Макияж. Уход за волосами. Уход за кожей

Макияж. Уход за волосами. Уход за кожей

» » Происхождение Земли. Различные гипотезы происхождения Земли

Происхождение Земли. Различные гипотезы происхождения Земли

Введение

Земля – третья по порядку от Солнца планета в Солнечной системе. Она занимает пятое место по размеру и массе среди больших планет, но из внутренних планет так называемой «земной» группы, в которую входят Меркурий, Венера, Земля и Марс, она является самой крупной.

Состав и строение Земли в последние десятилетия продолжают оставаться одной из наиболее интригующих проблем современной геологии. Знания о внутреннем строении Земли пока очень поверхностны, так как получены на основании косвенных доказательств. Прямые свидетельства относятся только к поверхностной пленке планеты, чаще всего не превышающей полутора десятков километров. Помимо этого, важно изучать положение планеты Земля в космическом пространстве. Во-первых, чтобы понять закономерности и механизм развития Земли и земной коры, надо знать исходное состояние Земли при ее формировании. Во-вторых, изучение других планет доставляет ценнейший материал для познания ранних стадий развития нашей планеты. И, в-третьих, сравнение строения и эволюции Земли с другими планетами Солнечной системы позволяет понять, почему именно Земля стала родиной человечества.

Изучение внутреннего строения Земли актуально и жизненно важно. С ним связаны образование и размещение многих видов полезных ископаемых, рельефа земной поверхности, возникновение вулканов и землетрясений. Знания о строении Земли необходимы и для составления геологических и географических прогнозов.

Глава 1. Гипотезы происхождения Земли

На протяжении многих веков вопрос о происхождении Земли оставался монополией философов, так как фактический материал в этой области почти полностью отсутствовал. Первые научные гипотезы относительно происхождения Земли и Солнечной системы, основанные на астрономических наблюдениях, были выдвинуты только лишь в XVIII веке. С тех пор не переставали появляться все новые и новые теории, соответственно росту наших космогонических представлений.

Одна из первых гипотез была высказана в 1745 году французским естествоиспытателем Ж. Бюффоном. Согласно гипотезе, наша планета образовалась в результате остывания одного из сгустков солнечного вещества, выброшенного Солнцем при катастрофическом столкновении его с крупной кометой.

Мысль Бюффона об образовании Земли из солнечной плазмы была использована в целой серии более поздних и совершенных гипотез «горячего» происхождения Земли. Ведущее место занимает небулярная гипотеза, разработанная немецким философом И. Кантом в 1755 г. и французским математиком П. Лапласом в 1796 г. независимо друг от друга (рис.1). Согласно гипотезе, Солнечная система образовалась из единой раскаленной газовой туманности. Вращение вокруг оси обусловило дискообразную форму туманности. После того, как центробежная сила в экваториальной части туманности превысила силу тяготения, по всей периферии диска начали отделяться газовые кольца. Их остывание привело к формированию планет и их спутников, а из ядра туманности возникло Солнце.

Рис. 1. Небулярная гипотеза Лапласа. На этом рисунке наглядно представлено сгущение вращающейся газовой туманности в Солнце, планеты и астероиды

Гипотеза Лапласа была научной, поскольку основывалась на законах природы, известных из опыта. Однако после Лапласа были открыты новые явления в Солнечной системе, которые его теория не могла объяснить. Например, оказалось, что планеты Уран, Венера вращаются вокруг своей оси не в ту сторону, куда вращаются остальные планеты. Были лучше изучены свойства газов и особенности движения планет и их спутников. Эти явления также не согласовывались с гипотезой Лапласа и от нее пришлось отказаться.

Определенным этапом в развитии взглядов на образование Солнечной системы была гипотеза английского астрофизика Джеймса Джинса (рис.2). Он считал, что планеты образовались в результате катастрофы: какая-то относительно большая звезда прошла совсем близко от уже существовавшего Солнца, следствием чего явился выброс из поверхностных слоев Солнца струи газа, из которых впоследствии образовались планеты. Но гипотеза Джинса, так же как гипотеза Канта-Лапласа, не может объяснить несоответствие в распределении момента количества движения между планетами и Солнцем.

Рис. 2. Образование солнечной системы по Джинсу

Принципиально новая идея заложена в гипотезах «холодного» происхождения Земли. Наиболее глубоко разработана метеоритная гипотеза, предложенная советским ученым О. Ю. Шмидтом в 1944 г (рис.3). Согласно гипотезе, несколько миллиардов лет тому назад «наше» Солнце встретило при своем движении во Вселенной большую газопылевую туманность. Значительная часть туманности последовала за Солнцем и стала вращаться вокруг него. Отдельные мелкие частицы слипались в крупные сгустки. Сгустки по мере своего движения также сталкивались друг с другом и обрастали все новым материалом, образуя плотные комья – зародыши будущих планет.

