Макияж. Уход за волосами. Уход за кожей

Макияж. Уход за волосами. Уход за кожей

» » Матрице соответствует квадратичная форма онлайн. Билинейные и квадратичные формы

Матрице соответствует квадратичная форма онлайн. Билинейные и квадратичные формы

220400 Алгебра и геометрия Толстиков А.В.

Лекции 16. Билинейные и квадратичные формы.

План

1. Билинейная форма и ее свойства.

2. Квадратичная форма. Матрица квадратичной формы. Преобразование координат.

3. Приведение квадратичной формы к каноническому виду. Метод Лагранжа.

4. Закон инерции квадратичных форм.

5. Приведение квадратичной формы к каноническому виду по методу собственных значений.

6. Критерий Сильверста положительной определенности квадратичной формы.

1. Курс аналитической геометрии и линейной алгебры. М.: Наука, 1984.

2. Бугров Я.С., Никольский С.М. Элементы линейной алгебры и аналитической геометрии. 1997.

3. Воеводин В.В. Линейная алгебра.. М.: Наука 1980.

4. Сборник задач по для втузов. Линейная алгебра и основы математического анализа. Под ред. Ефимова А.В., Демидовича Б.П.. М.: Наука, 1981.

5. Бутузов В.Ф., Крутицкая Н.Ч., Шишкин А.А. Линейная алгебра в вопросах и задачах. М.: Физматлит, 2001.

, , , ,

1. Билинейная форма и ее свойства. Пусть V - n -мерное векторное пространство над полем P.

Определение 1. Билинейной формой , определенной на V, называется такое отображение g : V 2 ® P , которое каждой упорядоченной паре (x , y ) векторов x , y из ставит в V соответствие число из поля P , обозначаемое g (x , y ), и линейное по каждой из переменных x , y , т.е. обладающее свойствами:

1) ("x , y , z ÎV ) g (x + y , z ) = g (x , z ) + g (y , z );

2) ("x , y ÎV ) ("a ÎP ) g (ax , y ) = ag (x , y );

3) ("x , y , z ÎV ) g (x , y + z ) = g (x , y ) + g (x , z );

4) ("x , y ÎV ) ("a ÎP ) g (x , ay ) = ag (x , y ).

Пример 1 . Любое скалярное произведение, определенное на векторном пространстве V является билинейной формой.

2 . Функция h (x , y ) = 2x 1 y 1 - x 2 y 2 + x 2 y 1 , где x = (x 1 , x 2), y = (y 1 , y 2)ÎR 2 , билинейная форма на R 2 .

Определение 2. Пусть v = (v 1 , v 2 ,…, v n V. Матрицей билинейной формы g (x , y ) относительно базиса v называется матрица B =(b ij ) n ´ n , элементы которой вычисляются по формуле b ij = g (v i , v j ):

Пример 3 . Матрица билинейной формы h (x , y ) (см. пример 2) относительно базиса e 1 = (1,0), e 2 = (0,1) равна .

Теорема 1 . Пусть X, Y- координатные столбцы соответственно векторов x , y в базисе v, B - матрица билинейной формы g (x , y ) относительно базиса v . Тогда билинейную форму можно записать в виде

g (x , y )=X t BY . (1)

Доказательство. По свойствам билинейной формы получаем

Пример 3 . Билинейной формы h (x , y ) (см. пример 2) можно записать в виде h (x , y )=.

Теорема 2 . Пусть v = (v 1 , v 2 ,…, v n ), u = (u 1 , u 2 ,…, u n ) - два базиса векторного пространства V, T- матрица перехода от базиса v к базису u. Пусть B = (b ij ) n ´ n и С =(с ij ) n ´ n - матрицы билинейной формы g (x , y ) соответственно относительно базисов v и u. Тогда

С = T t BT. (2)

Доказательство. По определению матрицы перехода и матрицы билинейной формы находим:



Определение 2. Билинейная форма g (x , y ) называется симметричной , если g (x , y ) = g (y , x ) для любых x , y ÎV.

Теорема 3 . Билинейная форма g (x , y )- симметричной тогда и только тогда, когда матрица билинейной формы относительно любого базиса симметричная.

Доказательство. Пусть v = (v 1 , v 2 ,…, v n ) - базис векторного пространства V, B = (b ij ) n ´ n - матрицы билинейной формы g (x , y ) относительно базиса v. Пусть билинейная форма g (x , y )- симметричная. Тогда по определению 2 для любых i, j = 1, 2,…, n имеем b ij = g (v i , v j ) = g (v j , v i ) = b ji . Тогда матрица B - симметричная.

Обратно, пусть матрица B - симметричная. Тогда B t = B и для любых векторов x = x 1 v 1 + …+ x n v n = vX, y = y 1 v 1 + y 2 v 2 +…+ y n v n = vY ÎV , согласно формуле (1), получаем (учитываем, что число - матрица порядка 1, и при транспонировании не меняется)

g (x , y ) = g (x , y ) t = (X t BY ) t = Y t B t X = g (y , x ).

