Макияж. Уход за волосами. Уход за кожей

Макияж. Уход за волосами. Уход за кожей

» » Угол между двумя пересекающимися плоскостями: определение, примеры нахождения. Угол между плоскостями

Угол между двумя пересекающимися плоскостями: определение, примеры нахождения. Угол между плоскостями

Мерой угла между плоскостями является острый угол, образованный двумя прямыми, лежащими в этих плоскостях и проведенными перпендикулярно линии их пересечения.

Алгоритм построения

  1. Из произвольной точки K проводят перпендикуляры к каждой из заданных плоскостей.
  2. Способом вращения вокруг линии уровня определяют величину угла γ° с вершиной в точке K.
  3. Вычисляют угол между плоскостями ϕ° = 180 – γ° при условии, что γ° > 90°. Если γ° < 90°, то ∠ϕ° = ∠γ°.

На рисунке представлен случай, когда плоскости α и β заданы следами. Все необходимые построения выполнены согласно алгоритму и описаны ниже.

Решение

  1. В произвольном месте чертежа отмечаем точку K. Из неё опускаем перпендикуляры m и n соответственно к плоскостям α и β. Направление проекций m и n следующее: m""⊥f 0α , m"⊥h 0α , n""⊥f 0β , n"⊥h 0β .
  2. Определяем действительный размер ∠γ° между прямыми m и n. Для этого вокруг фронтали f поворачиваем плоскость угла с вершиной K в положение, параллельное фронтальной плоскости проекции. Радиус поворота R точки K равен величине гипотенузы прямоугольного треугольника O""K""K 0 , катет которого K""K 0 = y K – y O .
  3. Искомый угол ϕ° = ∠γ°, поскольку ∠γ° острый.

На рисунке ниже показано решение задачи, в которой требуется найти угол γ° между плоскостями α и β, заданными параллельными и пересекающимися прямыми соответственно.

Решение

  1. Определяем направление проекций горизонталей h 1 , h 2 и фронталей f 1 , f 2 , принадлежащих плоскостям α и β, в порядке, указанном стрелками. Из произвольной точки K на пл. α и β опускаем перпендикуляры e и k. При этом e""⊥f"" 1 , e"⊥h" 1 и k""⊥f"" 2 , k"⊥h" 2 .
  2. Определяем ∠γ° между прямыми e и k. Для этого проводим горизонталь h 3 и вокруг неё поворачиваем точку K в положение K 1 , при котором △CKD станет параллелен горизонтальной плоскости и отразится на ней в натуральную величину – △C"K" 1 D". Проекция центра поворота O" находится на проведенном к h" 3 перпендикуляре K"O". Радиус R определяется из прямоугольного треугольника O"K"K 0 , у которого сторона K"K 0 = Z O – Z K .
  3. Значение искомого ∠ϕ° = ∠γ°, так как угол γ° острый.

Статья рассказывает о нахождении угла между плоскостями. После приведения определения зададим графическую иллюстрацию, рассмотрим подробный способ нахождения методом координат. Получим формулу для пересекающихся плоскостей, в которую входят координаты нормальных векторов.

Yandex.RTB R-A-339285-1

В материале будут использованы данные и понятия, которые ранее были изучены в статьях про плоскость и прямую в пространстве. Для начала необходимо перейти к рассуждениям, позволяющим иметь определенный подход к определению угла между двумя пересекающимися плоскостями.

Заданы две пересекающиеся плоскости γ 1 и γ 2 . Их пересечение примет обозначение c . Построение плоскости χ связано с пересечением этих плоскостей. Плоскость χ проходит через точку М в качестве прямой c . Будет производиться пересечение плоскостей γ 1 и γ 2 с помощью плоскости χ . Принимаем обозначения прямой, пересекающей γ 1 и χ за прямую a , а пересекающую γ 2 и χ за прямую b . Получаем, что пересечение прямых a и b дает точку M .

Расположение точки M не влияет на угол между пересекающимися прямыми a и b , а точка M располагается на прямой c , через которую проходит плоскость χ .

Необходимо построить плоскость χ 1 с перпендикулярностью к прямой c и отличную от плоскости χ . Пересечение плоскостей γ 1 и γ 2 с помощью χ 1 примет обозначение прямых а 1 и b 1 .