Рис. 3. Образование солнечной системы по метеоритной гипотезе

О. Ю. Шмидта

По О. Ю. Шмидту, в период формирования Земли ее поверхность оставалась холодной, сгустки сжимались, за счет этого начался процесс самогравитации вещества, внутренняя часть постепенно нагревалась от тепла, выделяемого при распаде радиоактивных элементов. С годами у гипотезы Шмидта появилось много слабых сторон, одна из них – это предположение о захвате Солнцем части встретившегося газопылевого облака. Исходя из закона механики, для захвата Солнцем вещества необходимо было полностью остановить это вещество, а Солнце должно было обладать громадной силой притяжения, способной остановить это облако и притянуть его к себе. К недостаткам метеоритной гипотезы относится малая вероятность захвата Солнцем газово – пылевого (метеоритного) облака и отсутствие объяснения концентрического внутреннего строения Земли .

Со временем сложилось еще много теорий, касающихся происхождения Земли и Солнечной системы в целом. На основе взглядов О.Ю. Шмидта (1944), В. Амбарцумяна (1947), B.C. Сафронова (1969) и других ученых сформировалась современная теория планетарного образования Земли и других планет Солнечной системы (рис. 4). Причиной появления планет нашей системы явился взрыв сверхновой звезды. Ударная волна от взрыва около 5 млрд лет назад сильно сжала газопылевую туманность. Концентрация материального вещества (пыли, смесей газов, водорода, гелия, углерода, тяжелых металлов, сульфидов) оказалась настолько значительной, что это привело к началу термоядерного синтеза, росту температуры, давлению, появлению явления самогравитации в первичном Солнце и зарождению протопланет .

Рис. 4. Образование солнечной системы (современная теория)

1 – взрыв сверхновой звезды порождает ударные волны, воздействующие на газопылевое облако; 2 – газопылевое облако начинает фрагментироваться и сплющиваться, закручиваясь при этом; 3 – первичная солнечная небула (туманность); 4 – образование Солнца и гигантских, богатых газом планет – Юпитера и Сатурна; 5 – ионизированный газ – солнечный ветер сдувает газ из внутренней зоны системы и с мелких планетезималей; 6 – образование внутренних планет из планетезималей в течение 100 млн лет и формирование облаков Оорта, состоящих из комет

Первичная Земля оказалось связана с Луной приливными взаимодействиями. Луна определила наклон оси ее вращения своей орбитой и массой и обусловила климатическую зональность Земли, возникновение электрического и магнитного полей .

После образования земного ядра (на границе архея и протерозоя), содержащего около 63% современной массы, дальнейший рост Земли происходил уже более спокойно и равномерно по тектономагматическим циклам. Таких циклов ученые-тектонисты насчитали около 14. Значительная тектоническая активность на Земле наблюдалась около 2,6 млрд лет назад, перемещение литосферных плит в то время происходило со скоростью 2-3 м в год. Поверхность Земли была окутана плотной углекисло-азотной атмосферой с давлением до 4-5 атм. и температурой до +30…+100 °С. Возник первый неглубокий Мировой океан, дно которого было покрыто базальтами и серпентинитом.

В раннем протерозое произошло насыщение первичной водой третьего (серпентинитового) слоя океанической коры. Это сразу сказалось на снижении давления углекислого газа в первичной атмосфере. В свою очередь, уменьшение углекислого газа в атмосфере привело к резкому снижению температуры на поверхности Земли. Появление кислорода и озонового слоя в атмосфере способствовало формированию биосферы и географической оболочки .

Процесс расслоения, дифференциации недр на Земле он происходит и сейчас, обеспечивая существование жидкого внешнего ядра и конвекцию в мантии. Атмосфера и гидросфера возникли в результате конденсации газов, выделявшихся на ранней стадии развития планеты .


Похожая информация.


Человек издавна пытался изучить мир, который его окружает. Как возникла Земля? Этот вопрос волновал людей не одно тысячелетие. До наших дней дошли многие легенды и предсказания различных народов мира. Их объединяет то, что происхождение нашей Земли связано с действием мифических героев и богов. Лишь в XVIII веке стали появляться научные гипотезы о происхождении солнца и планет.

Гипотеза Жоржа Бюффона

Французский учёный Жорж Бюффон предположил, что наша Земля была образована в результате катастрофы. Некогда в Солнце врезалась огромная комета, в результате чего разлетелись многочисленные брызги. Впоследствии эти брызги стали остывать, и из самых крупных образовались планеты, в том числе и Земля.

