Макияж. Уход за волосами. Уход за кожей

Макияж. Уход за волосами. Уход за кожей

» » Наиболее продуктивна экосистема. Продуктивность экосистемы

Наиболее продуктивна экосистема. Продуктивность экосистемы

В процессе жизнедеятельности биоценоза создается и расходуется органическое вещество, т. е. соответствующая экосистема обладает определенной продуктивностью биомассы. Биомассу измеряют в единицах массы или выражают количеством энергии, заключенной в тканях.

Понятия «продукция» и «продуктивность» в экологии (как и в биологии) имеют различный смысл.

Продуктивность - это скорость производства биомассы в единицу времени, которую нельзя взвесить, а можно только рассчитать в единицах энергии или накопления органических веществ. В качестве синонима термина «продуктивность» Ю. Одум предложил использовать термин «скорость продуцирования».

Продуктивность экосистемы говорит о ее «богатстве». В богатом или продуктивном сообществе больше организмов, чем в менее продуктивном, хотя иногда бывает и наоборот, когда организмы в продуктивном сообществе быстрее изымаются или «оборачиваются». Так, урожай травы на корню богатого пастбища, выедаемого скотом, может быть гораздо меньше, чем на менее продуктивном пастбище, на которое не выгоняли скот.

Различают также продуктивность текущую и общую. Например, в некоторых конкретных условиях 1 га соснового леса способен за период своего существования и роста образовать 200 м 3 древесной массы - это его общая продуктивность. Однако за один год этот лес создает всего лишь около 2 м 3 древесины, что является текущей продуктивностью или годовым приростом.

При поедании одних организмов другими пища (вещество и энергия) переходит с одного трофического уровня на последующий. Непереваренная часть пищи выбрасывается. Животные, обладающие пищеварительным каналом, выделяют фекалии (экскременты) и конечные органические отходы метаболизма (экскреты), например мочевину; и в том, и в другом случае содержится некоторое количество энергии. Как животные, так и растения теряют часть энергии при дыхании.

Энергию, оставшуюся после потерь из-за дыхания, пищеварения, экскреции, организмы используют для роста, размножения и процессов жизнедеятельности (мышечная работа, поддержание температуры теплокровных животных и пр.). Затраты энергии на терморегуляцию зависят от климатических условий и времени года, особенно велики различия между гомойотермными и пойкилотермными животными. Теплокровные, получив преимущество при неблагоприятных и нестабильных условиях среды, потеряли в продуктивности.

Расход потребленной животными энергии определяется уравнением

РОСТ + ДЫХАНИЕ (ЖИЗНЕДЕЯТЕЛЬНОСТЬ) + РАЗМНОЖЕНИЕ +

ФЕКАЛИИ + ЭКСКРЕТЫ = ПОТРЕБЛЕННАЯ ПИЩА.

В целом, травоядные усваивают пищу почти в два раз менее эффективно, чем хищники. Это объясняется тем, что растения содержат большое количество целлюлозы, а порой и древесины (включающей целлюлозу и лигнин), которые плохо перевариваются и не могут служить источником энергии для большинства травоядных. Энергия, заключенная в экскрементах и экскретах, передается детритофагам и редуцентам, поэтому для экосистемы, в целом, она не теряется.

Сельскохозяйственные животные всегда, даже при содержании на пастбище на подножном корму, отличаются более высокой продуктивностью, т. е. способностью более эффективно использовать потребленный корм для создания продукции. Главная причина состоит в том, что эти животные освобождены от значительной части энергетических расходов, связанных с поиском корма, с защитой от врагов, непогоды и т. д.

Первичная продуктивность экосистемы, сообщества или любой их части определяется как скорость, с которой энергия Солнца усваивается организмами-продуцентами (в основном зелеными растениями) в ходе фотосинтеза или химического синтеза (хемопродуцентами). Эта энергия материализуется в виде органических веществ тканей продуцентов.

Принято выделять четыре последовательные ступени (или стадии) процесса производства органического вещества:

валовая первичная продуктивность - общая скорость накопления органических веществ продуцентами (скорость фотосинтеза), включая те, что были израсходованы на дыхание и секреторные функции. Растения на процессы жизнедеятельности тратят примерно 20 % производимой химической энергии;

чистая первичная продуктивность - скорость накопления органических веществ за вычетом тех, что были израсходованы при дыхании и секреции за изучаемый период. Эта энергия может быть использована организмами следующих трофических уровней;

чистая продуктивность сообщества - скорость общего накопления органических веществ, оставшихся после потребления гетеротрофами - консументами (чистая первичная продукция минус потребление гетеротрофами). Она обычно измеряется за какой-то период, например вегетационный период роста и развития растений или за год в целом;

вторичная продуктивность - скорость накопления энергии консументами. Ее не делят на «валовую» и «чистую», так как консументы потребляют лишь ранее созданные (готовые) питательные вещества, расходуя их на дыхание и секреторные нужды, а остальное превращая в собственные ткани. Ежегодно на суше растения образуют в пересчете на сухое вещество 1,7 · 10 11 т биомассы, эквивалентной 3,2·10 18 кДж энергии - такова чистая первичная продуктивность. Однако с учетом затраченного на дыхание валовая первичная продуктивность (работоспособность) наземной растительности составляет около 4,2 10 18 кДж.