Видно, что при построении χ и χ 1 прямые a и b перпендикулярны прямой c , тогда и а 1 , b 1 располагаются перпендикулярно прямой c . Нахождение прямых a и а 1 в плоскости γ 1 с перпендикулярностью к прямой c , тогда их можно считать параллельными. Таки же образом расположение b и b 1 в плоскости γ 2 с перпендикулярностью прямой c говорит об их параллельности. Значит, необходимо сделать параллельный перенос плоскости χ 1 на χ , где получим две совпадающие прямые a и а 1 , b и b 1 . Получаем, что угол между пересекающимися прямыми a и b 1 равен углу пересекающихся прямых a и b .

Рассмотрим не рисунке, приведенном ниже.

Данное суждение доказывается тем, что между пересекающимися прямыми a и b имеется угол, который не зависит от расположения точки M , то есть точки пересечения. Эти прямые располагаются в плоскостях γ 1 и γ 2 . Фактически, получившийся угол можно считать углом между двумя пересекающимися плоскостями.

Перейдем к определению угла между имеющимися пересекающимися плоскостями γ 1 и γ 2 .

Определение 1

Углом между двумя пересекающимися плоскостями γ 1 и γ 2 называют угол, образовавшийся путем пересечения прямых a и b , где плоскости γ 1 и γ 2 имеют пересечение с плоскостью χ , перпендикулярной прямой c .

Рассмотрим рисунок, приведенный ниже.

Определение может быть подано в другой форме. При пересечении плоскостей γ 1 и γ 2 , где c – прямая, на которой они пересеклись, отметить точку M , через которую провести прямые a и b , перпендикулярные прямой c и лежащие в плоскостях γ 1 и γ 2 , тогда угол между прямыми a и b будет являться углом между плоскостями. Практически это применимо для построения угла между плоскостями.

При пересечении образуется угол, который по значению меньше 90 градусов, то есть градусная мера угла действительна на промежутке такого вида (0 , 90 ] . Одновременно данные плоскости называют перпендикулярнымив случае, если при пересечении образуется прямой угол. Угол между параллельными плоскостями считается равным нулю.

Обычный способ для нахождения угла между пересекающимися плоскостями – это выполнение дополнительных построений. Это способствует определять его с точностью, причем делать это можно с помощью признаков равенства или подобия треугольника, синусов, косинусов угла.

Рассмотрим решение задач на примере из задач ЕГЭ блока C 2 .

Пример 1

Задан прямоугольный параллелепипед А В С D A 1 B 1 C 1 D 1 , где сторона А В = 2 , A D = 3 , А А 1 = 7 , точка E разделяет сторону А А 1 в отношении 4: 3 . Найти угол между плоскостями А В С и В E D 1 .

Решение

Для наглядности необходимо выполнить чертеж. Получим, что

Наглядное представление необходимо для того, чтобы было удобней работать с углом между плоскостями.

Производим определение прямой линии, по которой происходит пересечение плоскостей А В С и В E D 1 . Точка B является общей точкой. Следует найти еще одну общую точку пересечения. Рассмотрим прямые D A и D 1 E , которые располагаются в одной плоскости A D D 1 . Их расположение не говорит о параллельности, значит, они имеют общую точку пересечения.

Однако, прямая D A расположена в плоскости А В С, а D 1 E в B E D 1 . Отсюда получаем, что прямые D A и D 1 E имеют общую точку пересечения, которая является общей и для плоскостей А В С и B E D 1 . Обозначает точку пересечения прямых D A и D 1 E буквой F . Отсюда получаем, что B F является прямой, по которой пересекаются плоскости А В С и В E D 1 .

Рассмотрим на рисунке, приведенном ниже.

Для получения ответа необходимо произвести построение прямых, расположенных в плоскостях А В С и В E D 1 с прохождением через точку, находящуюся на прямой B F и перпендикулярной ей. Тогда получившийся угол между этими прямыми считается искомым углом между плоскостями А В С и В E D 1 .

Отсюда видно, что точка A – проекция точки E на плоскость А В С. Необходимо провести прямую, пересекающую под прямым углом прямую B F в точке М. Видно, что прямая А М – проекция прямой Е М на плоскость А В С, исходя из теоремы о тех перпендикулярах A M ⊥ B F . Рассмотрим рисунок, изображенный ниже.