Рис. 1

Рис. 2. Гипотеза возникновения Солнечной системы

Жорж Бюффон родился в семье богатого помещика и был старшим из 5 его детей. Трое его братьев достигли в церковной иерархии высокого положения. Жоржа в 10 лет отдали учиться в колледж, но учился он с неохотой. И интересовался только математикой. В этот период Бюффон перевел труды Ньютона. Позже он был назначен интендантом королевского сада и занимал этот пост в течение 50 лет, до самой своей смерти.

Гипотеза Эммануила Канта

Иного мнения придерживался немецкий учёный Иммануил Кант . Он считал, что Солнце и все планеты были образованы из холодного пылевого облака. Это облако вращалось, постепенно пылинки сгущались, соединялись – так образовалось Солнце и другие планеты.

Рис. 3

Гипотеза Пьера Лапласа

Пьер Лаплас – французский учёный и астроном – предложил свою гипотезу о появлении Солнечной системы. Он считал, что солнце и планеты образованы из гигантского раскалённого газового облака. Оно постепенно остывало, сжималось и дало начало Солнцу и планетам.

Рис. 4

Рис. 5. Гипотеза возникновения Солнечной системы

Пьер Симон Лаплас родился 23 марта 1749 года в крестьянской семье в Бомон-ан-Ож, в нормандском департаменте Кальвадос. Учился в школе бенедиктинцев, из которой вышел, однако, убеждённым атеистом. Состоятельные соседи помогли способному мальчику поступить в университет города Кан (Нормандия). Лаплас предложил первую математически обоснованную космогоническую гипотезу образования всех тел Солнечной системы, называемую его именем: гипотеза Лапласа. Он также первый высказал предположение, что некоторые наблюдаемые на небе туманности, на самом деле - галактики, подобные нашему Млечному Пути.

Гипотеза Джеймса Джинса

Иной гипотезы придерживался другой учёный, его зовут Джеймс Джинс . В начале нашего столетия он предположил, что некогда рядом с Солнцем пролетала массивная звезда и своим тяготением вырвала часть солнечного вещества. Это вещество положило начало всем планетам солнечной системы.

Рис. 6

Рис. 7. Гипотеза возникновения Солнечной системы

Гипотеза Отто Шмидта

Наш соотечественник – Отто Юльевич Шмидт в 1944 году выдвинул свою гипотезу о происхождении Солнца и планет. Он полагал, что миллиарды лет назад вокруг Солнца вращалось гигантское газово-пылевое облако, это облако было холодным. Со временем облако уплощалось, образовались сгустки. Эти сгустки стали вращаться по орбитам, постепенно из них сформировались планеты.

Рис. 8

Рис. 9. Гипотеза возникновения Солнечной системы

Отто Шмидт родился 18 сентября 1891 года. В детстве работал в лавке письменных принадлежностей. Деньги на обучение одарённого мальчика в гимназии нашлись у его латышского дедушки Фрициса Эргле. С золотой медалью окончил гимназию в Киеве (1909). Окончил физико-математическое отделение Киевского университета, где учился в 1909-1913 годах. Там же под руководством профессора Д. А. Граве начал свои исследования в теории групп.

Один из основателей и главный редактор Большой советской энциклопедии (1924-1942). Основатель и зав. кафедрой высшей алгебры (1929-1949) физико-математического / механико-математического факультета МГУ. В 1930-1934 годах руководил знаменитыми арктическими экспедициями на ледокольных пароходах «Седов», «Сибиряков» и «Челюскин». В 1930-1932 гг. директор Всесоюзного арктического института, в 1932-1938 гг. начальник Главного управления Северного морского пути (ГУСМП). С 28 февраля 1939 года по 24 марта 1942 года был вице-президентом АН СССР.

Как Вы заметили, гипотезы Канта, Лапласа и Шмидта во многом схожи, и они легли в основу современной теории о происхождении солнечной системы и Земли в том числе.

Современная гипотеза

Современные учёные предполагают , что Солнечная система, то есть Солнце и планеты, возникли одновременно из гигантского холодного газово-пылевого облака. Это облако межзвездного газа и пыли вращалось. Постепенно в нём стали образовываться сгустки. Центральный, самый крупный сгусток, дал начало звезде – Солнцу. Внутри Солнца стали происходить ядерные процессы, и из-за этого оно разогрелось. Остальные сгустки положили начало планетам.

Рис. 10. Первый этап

Рис. 11. Второй этап

Рис. 12. Третий этап

Рис. 13. Четвертый этап

Как видите, представления учёных о возникновении нашей Солнечной системы и Земли складывались постепенно. На сегодняшний день остаётся очень много спорных, невыясненных вопросов, которые предстоит решать современной науке.