Показатели первичной и вторичной продуктивности для основных экосистем приведены в табл. 8.1.

Таблица 8.1. Первичная и вторичная продуктивность экосистем Земли (по Н. Ф. Реймерсу)

Экосистемы Площадь, млн км 2 Средняя чистая первичная продуктивность, г/см 2 в год Общая чистая первичная продуктивность, млрд т в год Вторичная продуктив-ность, млн т в год
Континентальные (в целом) в том числе:
влажные тропические леса 37,4
вечнозеленые леса умеренных широт 6,5
листопадные леса умеренных широт 8,4
тайга 9,6
саванна 13,5
тундры 1,1
пустыни и полупустыни 1,6
болота 4,0
озера и водотоки 0,5
земли, возделываемые человеком 9,1
Морские (в целом) в том числе: 55,0
открытый океан 41,5
апвелинги (зоны подъема вод) 0,4 0,2
континентальный шельф 9,6
рифы и заросли водорослей 0,6 1,6
эстуарии 1,4 2,1
биосфера (в целом) 170,0

Первичная продукция, доступная гетеротрофам, а человек относится именно к ним, составляет максимум 4 % от общей энергии Солнца, поступающей к поверхности Земли. Поскольку на каждом трофическом уровне энергия теряется, для всеядных организмов (в том числе и для человека) наиболее эффективный способ извлечения энергии - потребление растительной пищи (вегетарианство). Однако необходимо учитывать также следующее:

Животный белок содержит больше незаменимых аминокислот, и лишь некоторые бобовые (например, соя) приближаются к нему по своей ценности;

Растительный белок переваривается труднее, чем животный, из-за необходимости предварительно разрушить жесткие клеточные стенки;

В ряде экосистем животные добывают пищу на большой территории, где не выгодно выращивать культурные растения (это неплодородные земли, на которых пасутся овцы или северные олени).

Так, у человека около 8 % белков ежедневно выводится из организма (с мочой) и вновь синтезируется. Для полноценного питания необходимо сбалансированное поступление аминокислот, подобных тем, что содержатся в тканях животных.

При отсутствии какой-либо важной для организма человека аминокислоты (например, в злаках) при метаболизме усваивается меньшая доля белков. Сочетание в рационе питания бобовых и зерновых обеспечивает лучшее использование белка, чем при потреблении каждого из этих видов пищи в отдельности.

В более плодородных прибрежных водах продуцирование приурочено к верхнему слою воды толщиной около 30 м, а в более чистых, но бедных водах открытого моря зона первичного продуцирования может простираться вглубь на 100 м и ниже. Поэтому прибрежные воды выглядят темно-зелеными, а океанические - синими. Во всех водах пик фотосинтеза приходится на слой воды, расположенный непосредственно под поверхностным слоем, так как циркулирующий в воде фитопланктон адаптирован к сумеречному освещению и яркий солнечный свет тормозит его жизненные процессы.


Похожая информация.


Продуктивность экосистем

Продуктивность экосистем тесно связана с потоком энергии, проходящим через ту или иную экосистему. В каждой экосистеме часть приходящей энергии, попадающей в трофическую сеть, накапливается в виде органических соединений. Безостановочное производство биомассы (живой материи) - один из фундаментальных процессов биосферы. Органическое вещество, создаваемое продуцентами в процессе фотосинтеза или хемосинтеза, называют первичной продукцией экосистемы (сообщества). Количественно ее выражают в сырой или сухой массе растений или в энергетических единицах -эквивалентном числе ккалорий или джоулей. Первичной продукцией определяется общий поток энергии через биотический компонент экосистемы, а следовательно, и биомасса живых организмов, которые могут существовать в экосистеме (рис. 12.33).