∠ A M E - это искомый угол, образованный плоскостями А В С и В E D 1 . Из получившегося треугольника А Е М можем найти синус, косинус или тангенс угла, после чего и сам угол, только при известных двух сторонах его. По условию имеем, что длина А Е находится таким образом: прямая А А 1 разделена точкой E в отношении 4: 3 , то означает полную длину прямой – 7 частей, тогда А Е = 4 частям. Находим А М.

Необходимо рассмотреть прямоугольный треугольник А В F . Имеем прямой угол A с высотой А М. Из условия А В = 2 , тогда можем найти длину A F по подобию треугольников D D 1 F и A E F . Получаем, что A E D D 1 = A F D F ⇔ A E D D 1 = A F D A + A F ⇒ 4 7 = A F 3 + A F ⇔ A F = 4

Необходимо найти длину стороны B F из треугольника A B F , используя теорему Пифагора. Получаем, что B F   = A B 2 + A F 2 = 2 2 + 4 2 = 2 5 . Длина стороны А М находится через площадь треугольника A B F . Имеем, что площадь может равняться как S A B C = 1 2 · A B · A F , так и S A B C = 1 2 · B F · A M .

Получаем, что A M = A B · A F B F = 2 · 4 2 5 = 4 5 5

Тогда можем найти значение тангенса угла треугольника А Е М. Получим:

t g ∠ A M E = A E A M = 4 4 5 5 = 5

Искомый угол, получаемый пересечением плоскостей А В С и B E D 1 равняется a r c t g 5 , тогда при упрощении получим a r c t g 5 = a r c sin 30 6 = a r c cos 6 6 .

Ответ: a r c t g 5 = a r c sin 30 6 = a r c cos 6 6 .

Некоторые случаи нахождения угла между пересекающимися прямыми задаются при помощи координатной плоскости О х у z и методом координат. Рассмотрим подробней.

Если дана задача, где необходимо найти угол между пересекающимися плоскостями γ 1 и γ 2 , искомый угол обозначим за α .

Тогда заданная система координат показывает, что имеем координаты нормальных векторов пересекающихся плоскостей γ 1 и γ 2 . Тогда обозначим, что n 1 → = n 1 x , n 1 y , n 1 z является нормальным вектором плоскости γ 1 , а n 2 → = (n 2 x , n 2 y , n 2 z) - для плоскости γ 2 . Рассмотрим подробное нахождение угла, расположенного между этими плоскостями по координатам векторов.

Необходимо обозначить прямую, по которой происходит пересечение плоскостей γ 1 и γ 2 буквой c . На прямой с имеем точку M , через которую проводим плоскость χ , перпендикулярную c . Плоскость χ по прямым a и b производит пересечение плоскостей γ 1 и γ 2 в точке M . из определения следует, что угол между пересекающимися плоскостями γ 1 и γ 2 равен углу пересекающихся прямых a и b , принадлежащих этим плоскостям соответственно.

В плоскости χ откладываем от точки M нормальные векторы и обозначаем их n 1 → и n 2 → . Вектор n 1 → располагается на прямой, перпендикулярной прямой a , а вектор n 2 → на прямой, перпендикулярной прямой b . Отсюда получаем, что заданная плоскость χ имеет нормальный вектор прямой a , равный n 1 → и для прямой b , равный n 2 → . Рассмотрим рисунок, приведенный ниже.

Отсюда получаем формулу, по которой можем вычислить синус угла пересекающихся прямых при помощи координат векторов. Получили, что косинусом угла между прямыми a и b то же, что и косинус между пересекающимися плоскостями γ 1 и γ 2 выводится из формулы cos α = cos n 1 → , n 2 → ^ = n 1 x · n 2 x + n 1 y · n 2 y + n 1 z · n 2 z n 1 x 2 + n 1 y 2 + n 1 z 2 · n 2 x 2 + n 2 y 2 + n 2 z 2 , где имеем, что n 1 → = (n 1 x , n 1 y , n 1 z) и n 2 → = (n 2 x , n 2 y , n 2 z) являются координатами векторов представленных плоскостей.

