Макияж. Уход за волосами. Уход за кожей

Макияж. Уход за волосами. Уход за кожей

» » Химия закон авогадро. Закон авогадро примеры

Химия закон авогадро. Закон авогадро примеры

Закон Авогадро, открытый в 1811 г., сыграл большую роль в развитии хими. Прежде всего он способствовал признанию атомно-молекулярного учения, сформулированного впервые в середине XVIII в. М.В. Ломоносовым. Так, например, пользуясь числом Авогадро:

оказалось возможным вычислять не только абсолютные массы атомов и молекул, но и собственно линейные размеры этих частиц. Согласно закону Авогадро:

«В равных объёмах различных газов при постоянном давлении и температуре содержится одинаковое число молекул, равное »

Из закона Авогадро вытекает ряд важных следствий касающихся молярного объёма и плотности газов. Так, из закона Авогадро непосредственно следует, что одинаковое число молекул различных газов будут занимать одинаковый объём, равный 22,4 литра. Такой объём газов получил название молярного объёма . Верно и обратное – молярный объём различных газов одинаков и равен 22,4 л:

Действительно, поскольку 1 моль любого вещества содержит одинаковое число молекул, равное , то очевидно и их объёмы в газообразном состоянии при одинаковых условиях будут одинаковыми. Таким образом, при нормальных условиях (н.у.), т.е. при давлении и температуре молярный объём различных газов будет составлять . Количество вещества , объём и молярный объём газов могут быть связаны между собой в общем случае соотношением вида:


откуда соответственно:

В общем случае различают нормальные условия (н.у.):

к стандартным условиям относят:

Для того чтобы перевести температуру по шкале Цельсия в температуру по шкале Кельвина, используют следующее соотношение:

Массу собственно газа можно вычислить по значению его плотности , т.е.

Поскольку как было показано выше:

тогда очевидно:

откуда соответственно:


Из приведенных нами выше соотношений вида:

после подстановки в выражение:

также следует, что:

откуда соответственно:

и таким образом имеем:

Поскольку при нормальных условиях 1 моль любого занимает объём равный:

тогда соответственно:


Полученное таким образом соотношение достаточно важно для понимания 2-го следствия из закона Авогадро, которое в свою очередь непосредственно связано с таким понятием как относительная плотность газов . В общем случае, относительная плотность газов – величина, показывающая, во сколько раз один газ тяжелее или легче другого, т.е. во сколько раз плотность одного газа больше или меньше плотности другого, т.е. имеем соотношение вида:

Так, для первого газа имеем:

соответственно для второго газа:

тогда очевидно:

и таким образом:

Другими словами, относительная плотность газа есть отношение молекулярной массы исследуемого газа к молекулярной массе газа, с которым производится сравнение. Относительная плотность газа – безразмерная величина. Таким образом, для того чтобы вычислить относительную плотность одного газа по другому, достаточно знать молекулярные относительные молекулярные массы этих газов. Для того чтобы было понятно, с каким газом проводят сравнение, ставят индекс. Например, обозначает, что сравнение проводят с водороду и тогда говорят о плотности газа по водороду, не употребляя уже слово «относительная», принимая это как бы по умолчанию. Аналогично измерения проводят, беря в качестве газа сравнения – воздух. В этом случае указывают, что сравнение исследуемого газа проводят с воздухом . При этом средняя молекулярная масса воздуха принимается равной 29 , а поскольку относительная молекулярная масса и молярная масса численно совпадают, тогда:

Химическая формула исследуемого газа ставится рядом в скобках, например:

и читается как – плотность хлора по водороду. Зная относительную плотность одного газа по отношению к другому, можно вычислить молекулярную, а также молярную массу газа, даже если формула вещества неизвестна. Все приведенные выше соотношения относятся к так называемым нормальным условиям.

Итальянский физик и химик Лоренцо Романо Амедео Карло Авогадро родился в 1776 году в Турине в дворянской семье. Так как в то время принято было передавать профессии по наследству Авогадро в 16 лет окончил Туринский университет, а в 20 получил ученую степень доктора церковного права.

С 25 лет самостоятельно занимается изучением физики и математики. И в 1803 году Амедео представил свою первую научную работу по изучению свойств электричества в Туринскую академию. В 1809 году учёному предложили должность профессора в колледже города Верчелли, а с 1820 года учёный успешно преподаёт в Туринском университете. Преподавательской деятельностью занимался до 1850 года.