1. Мельчаков Л.Ф., Скатник М.Н. Природоведение: учеб. для 3,5 кл. сред. шк. – 8-е изд. – М.: Просвещение, 1992. – 240 с.: ил.

2. Бахчиева О.А., Ключникова Н.М., Пятунина С.К. и др. Природоведение 5. – М.: Учебная литература.

3. Еськов К.Ю. и др. Природоведение 5 / Под ред. Вахрушева А.А. – М.: Баласс.

1. Строение и жизнь Вселенной ().

Вопрос о том, как возникла Земля, занимает умы людей уже не одно тысячелетие. Ответ на него всегда зависел от уровня знаний людей. Первоначально существовали наивные легенды о сотворении мира некоей божественной силой. Затем Земля в работах ученых приобрела очертания шара, который являлся центром Вселенной. Потом в XVI веке появилось учение Н. , которое поместило Землю в ряд планет, вращающихся вокруг Солнца. Это был первый шаг в подлинно научном решении вопроса о происхождении Земли. В настоящее время есть несколько гипотез, каждая из которых по-своему описывает периоды становления Вселенной и положение Земли в .

Гипотеза Канта-Лапласа

Это была первая серьезная попытка создать картину происхождения Солнечной системы с научной точки зрения. Она связана с именами французского математика Пьера Лапласа и немецкого философа Иммануила Канта, работавших в конце XVIII века. Они полагали, что прародительницей Солнечной системы является раскаленная газово-пылевая туманность, медленно вращавшаяся вокруг плотного ядра в центре. Под влиянием сил взаимного притяжения туманность начала сплющиваться и превращаться в огромный диск. Плотность его не была равномерной, поэтому в диске произошло расслоение на отдельные газовые кольца. В дальнейшем каждое кольцо начало сгущаться и превращаться в единый газовый сгусток, вращающийся вокруг своей оси. Впоследствии сгустки остыли и превратились в планеты, а кольца вокруг них - в спутники.

Основная часть туманности осталась в центре, до сих пор не остыла и стала Солнцем. Уже в XIX веке обнаружилась недостаточность этой гипотезы, так как она не всегда могла объяснить новые данные в науке, но ценность ее все еще велика.

Советский геофизик О.Ю.Шмидт несколько иначе представлял себе развитие Солнечной системы, работая в первой половине XX века. Согласно его гипотезе, Солнце, путешествуя по Галактике, проходило сквозь газопылевое облако и увлекло часть его за собой. Впоследствии твердые частицы облака подверглись слипанию и превратились в планеты, изначально холодные. Разогревание этих планет произошло позже в результате сжатия, а также поступления солнечной энергии. Разогрев Земли сопровождали массовые излияния лав на поверхность в результате деятельности. Благодаря этому излиянию сформировались первые покровы Земли.

Из лав выделялись . Они образовали первичную , которая еще не содержала кислорода. Больше половины объема первичной атмосферы составляли пары воды, а температура ее превышала 100°С. При дальнейшем постепенном остывании атмосферы произошла , что привело к выпадению дождей и образованию первичного океана. Это произошло около 4,5-5 млрд. лет назад. Позднее началось формирование суши, которая представляет собой утолщенные, относительно легкие части , поднимающихся выше уровня океана.

Гипотеза Ж.Бюффона

Далеко не все были согласны с эволюционным сценарием происхождения планет вокруг Солнца. Еще в XVIII веке французский естествоиспытатель Жорж Бюффон высказал предположение, поддержанное и развитое американскими физиками Чемберленом и Мультоном. Суть этих предположений такова: когда-то в окрестностях Солнца пронеслась другая звезда. Ее притяжение вызвало на Солнце огромную , вытянувшуюся в пространстве на сотни миллионов километров. Оторвавшись, эта волна стала закручиваться вокруг Солнца и распадаться на сгустки, каждый из которых сформировал свою планету.

Гипотеза Ф.Хойла (XX век)

Английским астрофизиком Фредом Хойлом была предложена своя гипотеза. Согласно ей у Солнца была звезда-близнец, которая взорвалась. Большая часть осколков унеслась в космическое пространство, меньшая - осталась на орбите Солнца и образовала планеты.

Все гипотезы по-разному трактуют происхождение Солнечной системы и родственные связи между Землей и Солнцем, но они едины в том, что все планеты произошли из единого сгустка материи, а дальше судьба каждой из них решалась по-своему. Земле предстояло пройти путь в 5 млрд. лет, испытать ряд фантастических превращений, прежде чем мы увидели ее в современном облике. Однако необходимо заметить, что гипотезы, не имеющей серьезных недостатков и отвечающей на все вопросы о происхождении Земли и других планет Солнечной системы, пока еще нет. Но можно считать установленным, что Солнце и планеты образовались одновременно (или почти одновременно) из единой материальной среды, из единого газово-пылевого облака.