Вычисление угла между пересекающимися прямыми производится по формуле

α = a r c cos n 1 x · n 2 x + n 1 y · n 2 y + n 1 z · n 2 z n 1 x 2 + n 1 y 2 + n 1 z 2 · n 2 x 2 + n 2 y 2 + n 2 z 2

Пример 2

По условию дан параллелепипед А В С D A 1 B 1 C 1 D 1 , где А В = 2 , A D = 3 , А А 1 = 7 , а точка E разделяет сторону А А 1 4: 3 . Найти угол между плоскостями А В С и B E D 1 .

Решение

Из условия видно, что стороны его попарно перпендикулярны. Это значит, что необходимо ввести систему координат О х у z с вершиной в точке С и координатными осями О х, О у, О z . Необходимо поставить направление по соответствующим сторонам. Рассмотрим рисунок, приведенный ниже.

Пересекающиеся плоскости А В С и B E D 1 образуют угол, который можно найти по формуле α = a r c cos n 1 x · n 2 x + n 1 y · n 2 y + n 1 z · n 2 z n 1 x 2 + n 1 y 2 + n 1 z 2 · n 2 x 2 + n 2 y 2 + n 2 z 2 , в которой n 1 → = (n 1 x , n 1 y , n 1 z) и n 2 → = (n 2 x , n 2 y , n 2 z) являются нормальными векторами этих плоскостей. Необходимо определить координаты. По рисунку видим, что координатная ось О х у совпадает в плоскостью А В С, это значит, что координаты нормального вектора k → равняются значению n 1 → = k → = (0 , 0 , 1) .

За нормальный вектор плоскости B E D 1 принимается векторное произведение B E → и B D 1 → , где их координаты находятся путем координат крайних точек В, Е, D 1 , которые определяются, исходя из условия задачи.

Получаем, что B (0 , 3 , 0) , D 1 (2 , 0 , 7) . Потому как A E E A 1 = 4 3 , из координат точек A 2 , 3 , 0 , A 1 2 , 3 , 7 найдем E 2 , 3 , 4 . Получаем, что B E → = (2 , 0 , 4) , B D 1 → = 2 , - 3 , 7 n 2 → = B E → × B D 1 = i → j → k → 2 0 4 2 - 3 7 = 12 · i → - 6 · j → - 6 · k → ⇔ n 2 → = (12 , - 6 , - 6)

Необходимо произвести подстановку найденных координат в формулу вычисления угла через арккосинус. Получаем

α = a r c cos 0 · 12 + 0 · (- 6) + 1 · (- 6) 0 2 + 0 2 + 1 2 · 12 2 + (- 6) 2 + (- 6) 2 = a r c cos 6 6 6 = a r c cos 6 6

Метод координат дает аналогичный результат.

Ответ: a r c cos 6 6 .

Завершающая задача рассматривается с целью нахождения угла между пересекающимися плоскостями при имеющихся известных уравнениях плоскостей.

Пример 3

Вычислить синус, косинус угла и значение угла, образованного двумя пересекающимися прямыми, которые определены в системе координат О х у z и заданы уравнениями 2 x - 4 y + z + 1 = 0 и 3 y - z - 1 = 0 .

Решение

При изучении темы общего уравнения прямой вида A x + B y + C z + D = 0 выявили, что А, В, С являются коэффициентами, равными координатам нормального вектора. Значит, n 1 → = 2 , - 4 , 1 и n 2 → = 0 , 3 , - 1 являются нормальным векторами заданных прямых.

Необходимо подставить координаты нормальных векторов плоскостей в формулу вычисления искомого угла пересекающихся плоскостей. Тогда получаем, что

α = a r c cos 2 · 0 + - 4 · 3 + 1 · (- 1) 2 2 + - 4 2 + 1 2 = a r c cos 13 210

Отсюда имеем, что косинус угла принимает вид cos α = 13 210 . Тогда угол пересекающихся прямых не является тупым. Подставив в тригонометрическое тождество, получаем, что значение синуса угла равняется выражению. Вычислим и получим, что

sin α = 1 - cos 2 α = 1 - 13 210 = 41 210

Ответ: sin α = 41 210 , cos α = 13 210 , α = a r c cos 13 210 = a r c sin 41 210 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Тип задания: 14
Тема: Угол между плоскостями

Условие

Дана правильная призма ABCDA_1B_1C_1D_1, M и N — середины ребер AB и BC соответственно, точка K — середина MN .