Авогадро проводил различные исследования по изучению физических и химических свойств и явлений. Его научные работы посвящены электрохимической теории, электричеству, удельной теплоемкости, номенклатуре химических соединений. Авогадро впервые определил атомные массы углерода, азота, кислорода, хлора и других элементов; установил количественный состав молекул многих веществ, среди которых водород, вода, аммиак, азот и другие. Но химики отвергали теории Авогадро, и работы учёного были непризнанны.

Лишь в 1860 году благодаря усилиям С. Канниццаро многие работы Авогадро были пересмотрены и оправданы. В честь фамилии ученого названо постоянное число молекул в 1 моле идеального газа число Авогадро (физическая постоянная величина, численно равная количеству специфицированных структурных единиц (атомов, молекул, ионов, электронов или любых других частиц) в 1 моле вещества = 6,0222310 23 . С этого времени начал широко применятся в химии закон Авогадро.

В 1811 году Авогадро установил закон, который утверждал, что в одинаковых объемах газов содержится равное число молекул при одинаковых температурах и давлении. А в 1814 году появляется статья учёного «Очерк об относительных массах молекул простых тел, или предполагаемых плотностях их газа, и о конституции некоторых из их соединений», в которой четко формулируется закон Авогадро.

Каким образом учёный пришёл к такому заключению?

Авогадро тщательно проанализировал результаты экспериментов Гей-Люссака и других ученых и понял, как устроена молекула газа. Известно, что при протекании химической реакции между газами соотношение объемов этих газов такое же, как и их молекулярное соотношение. Получается, что можно, измеряя плотность разных газов, определять относительные массы молекул, из которых эти газы состоят, и атомов. То есть, если в 1 литре кислорода содержится столько молекул, сколько и в 1 литре водорода, то отношение плотностей этих газов равно отношение масс молекул. Авогадро отметил, что молекулы простых газах могут состоять и из нескольких атомов.

Закон Авогадро широко используется при расчетах по химическим формулам и уравнениям химических реакций, позволяет определять относительные молекулярные массы газов и количество молекул в моле любого вещества.

Если у Вас появились вопросы, Вы хотите более детально остановиться на данном материале или необходима помощь при решении задач, онлайн репетиторы всегда готовы помочь. В любое время и в любом месте ученик может обратиться за помощью к онлайн репетитору и получить консультацию по любому предмету школьной программы. Обучение проходит посредством специально разработанного программного обеспечения. Квалифицированные педагоги оказывают помощь при выполнении домашних заданий, объяснении непонятного материала; помогают подготовиться к ГИА и ЕГЭ. Ученик выбирает сам, проводить занятия с выбранным репетитором на протяжении длительного времени, или использовать помощь педагога только в конкретных ситуациях, когда возникают сложности с определённым заданием.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

История

Первые количественные исследования реакций между газами принадлежат французскому ученому Гей-Люссаку . Он является автором законов о тепловом расширении газов и закона объемных отношений. Эти законы были объяснены в 1811 году итальянским физиком Амедео Авогадро .

Следствия закона

Первое следствие из закона Авогадро: один моль любого газа при одинаковых условиях занимает одинаковый объём .

В частности, при нормальных условиях, т. е. при 0 °C (273К) и 101,3 кПа, объём 1 моля газа, равен 22,4 л . Этот объём называют молярным объёмом газа V m . Пересчитать эту величину на другие температуру и давление можно с помощью уравнения Менделеева-Клапейрона :

.

Второе следствие из закона Авогадро: молярная масса первого газа равна произведению молярной массы второго газа на относительную плотность первого газа по второму .

Положение это имело громадное значение для развития химии, так как оно дает возможность определять частичный вес тел, способных переходить в газообразное или парообразное состояние. Если через m мы обозначим частичный вес тела, и через d - удельный вес его в парообразном состоянии, то отношение m / d должно быть постоянным для всех тел. Опыт показал, что для всех изученных тел, переходящих в пар без разложения, эта постоянная равна 28,9, если при определении частичного веса исходить из удельного веса воздуха , принимаемого за единицу, но эта постоянная будет равняться 2, если принять за единицу удельный вес водорода . Обозначив эту постоянную, или, что то же, общий всем парам и газам частичный объём через С , мы из формулы имеем с другой стороны m = dC . Так как удельный вес пара определяется легко, то, подставляя значение d в формулу, выводится и неизвестный частичный вес данного тела.