Основным документом, при помощи которого исследуют историю Земли, служит горная порода.

Самые древние свидетельства, имеющиеся в нашем распоряжении, относятся к архейскому времени. Они-то и являются для историка Земли исходными, но очевидно, что хотя многие из древних пород (например, уранинит из Манитобы) образовались около 2 млрд. лет назад, их вовсе нельзя рассматривать как действительное начало геологической летописи. Восстанавливать это начало приходится косвенными способами.

Две коренные проблемы нуждаются в освещении: происхождение Земли и возникновение на ней жизни. Поколения учёных трудились над этими вопросами, но лишь советской науке, вооружённой методом диалектического материализма, оказалось под силу разгадать в общей форме обе мировые загадки.

Наиболее достоверную теорию происхождения планет солнечной системы разработал О. Ю. Шмидт. Теория исходит из факта вращения Галактики и наличия в её центральной плоскости тёмных облаков космической пыли и газа. Солнце, участвуя в галактическом вращении, захватило и увлекло за собой часть такого облака. Возможно также, что Солнце само возникло из подобного облака и захватило вещество из собственной материнской среды. Но в обоих случаях оно оказалось внутри обширного роя твёрдых частиц, двигавшихся вокруг него под влиянием притяжения по эллиптическим орбитам. Пылинки, твёрдые тельца, сталкиваясь в неупругих ударах, теряли часть своей кинетической энергии (она превращалась в теплоту, излучаемую в пространство), что привело сначала к уплотнению роя, а при достижении последним некоторой критической плотности - к образованию сгущений, которые, неоднократно дробясь и снова объединяясь, в конце концов сложились в планеты.

Вблизи Солнца захваченное облако быстро редело: одни его частицы падали на Солнце, другие оттеснялись лучевым давлением к внешней зоне системы; летучие компоненты твёрдых телец испарялись под действием солнечного нагрева. Оттого вблизи Солнца образовались плотные, но сравнительно небольшие планеты, а вдали от него, где такого обеднения исходного материала не было и сохранились газы в твёрдых частицах, возникли планеты большие, но гораздо менее плотные. Этим и объясняется характерное деление планет на внутренние (Меркурий, Венера,. Земля, Марс), обладающие малыми размерами, высокой плотностью, медленным вращением вокруг оси и ограниченным числом (или отсутствием) спутников, и внешние (Юпитер, Сатурн, Уран, Нептун), отличающиеся крупными размерами, малой плотностью, быстрым вращением на оси и большим числом спутников. На самой далёкой окраине облака, где материнский рой сходил на нет, из его остатков возник маленький Плутон (и, возможно, ещё несколько небольших планет, пока не открытых).

Частицы, захваченные Солнцем, могли первоначально двигаться в различных плоскостях, но всё же большинство орбит должно было совпадать с какой-то преобладающей плоскостью. В отношении преобладающей плоскости частицы могли сначала двигаться как в прямом, так и в обратном направлении, но, вследствие неравномерного распределения плотности роя, и здесь одно из направлений должно было стать господствующим. Наконец, эллиптические орбиты частиц могли вначале иметь различно ориентированные оси; однако, взаимодействуя при сближении, тельца взаимно возмущали свои орбиты, что и привело к равномерному распределению осей, т. е. придало орбитам круговую (или очень близкую к ней) форму. Так осреднением динамических и физических характеристик пылинок при слипании их в более крупные тела объясняет теория О. Ю. Шмидта тот факт, что все планеты обращаются вокруг Солнца в одном направлении и имеют почти одинаковые круговые орбиты, лежащие почти в одной плоскости.

Ни одна из многочисленных прежних гипотез не могла объяснить, свойственное солнечной системе распределение момента количества движения: Солнце, обладающее 99% общей массы системы, содержит только 2% момента количества движения, тогда как планеты со своей ничтожной суммарной массой имеют вместе 98% момента количества движения. Момент количества движения есть произведение массы тела на его скорость и на его расстояние от центра вращения. В системе тел момент количества движения есть сумма моментов отдельных тел. Теория Шмидта полностью решает вопрос. Пылевая материя могла быть захвачена Солнцем как на близком, так и на далёком расстоянии. В последнем случае она будет обладать очень большим моментом количества движения. При сложении частиц в планеты этот момент сохраняется.