2. Квадратичная форма. Матрица квадратичной формы. Преобразование координат.

Определение 1. Квадратичной формой определенной на V, называется отображение f : V ® P , которое для любого векторов x из V определяется равенством f (x ) = g (x , x ), где g (x , y ) - симметричная билинейная форма, определенная на V .

Свойство 1. По заданной квадратичной форме f (x ) билинейная форма находится однозначно по формуле

g (x , y ) = 1/2(f (x + y ) - f (x )- f (y )). (1)

Доказательство. Для любых векторов x , y ÎV получаем по свойствам билинейной формы

f (x + y ) = g (x + y , x + y ) = g (x , x + y ) + g (y , x + y ) = g (x , x ) + g (x , y ) + g (y , x ) + g (y , y ) = f (x ) + 2g (x , y ) + f (y ).

Отсюда следует формула (1). 

Определение 2. Матрицей квадратичной формы f (x ) относительно базиса v = (v 1 , v 2 ,…, v n ) называется матрица соответствующей симметричной билинейной формы g (x , y ) относительно базиса v .

Теорема 1 . Пусть X = (x 1 , x 2 ,…, x n ) t - координатный столбец вектора x в базисе v, B - матрица квадратичной формы f (x ) относительно базиса v . Тогда квадратичную форму f (x )

Приведение квадратичных форм

Рассмотрим наиболее простой и чаще используемый на практике способ приведения квадратичной формы к каноническому виду, называемый методом Лагранжа . Он основан на выделении полного квадрата в квадратичной форме.

Теорема 10.1 (теорема Лагранжа).Любую квадратичную форму (10.1):

при помощи неособенного линейного преобразования (10.4) можно привести к каноническому виду (10.6):

,

□ Доказательство теоремы проведем конструктивным способом, используя метод Лагранжа выделения полных квадратов. Задача заключается в том, чтобы найти неособенную матрицу такую, чтобы в результате линейного преобразования (10.4) получилась квадратичная форма (10.6) канонического вида. Эта матрица будет получаться постепенно как произведение конечного числа матриц специального типа.

Пункт 1(подготовительный).

1.1. Выделим среди переменных такую, которая входит в квадратичную форму в квадрате и в первой степени одновременно (назовем ее ведущей переменной ). Перейдем к пункту 2.

1.2. Если в квадратичной форме нет ведущих переменных (при всех : ), то выберем пару переменных, произведение которых входит в форму с отличным от нуля коэффициентом и перейдем к пункту 3.

1.3. Если в квадратичной форме отсутствуют произведения разноименных переменных, то данная квадратичная форма уже представлена в каноническом виде (10.6). Доказательство теоремы завершено.

Пункт 2 (выделение полного квадрата).

2.1. По ведущей переменной выделим полный квадрат. Без ограничения общности предположим, что ведущей переменной является переменная . Группируя слагаемые, содержащие , получаем

.

Выделяя полный квадрат по переменной в , получим

.

Таким образом, в результате выделения полного квадрата при переменной получим сумму квадрата линейной формы

в которую входит ведущая переменная , и квадратичной формы от переменных , в которую ведущая переменная уже не входит. Сделаем замену переменных (введем новые переменные )

получим матрицу

() неособенного линейного преобразования , в результате которого квадратичная форма (10.1) примет следующий вид

С квадратичной формой поступим также, как и в пункте 1.

2.1. Если ведущей переменной является переменная , то можно поступить двумя способами: либо выделять полный квадрат при этой переменной, либо выполнить переименование (перенумерацию ) переменных:

с неособенной матрицей преобразования:

.

Пункт 3 (создание ведущей переменной). Выбранную пару переменных заменим на сумму и разность двух новых переменных, а остальные старые переменные заменим на соответствующие новые переменные. Если, например, в пункте 1 было выделено слагаемое



то соответствующая замена переменных имеет вид

и в квадратичной форме (10.1) будет получена ведущая переменная.

Например, в случае замены переменных:

матрица этого неособенного линейного преобразования имеет вид

.

В результате приведенного алгоритма (последовательного применения пунктов 1, 2, 3) квадратичная форма (10.1) будет приведена к каноническому виду (10.6).

Заметим, что в результате производимых преобразований над квадратичной формой (выделение полного квадрата, переименование и создание ведущей переменной) мы использовали элементарные неособенные матрицы трех типов (они являются матрицами перехода от базиса к базису). Искомая матрица неособенного линейного преобразования (10.4), при котором форма (10.1) имеет канонический вид (10.6), получается путем произведения конечного числа элементарных неособенных матриц трех типов. ■

Пример 10.2. Привести квадратичную форму

к каноническому виду методом Лагранжа. Указать соответствующее неособенное линейное преобразование. Выполнить проверку.

Решение. Выберем ведущей переменную (коэффициент ). Группируя слагаемые, содержащие , и выделяя по ней полный квадрат, получим

где обозначено

Сделаем замену переменных (введем новые переменные )

Выразив старые переменные через новые :

получим матрицу