Элементарный анализ, например, одного из полибутиленов указывает, в нём пайное отношение углерода к водороду, как 1 к 2, а потому частичный вес его может быть выражен формулой СН 2 или C 2 H 4 , C 4 H 8 и вообще (СН 2) n . Частичный вес этого углеводорода тотчас определяется, следуя закону Авогадро, раз мы знаем удельный вес, т. е. плотность его пара; он определен Бутлеровым и оказался 5,85 (по отношению к воздуху); т. е. частичный вес его будет 5,85 · 28,9 = 169,06. Формуле C 11 H 22 отвечает частичный вес 154, формуле C 12 H 24 - 168, а C 13 H 26 - 182. Формула C 12 H 24 близко отвечает наблюденной величине, а потому она и должна выражать собою величину частицы нашего углеводорода CH 2 .

Примечания

Ссылки

  • // Энциклопедический словарь Брокгауза и Ефрона : В 86 томах (82 т. и 4 доп.). - СПб. , 1890-1907.

Wikimedia Foundation . 2010 .

Смотреть что такое "Закон Авогадро" в других словарях:

    ЗАКОН АВОГАДРО - равные объёмы любых идеальных газов при одинаковых условиях (температуре, давлении) содержат одинаковое число частиц (молекул, атомов). Эквивалентная формулировка: при одинаковых давлении и температуре одинаковые количества вещества различных… … Большая политехническая энциклопедия

    закон Авогадро - – закон, согласно которому в равных объемах идеальных газов при одинаковых температуре и давлении содержится одинаковое число молекул. Словарь по аналитической химии … Химические термины

    закон Авогадро - Avogadro dėsnis statusas T sritis Standartizacija ir metrologija apibrėžtis Apibrėžtį žr. priede. priedas(ai) Grafinis formatas atitikmenys: angl. Avogadro’s hypothesis; Avogadro’s law; Avogadro’s principle vok. Avogadrosche Regel, f;… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    закон Авогадро - Avogadro dėsnis statusas T sritis fizika atitikmenys: angl. Avogadro’s hypothesis; Avogadro’s law vok. Avogadrosche Regel, f; Avogadrosches Gesetz, n; Satz des Avogadro, m rus. закон Авогадро, m pranc. hypothèse d’Avogadro, f; loi d’Avogadro, f … Fizikos terminų žodynas

    закон Авогадро - Avogadro dėsnis statusas T sritis Energetika apibrėžtis Apibrėžtį žr. priede. priedas(ai) MS Word formatas atitikmenys: angl. Avogadro’s law vok. Avogadrosches Gesetz, n rus. закон Авогадро, m pranc. loi d’Avogadro, f … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

    См. Химия и Газы. З. вечности вещества, или сохранения массы материи, см. Вещество, Лавуазье, Химия. З. Генри Дальтона см. Растворы. З. Гибса Ле Шателье см. Обратимость химических реакций. З. (теплоемкостей) Дюлонга и Пти см. Теплота и Химия. З.… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Необходимое, существенное, устойчивое, повторяющееся отношение между явлениями. 3. выражает связь между предметами, составными элементами данного предмета, между свойствами вещей, а также между свойствами внутри вещи. Существуют 3.… … Философская энциклопедия

    АВОГАДРО ЗАКОН - (Avogadro), основан на высказанной в 1811 г. итальянским физиком Авогадро гипотезе, гласящей, что «при одинаковых условиях t° и давления, в равных объемах всех газов содержится одно и то же число молекул». Из этой гипотезы.,… … Большая медицинская энциклопедия

    - (Avogadro) Амедео, граф ди Кваренья (1776 1856), итальянский физик и химик. В 1811 г. выдвинул гипотезу (ныне известную как закон Авогадро) о том, что равные объемы газов при одном давлении и одинаковой температуре содержат одинаковое число… … Научно-технический энциклопедический словарь

    - (Avogadro) Амедео (1776 1856), итальянский физик и химик. Основатель молекулярной теории строения вещества (1811). Установил один из газовых законов (1811; закон Авогадро), согласно которому в равных объемах идеальных газов при одинаковых… … Современная энциклопедия

Книги

  • Амедео Авогадро. Очерк жизни и деятельности , Г. В. Быков. Итальянскому физику первой половины XIX в. Амедео Авогадро принадлежит закон, носящий его имя. По словам извести го ученого, лауреата Нобелевской премии Л. Полинга, труды Авогадро лежат в…