Наконец, теория впервые научно обосновывает закон планетных расстояний, установленный давно чисто эмпирически, но до последнего времени не поддававшийся истолкованию, и предвычисляет, что расстояния планет от Солнца (в астрономических единицах) должны быть такие: Меркурия 0,39, Венеры 0,67, Земли 1,04, Марса 1,49, Юпитера 5,20, Сатурна 10,76, Урана 18,32, Нептуна 27,88 и Плутона 39,44. Сравнение с действительными расстояниями обнаруживает прекрасное совпадение.

Образование планетных систем в недрах нашей и других галактик закономерно и неизбежно, так как облаков тёмной материи во вселенной много, и звёзды либо возникают из этих скоплений, либо встречаются с ними при своём движении. Мы не видим других планетных систем только потому, что современные астрономические средства наблюдения не позволяют этого.

Из теории О. Ю. Шмидта вытекает, что Земля возникла как холодное тело, так как частицы породившего её роя, вследствие равновесия между поглощением ими солнечного тепла и его обратным излучением в пространство, имели температуру около +4°. Нынешнее тепло внутри Земли - результат последующего разогрева под действием распада радиоактивных веществ. Земля создавалась путём беспорядочного накопления частиц самого различного удельного веса. По достижении планетой определённых размеров началась в вязкой среде гравитационная дифференциация: более плотные вещества очень медленно стали опускаться к центру Земли, более лёгкие всплывать кверху, увлекая с собой и геохимически связанные с ними некоторые тяжёлые минералы (в том числе радиоактивные, чем и объясняется современная концентрация последних в наружных слоях). Этот процесс вряд ли закончился, и дифференциация, сопровождаемая выделением не меньшего количества энергии, чем радиоактивный распад (порядка 6 Х 10 27 эргов, или 10 20 калорий в год), всё ещё играет роль мощного механизма вертикальных перемещений масс в земных недрах.

На определённом этапе (когда масса Земли стала значительной) образовалась атмосфера. Газы были и в захваченном Солнцем пылевом облаке, но всё же в основном первичная атмосфера образовалась в результате «выжимания» газов из недр планеты. Источник земной атмосферы - сама Земля. Древнейшая атмосфера отличалась от нынешней тем, что в ней отсутствовали свободный азот и кислород, но было много паров воды, аммиака и углекислого газа.

Возникновение источников внутренней энергии - радиоактивного распада и гравитационной дифференциации - положило начало тектонической деятельности Земли, - поднятиям и опусканиям обширных участков холодной земной поверхности и процессам вулканизма; появились изверженные породы. Во впадинах литосферы скопилась вода, - обозначилось разделение суши и моря. Под действием воды, воздуха и солнечной радиации начались процессы выветривания, переноса обломочного материала и образования первых осадочных пород.

Неизвестно, когда занялась над пустынной Землёй заря жизни, но произошло это наверное до архея. В самих архейских толщах достоверных остатков организмов нет, однако имеются известковые и углистые породы, возникновение которых чаще всего связано с деятельностью и гибелью животных и растений. Кроме того, организмы, найденные в протерозое, отличаются сложным устройством и обязательно должны были иметь предков, гораздо проще устроенных; если предки эти жили в архее, то жизнь должна была появиться ещё раньше.

Жизнь в тех формах, в каких мы её знаем, возможна лишь на планетах и притом в совершенно определённых условиях. Существование её где-нибудь на раскалённых телах (звёздах) или в межзвёздном пространстве невероятно: в первом случае мешают высокие температуры, во втором случае немыслим обмен веществ. Но и не на всех планетах имеется необходимая для жизни обстановка: одни из них, расположенные близко к звезде, слишком горячи, другие, лежащие далеко от звезды, слишком холодны; одни планеты потеряли атмосферу, у других она состоит из ядовитых газов. Единственно на твёрдой поверхности, в присутствии воды и воздуха благоприятного состава и при наличии надлежащего температурного режима, могут появиться первые комки протоплазмы. В солнечной системе жизнь имеется в расцвете на Земле, в стадии угасания на Марсе и в стадии зарождения на Венере. Несмотря на указанные ограничения условий для жизни, живое в мире не может быть исключительным явлением, свойственным только окрестностям нашего Солнца: даже если в каждой галактике есть хотя бы только одна планета, заселённая организмами, число таких очагов жизни в бесконечной Вселенной не поддаётся исчислению.

Живое вещество - особая стадия развития неорганической материи. Жизнь действительно возникла, а не существовала вечно, как это утверждают некоторые авторы. Идея о вечности жизни, т. е. об изначальном бытии (наряду с простой, неорганизованной материей) таких сложных образований, к каким относятся даже простейшие белковые молекулы, отрицает развитие материи, т. е. направлена вразрез с истиной, научно обоснованной и доказанной.

Открытие общих путей происхождения жизни на Земле принадлежит советскому учёному А. И. Опарину.

