей. Игра называется парной, если в ней участвуют два игрока. Игра называется антагонистической, если выигрыш одного игрока равен проигрышу другого. Следовательно, для задания игры достаточно задать величины выигрышей одного игрока в различных ситуациях.

Любой способ действия игрока в зависимости от сложившейся ситуации называется стратегией. Каждый игрок располагает определенным набором стратегий. Если число стратегий конечно, то игра называется конечной, в противном случае – бесконечной . Стратегии называются чистыми, если каждый из игроков выбирает только одну стратегию определенным, а не случайным образом.

Решение игры заключается в выборе такой стратегии, которая удовлетворяет условию оптимальности. Это условие состоит в том, что один игрок получает максимальный выигрыш , если второй придерживается своей стратегии. И наоборот, второй игрок получает минимальный проигрыш , если первый из игроков придерживается своей стратегии. Такие стратегии называются оптимальными . Таким образом, цель игры – это определение оптимальной стратегии для каждого игрока.

Игра в чистых стратегиях

Рассмотрим игру с двумя игроками А и В. Предположим, что игрок А имеет m стратегий А 1 , А 2 , …, А m , а игрок В имеет n стратегий B 1 , B 2 , … ,B n . Будем считать, что выбор игроком А стратегии А i , а игроком В стратегии B j однозначно определяет исход игры, т.е. выигрыш a ij игрока А и выигрыш b ij игрока В. Здесь i=1,2,…,m, j=1,2,…,n.

Простейшей игрой с двумя игроками является антагонистическая игра, т.е. игра, в которой интересы игроков прямо противоположны. В этом случае выигрыши игроков связаны равенством

b ij =-a ij

Это равенство означает, что выигрыш одного из игроков равен проигрышу другого. В этом случае достаточно рассматривать лишь выигрыши одного из игроков, например, игрока А.

Каждой паре стратегий А i и B j соответствует выигрыш a ij игрока А. Все эти выигрыши удобно записывать в виде так называемой платежной матрицы

Строки этой матрицы соответствуют стратегиям игрока А, а столбцы – стратегиям игрока В. В общем случае такая игра называется (m×n)-игрой.


Пример 1. Два игрока А и В бросают монету. Если стороны монеты совпадают, то выигрывает А , т.е. игрок В платит игроку А некоторую сумму, равную 1, а если не совпадают, то выигрывает игрок В, т.е. наоборот, игрок А платит игроку В эту же сумму, равную 1. Сформировать платежную матрицу.

Решение. По условию задачи