Принцип, который в 1811 году сформулировал итальянский химик Амадео Авогадро (1776-1856), гласит: при одинаковых температурах и давлении в равных объемах газов будет содержаться одинаковое число молекул, независимо от их химической природы и физических свойств. Это число является физической константой, численно равной количеству молекул, атомов, электронов ионов или других частиц, содержащихся в одном моле. Позднее гипотеза Авогадро, подтвержденная большим числом экспериментов, стала считаться для одним из основных законов, вошедшим в науку под названием закон Авогадро, и его следствия все основаны на утверждении, что моль любого газа, в случае одинаковых условий, будет занимать одинаковый объем, называемый молярным.

Сам Амадео Авогадро предполагал, что физическая константа является очень большой величиной, но только множество независимых методов, уже после смерти ученого, позволили экспериментально установить число атомов, содержащееся в 12 г (является атомной единицей массы углерода) или в молярном объеме газа (при Т = 273,15 К и р =101,32 кПа), равном 22,41 л. Константу принято обозначать, как NA или реже L. Она названа в честь ученого — число Авогадро, и равняется оно, примерно, 6,022 . 1023. Это и есть число молекул любого газа, находящегося в объеме 22,41 л, оно одинаково и для легких газов (водорода), и для тяжелых газов Закон Авогадро математически можно выразить: V / n = VM, где:

  • V — объем газа;
  • n — количество вещества, которое является отношением массы вещества к его массе молярной;
  • VM — константа пропорциональности или молярный объем.

Принадлежал к благородному семейству, проживавшему в северной части Италии. Он родился 09.08.1776 в Турине. Его отец — Филиппо Авогадро — был служащим судебного ведомства. Фамилия на венецианском средневековом диалекте означала адвоката или чиновника, который взаимодействовал с людьми. По существовавшей в те времена традиции, должности и профессии передавались по наследству. Поэтому в 20 лет Амадео Авогадро получил степень, став доктором законоведения (церковного). Физику и математику он начал самостоятельно изучать в 25 лет. В своей научной деятельности занимался изучением и исследованиями в области электрохимии. Однако в историю науки Авогадро вошел, сделав к атомистической теории очень важное дополнение: ввел понятие о мельчайшей частице вещества (молекуле), способной существовать самостоятельно. Это было важно для объяснения простых объемных отношений между газами, вступившими в реакцию, а закон Авогадро стал иметь большое значение для развития науки и широко применяться на практике.

Но произошло это не сразу. Некоторыми химиками закон Авогадро был признан через десятилетия. Оппонентами итальянского профессора физики били такие знаменитые и признанные научные авторитеты, как Берцелиус, Дальтон, Дэви. Их заблуждения привели к многолетним спорам о химической формуле молекулы воды, так как существовало мнение, что ее следует записывать не H2O, а HO или H2O2. И только закон Авогадро помог установить состав и других простых и сложных веществ. Амадео Авогадро утверждал, что молекулы простых элементов состоят из двух атомов: O2, H2, Cl2, N2. Из чего следовало, что реакцию между водородом и хлором, в результате которой будет образован хлороводород, можно записать в виде: Cl2 + H2 → 2HCl. При взаимодействии одной молекулы Cl2 с одной молекулой H2, образуются две молекулы HCl. Объем, который будет занимать HCl, должен быть в два раза больше объема каждого, из вступивших в эту реакцию, компонентов, то есть должен равняться их суммарному объему. Только начиная с 1860 года, начал активно применяться закон Авогадро, и следствия из него позволили установить истинные значения атомных масс некоторых химических элементов.

Одним из основных выводов, сделанных на его основании, стало уравнение, описывающее состояние идеального газа: p .VM = R . T, где:

  • VM — молярный объем;
  • p — давление газа;
  • T — абсолютная температура, К;
  • R — универсальная газовая постоянная.

Объединенный также является следствием закона Авогадро. При постоянной массе вещества выглядит, как (p . V) / T = n . R = const, а его форма записи: (p1 . V1) / T1 = (p2 . V2) / T2 позволяет делать расчеты при переходе газа из одного состояния (обозначено индексом 1) в другое (с индексом 2).