Теория А. И. Опарина опирается на факты широкого распространения во вселенной углерода (основного элемента, из которого построены органические вещества) и высокую способность атомов углерода соединяться друг с другом или с атомами других элементов. В разных видах и соединениях углерод обнаружен в звёздах, на планетах и в метеоритах, - в последних либо самородный (графит, алмаз), либо в форме карбидов (соединений с металлами) и углеводородов. Нет оснований отрицать присутствие углерода и в частицах пылевой материи, из которых образовалась Земля; в ныне существующих в Галактике газо-пылевых туманностях недавно установлено наличие водорода, метана, аммиака и воды (льда). Стало быть, углерод и его простейшие соединения в виде углеводородов вошли в состав нашей планеты в первые же дни её рождения.

История углерода на Земле - это сначала история бесчисленного количества химических реакций и дальнейшего взаимодействия углеводородов с парами воды и аммиаком. В результате возникали новые, более сложные вещества, построенные уже из углерода, кислорода, водорода и азота, способные к новым реакциям между собой и с окружающей средой в первичных морях и лагунах, куда они попали из атмосферы. В хаосе этих реакций наметился, в конце концов, путь образования и накопления всё более сложных высокомолекулярных соединений, в том числе и подобных белкам.

В смешанном растворе белковых веществ молекулы разных белков собираются обычно в небольшие агрегаты, имеющие вид капель, плавающих в воде, - явление это называется коацервацией. И если первичные, более простые органические соединения были равномерно рассеяны в воде и от последней не обособлены, то после возникновения белковоподобных соединений произошёл знаменательный скачок: началось обособление коацерватных капель, т. е. противопоставление белковоподобных соединений окружающей их среде. Коацерватная капля - это уже нечто индивидуальное, обладающее своей, хотя ещё и нестойкой, структурой; каждая легко притягивает частицы извне, поглощает их, вступает с ними в химические соединения, которые могут и остаться в капле, следовательно - повести её к росту и внутренней химической перестройке либо к распаду. Если синтез в капле при данных условиях внешней среды идёт быстрее распада - капля становится динамически устойчивой, если распад быстрее синтеза - она разрушается. В коацерватных каплях природа как бы делает первые опыты обмена веществ. Только динамически устойчивые капли (что зависело от их индивидуальных особенностей) могли длительно существовать, расти и «размножаться» делением, а такими могли стать лишь те немногие, качества которых непрерывно изменялись в совершенно определённую сторону, обеспечивающую постоянное самовосстановление всей капли в целом. Возникновение капли с внутренне организованной последовательностью химических реакций, т. е. капли динамически весьма устойчивой и способной к самовоспроизведению, и было тем новым скачком, в результате которого сложное, но неживое органическое образование стало живым существом. По мнению некоторых биологов, приобретение белковоподобными соединениями в ходе их развития основных признаков живого не нуждается в стадии комплексных «надмолекулярных» белковых систем (коацерватных капель): такие признаки неизбежно должны были со временем возникнуть при определённых условиях в самой молекуле первичного белка.

Комочки первозданной жизни не имели ещё клеточной структуры; прошли тысячелетия, прежде чем развились древнейшие одноклеточные организмы, предки многоклеточных. Прошли также тысячелетия, прежде чем изменился и способ питания первых организмов, которые сначала использовали для этой цели только органические вещества, но затем, в связи с уменьшением запасов этой пищи, были как бы поставлены перед выбором: либо погибнуть, либо приобрести умение питаться неорганическими соединениями. В дальнейшем в протоплазме одной группы организмов выработались пигменты, послужившие толчком к появлению простейших растений типа синезелёных водорослей, способных к ассимиляции CO 2 . Водоросли не только резко увеличили количество органического вещества в природе, но и освободили другие группы живых существ от необходимости эволюционировать в сторону автотрофности; эти группы, питавшиеся теперь водорослями, остались гетеротрофными и тем самым стали родоначальниками будущего мира животных.

Колыбелью жизни считают море. Это предположение, хотя и подвергалось сомнению, никогда не было опровергнуто убедительными доводами. Море - исключительно подходящая среда для развития организмов: вода как подвижная стихия обеспечивает приток пищи даже сидячим или пассивно плавающим организмам; море содержит в огромных количествах самые разнообразные вещества, необходимые организмам; наконец, значительная стабильность физических условий и химического состава морской воды делает обмен веществ между организмом и средой не случайным процессом, а регулярным и притом протекающим в постоянно благоприятных условиях. Однако речь идёт прежде всего о прибрежных частях моря, где взаимодействие литосферы, гидросферы и атмосферы, т. е. вся сумма географических условий, наиболее содействует поддержанию жизни.