а) Докажите, что прямые KD_1 и MN перпендикулярны.

б) Найдите угол между плоскостями MND_1 и ABC , если AB=8, AA_1=6\sqrt 2.

Показать решение

Решение

а) В \triangle DCN и \triangle MAD имеем: \angle C=\angle A=90^{\circ}, CN=AM=\frac12AB, CD=DA.

Отсюда \triangle DCN=\triangle MAD по двум катетам. Тогда MD=DN, \triangle DMN равнобедренный. Значит, медиана DK — является также высотой. Следовательно, DK \perp MN.

DD_1 \perp MND по условию, D_1K — наклонная, KD — проекция, DK \perp MN.

Отсюда по теореме о трех перпендикулярах MN\perp D_1K.

б) Как было доказано в а) , DK \perp MN и MN \perp D_1K, но MN — линия пересечения плоскостей MND_1 и ABC , значит \angle DKD_1 — линейный угол двугранного угла между плоскостями MND_1 и ABC .

В \triangle DAM по теореме Пифагора DM= \sqrt {DA^2+AM^2}= \sqrt {64+16}= 4\sqrt 5, MN= \sqrt {MB^2+BN^2}= \sqrt {16+16}= 4\sqrt 2. Следовательно, в \triangle DKM по теореме Пифагора DK= \sqrt {DM^2-KM^2}= \sqrt {80-8}= 6\sqrt 2. Тогда в \triangle DKD_1, tg\angle DKD_1=\frac{DD_1}{DK}=\frac{6\sqrt 2}{6\sqrt 2}=1.

Значит, \angle DKD_1=45^{\circ}.

Ответ

45^{\circ}.

Тип задания: 14
Тема: Угол между плоскостями

Условие

В правильной четырёхугольной призме ABCDA_1B_1C_1D_1 стороны основания равны 4 , боковые рёбра равны 6 . Точка M — середина ребра CC_1, на ребре BB_1 отмечена точка N , такая, что BN:NB_1=1:2.

а) В каком отношении плоскость AMN делит ребро DD_1?

б) Найдите угол между плоскостями ABC и AMN .

Показать решение

Решение

а) Плоскость AMN пересекает ребро DD_1 в точке K , являющейся четвёртой вершиной сечения данной призмы этой плоскостью. Сечением является параллелограмм ANMK , потому что противоположные грани данной призмы параллельны.

BN =\frac13BB_1=2. Проведём KL \parallel CD, тогда треугольники ABN и KLM равны, значит ML=BN=2, LC=MC-ML=3-2=1, KD=LC=1. Тогда KD_1=6-1=5. Теперь можно найти отношение KD:KD_1=1:5.

б) F — точка пересечения прямых CD и KM . Плоскости ABC и AMN пересекаются по прямой AF . Угол \angle KHD =\alpha — линейный угол двугранного угла (HD\perp AF, тогда по теореме, обратной теореме о трех перпендикулярах, KH \perp AF ) , и является острым углом прямоугольного треугольника KHD , катет KD=1.

Треугольники FKD и FMC подобны (KD \parallel MC), поэтому FD:FC=KD:MC, решая пропорцию FD:(FD+4)=1:3, получим FD=2. В прямоугольном треугольнике AFD (\angle D=90^{\circ}) с катетами 2 и 4 вычислим гипотенузу AF=\sqrt {4^2+2^2}=2\sqrt 5, DH= AD\cdot FD:AF= \frac{4\cdot 2}{2\sqrt 5}= \frac4{\sqrt 5}.

В прямоугольном треугольнике KHD найдём tg \alpha =\frac{KD}{DH}=\frac{\sqrt 5}4, значит, искомый угол \alpha =arctg\frac{\sqrt 5}4.

Ответ

а) 1:5;

б) arctg\frac{\sqrt 5}4.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 14
Тема: Угол между плоскостями

Условие

Дана правильная четырёхугольная пирамида KMNPQ со стороной основания MNPQ , равной 6 , и боковым ребром 3\sqrt {26}.