Закон Авогадро позволил сделать и второй немаловажный вывод, открывший путь для экспериментального определения тех веществ, которые при переходе в газообразное состояние не разлагаются. M1 = M2 . D1, где:

  • M1 — масса молярная для первого газа;
  • M2 — масса молярная для второго газа;
  • D1 — относительная плотность первого газа, которую устанавливают по водороду или воздуху (по водороду: D1 = M1 / 2, по воздуху D1 = M1 / 29, где 2 и 29 — это молярные массы водорода и воздуха соответственно).

Пусть температура постоянна (\(T=const \) ), давление не изменяется (\(p=const \) ), объем постоянный \((V=const) \) : \((N) \) - число частиц (молекул) любого идеального газа величина неизменная. Это утверждение называется законом Авогадро.

Закон Авогадро звучит следующим образом:

В равных объемах газов (V ) при одинаковых условиях (температуре Т и давлении Р ) содержится одинаковое число молекул.

Закон Авогадро был открыт в 1811 г Амедео Авогадро . Предпосылкой для это­го стало правило кратных отношений: при одинаковых ус­ловиях объемы газов, вступа­ющих в реакцию, находятся в простых соотношениях, как 1:1, 1:2, 1:3 и т. д.

Французский ученый Ж.Л. Гей-Люссак установил закон объемных отношений:

Объемы вступающих в реакцию газов при одинаковых условиях (температуре и давлении) относятся друг к другу как простые целые числа.

Например, 1 л хлора соединяется с 1 л водорода, образуя 2 л хлороводорода; 2 л оксида серы (IV) соединяются с 1 л кислорода, образуя 1 л оксида серы (VI).

Реальные газы, как правило, являются смесью чистых газов - кислорода, водоро­да, азота, гелия и т. п. Например, воздух состоит из 77 % азота, 21 % кислорода, 1 % водорода, остальные - инертные и прочие газы. Каждый из них создает давление на стенки сосуда, в котором находится.

Парциальное давление Давление, которое в смеси газов создает каждый газ в отдельности, как будто он один занимает весь объем, называется парциальным давлением (от лат. partialis - частичный)

Нормальные условия: p = 760 мм рт. ст. или 101 325 Па , t = 0 °С или 273 К .

Следствия из закона Авогадро

Следствие 1 из закона Авогадро Один моль любого газа при одинаковых условиях занимает одинаковый объем. В частности при нормальных условиях объем одного моля идеального газа равен 22,4 л . Этот объем называют молярным объемом \(V_{\mu} \)

где \(V_{\mu} \) - молярный объем газа (размерность л/моль); \(V \) - объем вещества системы; \(n \) - количество вещества системы. Пример записи: \(V_{\mu} \) газа (н.у.) = 22,4 л/моль.

Следствие 2 из закона Авогадро Отношение масс одинаковых объемов двух газов есть величина постоянная для данных газов. Эта величина называется относительной плотностью \(D \)

где \(m_1 \) и \(m_2 \) - молярные массы двух газообразных веществ.

Величина \(D \) определяется экспериментально как отношение масс одинаковых объемов исследуемого газа \(m_1 \) и эталонного газа с известной молекулярной массой (М2). По величинам \(D \) и \(m_2 \) можно найти молярную массу исследуемого газа: \(m_1 = D \cdot m_2 \)

Таким образом, при нормальных условиях (н.у.) молярный объем любого газа \(V_{\mu} = 22,4 \) л/моль.

Относительную плотность чаще всего вычисляют по отношению к воздуху или водороду, используя, что молярные массы водорода и воздуха известны и равны, соответственно:

\[ {\mu }_{H_2}=2\cdot {10}^{-3}\frac{кг}{моль} \]

\[ {\mu }_{vozd}=29\cdot {10}^{-3}\frac{кг}{моль} \]

Очень часто при решении задач используется то, что при нормальных условиях (н.у.) (давлении в одну атмосферу или, что тоже самое \(p={10}^5Па=760\ мм\ рт.ст,\ t=0^o C \) ) молярный объем любого идеального газа:

\[ \frac{RT}{p}=V_{\mu }=22,4\cdot {10}^{-3}\frac{м^3}{моль}=22,4\frac{л}{моль}\ . \]

Концентрацию молекул идеального газа при нормальных условиях:

\[ n_L=\frac{N_A}{V_{\mu }}=2,686754\cdot {10}^{25}м^{-3}\ , \]

называют числом Лошмидта .

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!