Мы попытались нарисовать вероятную картину развития Земли и её ландшафтной оболочки за огромный период, предшествующий архею. За этот промежуток времени, охватывающий 3-4 млрд. лет, Земля прошла через следующие этапы:

1. Стадия первоначального сгустка материи в материнском пылевом облаке.

2. Стадия небольшой планеты (сравнимой по объёму с нынешним Меркурием), уже способной удерживать около себя постоянную газовую оболочку. Зачатки тектонической деятельности (источники энергии: распад радиоактивных веществ и, возможно, начало гравитационной дифференциации). Выделение с изверженными породами газов Н 2 O, CO 2 и NH 3 и включение их в состав первичной атмосферы.

3. Земля достигает современных размеров. Её внешняя каменная оболочка - вероятно, базальтового состава. Накопление неживого органического вещества и развитие его в сторону образования высокомолекулярных соединений.

4. Появление доклеточных форм жизни. Организмы только гетеротрофные.

5. Появление одноклеточных организмов и возникновение ветви автотрофных живых существ. Обогащение атмосферы свободным кислородом и азотом за счёт жизнедеятельности микроорганизмов.

Обратимся теперь к более поздним периодам жизни Земли. Несмотря на скудость материалов, мы всё же располагаем здесь многими вполне достоверными фактами, на основании которых удаётся вывести достаточно надёжные общие заключения. Развитие ландшафтной оболочки на протяжении геологического времени разбивают на несколько этапов: самые древние и плохо известные удобно объединить под собирательным названием «докембрийских»; за ними следуют этапы каледонский, герцинский (или варисцийский) и альпийский.

По мнению геохимиков США, столкновение Земли с небесным телом Тейя, которое предположительно произошло около 4.5 миллиардов лет назад, если и имело место быть, не внесло больших изменений в структуру недр. По крайней мере, в раскаленный шар наша планета точно не превращалась.

Современная гипотеза происхождения Земли до сих пор является предметом жарких кабинетных споров, однако большинство ученых сходятся в том, что началось все из протопланетного облака из космической пыли и газа. Одни ученые были уверены, что оно было холодным, другие — что, наоборот, раскаленным, поскольку оно было выдернуто из молодого Солнца гравитацией массивной звезды, проходившей в то время неподалеку. Последняя версия сегодня стремительно теряет своих поклонников, поскольку астрофизиками было доказано, что подобная трактовка событий крайне маловероятна. Поэтому сегодня главенствует гипотеза о холодном протопланетном облаке.

Приблизительно 4.54 миллиарда лет назад из этого протопланетного облака и начала формироваться Земля. Сам процесс происходил, вероятно, следующим образом: поскольку в этом облаке «легкие» и «тяжелые» элементы еще не были сильно перемешаны, то в результате действия силы тяжести вторые (железо и другие родственные металлы) начали опускаться к будущему центру планеты, выдавливая на поверхность более «легкие» элементы. Этот процесс ученые назвали гравитационной дифференциацией.

Таким образом, железо накапливалось в центре облака, формируя будущее ядро. Но во время опускания потенциальная энергия слоя «тяжелых» элементов начала уменьшаться, соответственно стала увеличиваться кинетическая энергия, то есть происходил нагрев. Считается, что это тепло разогрело нашу планету до 1200 градусов по Цельсию (местами — и до 1600 градусов).

Однако воздействие самого совершенного в природе холодильника - космоса, привело к тому, что поверхность облака из «легких» элементов начала быстро остывать, превращаясь из расплава в твердое вещество. Именно так формировалась земная кора. А та область, где гравитационная дифференциация продолжилась (по расчетам некоторых геофизиков, этот процесс будет продолжаться еще около полутора миллиарда лет), и высокая температура сохранилась, стала современной мантией.

Примерно 4.5 миллиарда лет назад твердой часть Земли полностью сформировалась (хотя атмосфера и гидросфера появились несколько позже). И именно в то время, согласно данным последних исследований, произошла катастрофа, результатом которой было появление спутника и возврат в неструктурированное состояние. По мнению многих ученых, скорее всего, произошло столкновение с неким массивным небесным телом (получившим название планета Тейя).

При этом отдельные геофизики уверены, что столкновение было столь внушительным, что верхняя часть Земли опять расплавилась. То есть какое-то время планета была шаром из расплавленного однородного вещества, после чего за несколько десятков миллионов лет опять обзавелась твердой поверхностью.

И все же некоторые ученые выразили сомнение в том, что последствия этого столкновения были настолько весомыми. Они уверены, что даже столкновение с небесным телом не могло кардинально изменить сложившуюся структуру нашей планеты. Совсем недавно эта версия получила доказательства своей правдоподобности. А представили эти доказательства камни, обнаруженные возле Костомукши.