а) Постройте сечение пирамиды плоскостью, проходящей через прямую NF параллельно диагонали MP , если точка F — середина ребра MK .

б) Найдите величину угла между плоскостью сечения и плоскостью KMP .

Показать решение

Решение

а) Пусть KO — высота пирамиды, F — середина MK ; FE \parallel MP (в плоскости PKM ) . Так как FE — средняя линия \triangle PKM, то FE=\frac{MP}2.

Построим сечение пирамиды плоскостью, проходящей через NF и параллельной MP , то есть плоскостью NFE . L — точка пересечения EF и KO . Так как точки L и N принадлежат искомому сечению и лежат в плоскости KQN , то точка T , полученная как пересечение LN и KQ , является также точкой пересечения искомого сечения и ребра KQ . NETF — искомое сечение.

б) Плоскости NFE и MPK пересекаются по прямой FE . Значит, угол между этими плоскостями равен линейному углу двугранного угла OFEN , построим его: LO \perp MP, MP \parallel FE, следовательно, LO \perp FE; \triangle NFE — равнобедренный (NE=NF как соответствующие медианы равных треугольников KPN и KMN ) , NL — его медиана (EL=LF, так как PO=OM, а \triangle KEF \sim \triangle KPM ) . Отсюда NL \perp FE и \angle NLO — искомый.

ON=\frac12QN=\frac12MN\sqrt 2=3\sqrt 2.

\triangle KON — прямоугольный.

Катет KO по теореме Пифагора равен KO=\sqrt {KN^2-ON^2}.

OL= \frac12KO= \frac12\sqrt{KN^2-ON^2}= \frac12\sqrt {9\cdot 26-9\cdot 2}= \frac12\sqrt{9(26-2)}= \frac32\sqrt {24}= \frac32\cdot 2\sqrt 6= 3\sqrt 6.

tg\angle NLO =\frac{ON}{OL}=\frac{3\sqrt 2}{3\sqrt 6}=\frac1{\sqrt 3},

\angle NLO=30^{\circ}.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 14
Тема: Угол между плоскостями

Условие

Все рёбра правильной треугольной призмы ABCA_{1}B_{1}C_{1} равны 6 . Через середины рёбер AC и BB_{1} и вершину A_{1} проведена секущая плоскость.

а) Докажите, что ребро BC делится секущей плоскостью в отношении 2:1, считая от вершины C .

б) Найдите угол между плоскостью сечения и плоскостью основания.

Показать решение

Решение

а) Пусть D и E — середины ребер AC и BB_{1} соответственно.

В плоскости AA_{1}C_{1} проведем прямую A_{1}D, которая пересекает прямую CC_{1} в точке K , в плоскости BB_{1}C_{1} — прямую KE , которая пересекает ребро BC в точке F . Соединие точки A_{1} и E , лежащие в плоскости AA_{1}B_{1}, а также D и F , лежащие в плоскости ABC , получим сечение A_{1}EFD.

\bigtriangleup AA_{1}D=\bigtriangleup CDK по катету AD=DC и острому углу.

\angle ADA_{1}=\angle CDK — как вертиальные, отсюда следует, что AA_{1}=CK=6. \bigtriangleup CKF и \bigtriangleup BFE подобны по двум углам \angle FBE=\angle KCF=90^\circ, \angle BFE=\angle CFK — как вертикальные.

\frac{CK}{BE}=\frac{6}{3}=2, то есть коэффициент подобия равен 2 , откуда следует, что CF:FB=2:1.

б) Проведём AH \perp DF. Угол между плоскостью сечения и плоскостью основания равен углу AHA_{1}. Действительно, отрезок AH \perp DF (DF — линия пересечения этих плоскостей) и является проекцией отрезка A_{1}H на плоскость основания, следовательно, по теореме о трёх перпендикулярах, A_{1}H \perp DF. \angle AHA_{1}=arctg\frac{AA_{1}}{AH}. AA_{1}=6.

Найдём AH . \angle ADH =\angle FDC (как вертикальные).

По теореме косинусов в \bigtriangleup DFC:

DF^2=FC^2+DC^2- 2FC \cdot DC \cdot \cos 60^\circ,

DF^2=4^2+3^2-2 \cdot 4 \cdot 3 \cdot \frac{1}{2}=13.