Рис. 12.33. Первичная продукция больших подразделений

биосферы (из Ф. Рамада, 1981)

Примечание: интенсивность продукции пропорциональна густоте штриховки

Теоретически возможная скорость создания первичной биологической продукции определяется возможностями фотосинтетического аппарата растений. А как известно, лишь часть энергии света, получаемой зеленой поверхностью, может быть использована растениями. Из коротковолнового излучения Солнца только 44% относится к фотосинтетически активной радиации (ФАР) - свет по длине волны, пригодный для фотосинтеза. Максимально достигаемый в природе КПД фотосинтеза 10-12% энергии ФАР, что составляет около половины от теоретически возможного, отмечается в зарослях джугары и тростника в Таджикистане в кратковременные, наиболее благоприятные периоды. КПД фотосинтеза в 5% считается очень высоким для фитоценоза. В целом по земному шару усвоение растениями солнечной энергии не превышает 0,1 % из-за ограничения фотосинтетической активности растений множеством факторов, среди них таких, как недостаток тепла и влаги, неблагоприятные физические и химические свойства почвы и т. д. Средний коэффициент использования энергии ФАР для территории России равен 0,8%, на европейской части страны составляет 1,0-1,2%, а в восточных районах, где условия увлажнения менее благоприятны, не превышает 0,4- 0,8%. Скорость, с которой растения накапливают химическую энергию, называют валовой первичной продуктивностью (ВПП). Около 20% этой энергии расходуется растениями и?1| дыхание и фотодыхание. Скорость накопления органического веще4| ства за вычетом этого расхода называется чистой первичной иро-| дуктивностью (ЧПП). Это энергия, которую могут использовать| организмы следующих трофических уровней. Количество органического вещества, накопленного гетеротрофными организмами, называется вторичной продукцией. Вторичную продукцию вычисляют отдельно для каждого трофического уровня, так как прирост массы на каждом из них происходит за счет энергии, поступающей с предыдущего. Гетеротрофы, включаясь в трофические цепи, в конечном итоге живут за счет чистой первичной продукции сообщества. Полнота ее расхода в разных экосистемах различна. Постеленное увеличение общей биомассы продуцентов отмечается, если скорость изъятия первичной продукции в цепях питания отстает от темпов прироста растений.

Мировое распределение первичной биологической продукции весьма неравномерно. Чистая продукция меняется от 3000 г/м 2 /год до нуля в экстрааридных пустынях, лишенных растений, или в условиях Антарктиды с ее вечными льдами на поверхности суши, а запас биомассы - соответственно от 60 кг/м 2 до нуля. Р. Уиттекер (1980) делит по продуктивности все сообщества на четыре класса.

1. Сообщества высшей продуктивности, 3000-2000 г/м 2 /год. Сюда относятся тропические леса, посевы риса и сахарного тростника. Запас биомассы в этом классе продуктивности весьма различен и превышает 50 кг/м 2 в лесных сообществах и равен продуктивности у однолетних сельскохозяйственных культур.

2. Сообщества высокой продуктивности, 2000-1000 г/м 2 /год. В этот класс включены листопадные леса умеренной полосы, луга при применении удобрений, посевы кукурузы. Максимальная биомасса приближается к биомассе первого класса. Минимальная биомасса соответственно равна чистой биологической продукции однолетних культур.

3. Сообщества умеренной продуктивности, 1000-250 г/м 2 /год. К этому классу относится основная масса возделываемых сельскохозяйственных культур, кустарники, степи. Биомасса степей меняется в пределах 0,2-5 кг/м 2 .

4. Сообщества низкой продуктивности, ниже 250 г/м^год - пустыни, полупустыни (в отечественной литературеих называют чаще опустыненными степями), тундры.

Биомасса и первичная продуктивность основных типов экосистем представлена в табл. 12.6.

Таблица 12.6

Биомасса и первичная продуктивность основных типов экосистем (по Т. Д. Акимовой, В. В. Хаскину, 1994)

На территории России в зонах достаточного увлажнения первичная продуктивность увеличивается с севера на юг, с увеличением притока тепла и продолжительности вегетационного периода (сезона). Годовой прирост растительности изменяется от 20 ц/га на побережье и островах Северного Ледовитого океана до более чем 200 ц/га в Краснодарском крае, на Черноморском по-1 бережье Кавказа (рис. 12.34).

Рис. 12.34. Запасы фитомассы (А) основных экосистем европейской I территории России и соотношение (в %) частей фитомассы (Б):

1 - зеленые части растений; 2- надземные многолетние одревес- " несшие части; 3 - подземные части

Общая годовая продуктивность сухого органического вещества на Земле составляет 150-200 млрд т. Две трети его образуется на суше, третья часть - в океане.

Практически вся чистая первичная продукция Земли служит для поддержки жизни всех гетеротрофных организмов. Энергия, недоиспользованная консументами, запасается в их телах, гумусе почв и органических осадках водоемов. Питание людей большей частью обеспечивается сельскохозяйственными культурами, занимающими около 10% площади суши. Годовой прирост культурных растений равен примерно 16% всей продуктивности суши, большая часть которой приходится на леса.



Половина урожая идет непосредственно на питание людей, остальное - на корм домашним животным, используется в промышленности и теряется в отходах. Всего человек потребляет около 0,2% первичной продукции Земли. Ресурсы, имеющиеся на Земле, включая продукцию животноводства и результаты промысла на суше и в океане, могут обеспечить ежегодно только 50% потребностей современного населения Земли.