FC^2=DF^2+DC^2- 2DF \cdot DC \cdot \cos \angle FDC,

4^2=13+9-2\sqrt{13} \cdot 3 \cdot \cos \angle FDC,

\cos \angle FDC=\frac{6}{2\sqrt{13} \cdot 3}=\frac{1}{\sqrt{13}}.

По следствию из основного тригонометрического тождества

\sin \angle FDC=\sqrt{1-\left (\frac{1}{\sqrt{13}}\right)^2}=\frac{2\sqrt{3}}{\sqrt{13}}. Из \bigtriangleup ADH найдём AH :

AH=AD \cdot \sin \angle ADH, (\angle FDC=\angle ADH). AH=3 \cdot \frac{2\sqrt{3}}{\sqrt{13}}=\frac{6\sqrt{13}}{\sqrt{13}}.

\angle AHA_{1}= arctg\frac{AA_{1}}{AH}= arctg\frac{6 \cdot \sqrt{13}}{6\sqrt{3}}= arctg\frac{\sqrt{39}}{3}.

Ответ

arctg\frac{\sqrt{39}}{3}.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 14
Тема: Угол между плоскостями

Условие

Основанием прямой призмы ABCDA_{1}B_{1}C_{1}D_{1} является ромб с тупым углом B , равным 120^\circ. Все ребра этой призмы равны 10 . Точки P и K — середины ребер CC_{1} и CD соответственно.

а) Докажите, что прямые PK и PB_{1} перпендикулярны.

б) Найдите угол между плоскостями PKB_{1} и C_{1}B_{1}B.

Показать решение

Решение

а) Будем использовать метод координат. Найдём скалярное произведение векторов \vec{PK} и \vec{PB_{1}}, а затем косинус угла между этими векторами. Направим ось Oy вдоль CD , ось Oz вдоль CC_{1}, и ось Ox \perp CD . C — начало координат.

Тогда C (0;0;0); C_{1}(0;0;10); P(0;0;5); K(0;5;0); B(BC \cos 30^\circ; BC\sin 30^\circ; 0), то есть B(5\sqrt{3}; 5;0), B_{1}(5\sqrt{3}; 5;10).

Найдём координаты векторов: \vec{PK}=\{0;5;-5\}; \vec{PB_{1}}=\{5\sqrt{3}; 5;5\}.

Пусть угол между \vec{PK} и \vec{PB_{1}} равен \alpha.

Получаем \cos \alpha=\frac{\vec{PK} \cdot \vec{PB_{1}}}{|\vec{PK}| \cdot |\vec{PB_{1}}|}= \frac{0 \cdot 5\sqrt{3} + 5 \cdot 5-5 \cdot 5}{|\vec{PK}| \cdot |\vec{PB_{1}}|}=0.

\cos \alpha =0, значит, \vec{PK} \perp \vec{PB_{1}} и прямые PK и PB_{1} перпендикулярны.

б) Угол между плоскостями равен углу между ненулевыми векторами, перпендикулярными этим плоскостям (или, если угол тупой, смежному с ним углу). Такие векторы называют нормалями к плоскостям. Найдём их.

Пусть \vec{n_{1}}=\{x; y; z\} перпендикулярен плоскости PKB_{1}. Найдем его, решив систему \begin{cases} \vec{n_{1}} \perp \vec{PK}, \\ \vec{n_{1}} \perp \vec{PB_{1}}. \end{cases}

\begin{cases} \vec{n_{1}} \cdot \vec{PK}=0, \\ \vec{n_{1}} \cdot \vec{PB_{1}}=0; \end{cases}

\begin{cases} 0x+5y-5z=0, \\ 5\sqrt{3}x+5y+5z=0; \end{cases}

\begin{cases}y=z, \\ x=\frac{-y-z}{\sqrt{3}}. \end{cases}

Возьмем y=1; z=1; x=\frac{-2}{\sqrt{3}}, \vec{n_{1}}=\left \{ \frac{-2}{\sqrt{3}}; 1;1 \right \}.

Пусть \vec{n_{2}}=\{x; y; z\} перпендикулярен плоскости C_{1}B_{1}B. Найдем его, решив систему \begin{cases} \vec{n_{2}} \perp \vec{CC_{1}}, \\ \vec{n_{2}} \perp \vec{CB}. \end{cases}

\vec{CC_{1}}=\{0;0;10\}, \vec{CB}=\{5\sqrt{3}; 5; 0\}.

\begin{cases} \vec{n_{2}} \cdot \vec{CC_{1}}=0, \\ \vec{n_{2}} \cdot \vec{CB}=0; \end{cases}

\begin{cases} 0x+0y+10z=0, \\ 5\sqrt{3}x+5y+0z=0; \end{cases}

\begin{cases}z=0, \\ y=-\sqrt{3}x. \end{cases}

Возьмем x=1; y=-\sqrt{3}; z=0, \vec{n_{2}}=\{1; -\sqrt{3};0\}.

Найдем косинус искомого угла \beta (он равен модулю косинуса угла между \vec{n_{1}} и \vec{n_{2}} ).

\cos \beta= \frac{|\vec{n_{1}} \cdot \vec{n_{2}}|}{|\vec{n_{1}}| \cdot |\vec{n_{2}}|}= \frac{\left |-\dfrac{2}{\sqrt{3}}\cdot 1+1 \cdot (-\sqrt{3})+1 \cdot 0 \right |}{\sqrt{\dfrac{4}{3}+1+1} \cdot \sqrt{1+3+0}}= \frac{\dfrac{5}{\sqrt{3}}}{2\sqrt{\dfrac{10}{3}}}= \frac{\sqrt{10}}{4}.

\cos \beta =\frac{\sqrt{10}}{4}, \beta=\arccos\frac{\sqrt{10}}{4}.

Ответ

\arccos\frac{\sqrt{10}}{4}

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

ABCD — квадрат и боковые грани — равные прямоугольники.

Так как плоскость сечения проходит через точки M и D параллельно диагонали AC , то для её построения в плоскости A_{1}AC через точку M проведём отрезок MN параллельный AC . Получим AC \parallel (MDN) по признаку параллельности прямой и плоскости.

Плоскость MDN пересекает параллельные плоскости A_{1}AD и B_{1}BC, тогда, по свойству параллельных плоскостей, линии пересечения граней A_{1}ADD_{1} и B_{1}BCC_{1} плоскостью MDN параллельны.

Проведём отрезок NE параллельно отрезку MD .

Четырехугольник DMEN — искомое сечение.

б) Найдём угол между плоскостью сечения и плоскостью основания. Пусть плоскость сечения пересекает плоскость основания по некоторой прямой p , проходящей через точку D . AC \parallel MN, следовательно, AC \parallel p (если плоскость проходит через прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна этой прямой). BD \perp AC как диагонали квадрата, значит, BD \perp p. BD — проекция ED на плоскость ABC , тогда по теореме о трех перпендикулярах ED \perp p, следовательно, \angle EDB — линейный угол двугранного угла между плоскостью сечения и плоскостью основания.

Установим вид четырехугольника DMEN . MD \parallel EN, аналогично ME \parallel DN, значит, DMEN — параллелограмм, а так как MD=DN (прямоугольные треугольники MAD и NCD равны по двум катетам: AD=DC как стороны квадрата, AM=CN как расстояния между параллельными прямыми AC и MN ), следовательно, DMEN — ромб. Отсюда, F — середина MN .

По условию AM:MA_{1}=2:3, тогда AM=\frac{2}{5}AA_{1}=\frac{2}{5} \cdot 5\sqrt{6}=2\sqrt{6}.

AMNC — прямоугольник, F — середина MN , O — середина AC . Значит, FO\parallel MA, FO \perp AC, FO=MA=2\sqrt{6}.

Зная, что диагональ квадрата равна a\sqrt{2}, где a — сторона квадрата, получим BD=4\sqrt{2}. OD=\frac{1}{2}BD=\frac{1}{2} \cdot 4\sqrt{2}=2\sqrt{2}.

В прямоугольном треугольнике FOD\enspace tg \angle FDO=\frac{FO}{OD}=\frac{2\sqrt{6}}{2\sqrt{2}}=\sqrt{3}. Следовательно, \angle FDO=60^\circ.