За успехам и в мировом производстве продовольствия скрывается тот факт, что с 1950 по 1988 г. среднедушевое производство продовольствия сократилось в 43 развивающихся странах (22 африканские страны), где проживает каждый седьмой житель планеты. Самый большой спад наблюдается в Африке. Здесь в период между I960 и 1988 г. среднее производство продовольствия в перерасчете на душу населения упало на 21 %. Предполагается, что в ближайшие 25 лет оно сократится еще на 30%. Особенно трудно обеспечить население вторичной продукцией. В рацион человека должно входить не менее 30 г белков в день.

Следовательно, увеличение биологической продуктивности экосистем и особенно вторичной продукции является одной из основных задач, стоящих перед человечеством.

Динамика экосистем

Сложение экосистем - динамический процесс. В экосистемах постоянно происходят изменения в состоянии и жизнедеятельности их членов и соотношении популяций. Многообразные изменения, происходящие в любом сообществе, относят к двум основным типам: циклические и поступательные.

Циклические изменения сообществ отражают суточную, сезонную и многолетнюю периодичность внешних условий и проявления эндогенных ритмов организмов. Суточная динамика экосистем связана главным образом с ритмикой природных явлений и носит строго периодический характер. Нами уже было рассмотрено, что в каждом биоценозе имеются группы организмов, активность жизни у которых приходится на разное время суток. Одни активны днем, другие - ночью. Отсюда в составе и в соотношении отдельных видов биоценоза той или иной экосистемы происходят периодические изменения, так как отдельные организмы на определенное время выключаются из него. Суточную динамику биоценоза обеспечивают как животные, так и растения. Как известно, у растений в течение суток изменяются интенсивность и характер физиологических процессов - ночью не происходит фотосинтез, нередко у растений цветки раскрываются только в ночные часы и опыляются ночными животными, другие приспособлены к опылению днем. Суточная динамика в биоценозах, как правило, выражена тем сильнее, чем значительнее разница температур, влажности и других факторов среды днем и ночью.

Более значительные отклонения в биоценозах наблюдаются при сезонной динамике. Это обусловлено биологическими циклами организмов, которые зависят от сезонной цикличности явлений природы. Так, смена времени года значительное влияние оказывает на жизнедеятельность животных и растений (спячка, зимний сон, диапауза и миграции у животных; периоды цветения, плодоношения, активного роста, листопада и зимнего покоя у растений). Сезонной изменчивости подвержена нередко и ярусная структура биоценоза. Отдельные ярусы растений в соответствующие сезоны года могут полностью исчезать, например, состоящий из однолетников травянистый ярус. Длительность биологических сезонов в разных широтах неодинакова. В связи с этим сезонная динамика биоценозов арктической, умеренной и тропической зон различна. Она выражена наиболее четко в экосистемах умеренного климата и в северных широтах.

Многолетняя изменчивость является нормальной в жизни любого биоценоза. Так, количество осадков, выпадающих в Барабинской лесостепи, резко колеблется по годам, ряд засушливых лет чередуется с многолетним периодом обилия осадков. Тем самым оказывается существенное влияние на растения и животных. При этом происходит выработка экологических ниш - функциональное размежевание в возникающем множестве или его дополнение при малом разнообразии.

Многолетние изменения в составе биоценозов повторяются и в связи с периодическими изменениями общей циркуляции атмосферы, в свою очередь, обусловленной усилением или ослаблением солнечной активности.

В процессе суточной и сезонной динамики целостность биоценозов обычно не нарушается. Биоценоз испытывает лишь периодические колебания качественных и количественных характеристик.

Поступательные изменения в экосистеме приводят в конечном итоге к смене одного биоценоза другим, с иным набором господствующих видов. Причинами подобных смен могут являться внешние по отношению к биоценозу факторы, действующие длительное время в одном направлении, например увеличивающееся загрязнение водоемов, возрастающее в результате мелиорации иссушение болотных почв, усиленный выпас скота и т. д. Данные смены одного биоценоза другим называют экзогенети-ческими. В том случае, когда усиливающее влияние фактора приводит к постепенному упрощению структуры биоценоза, обеднению их состава, снижению продуктивности, подобные смены называют дигрессивными или дигрессиями.

Эндогенетические смены возникают в результате процессов, которые происходят внутри самого биоценоза. Последовательная смена одного биоценоза другим называется экологической сукцессией (от лат. succession - последовательность, смена). Сукцессия является процессом саморазвития экосистем. В основе сукцессии лежит неполнота биологического круговорота в данном биоценозе. Известно, что живые организмы в результате жизнедеятельности меняют вокруг себя среду, изымая из нее часть веществ и насыщая ее продуктами метаболизма. При сравнительно длительном существовании популяций они меняют свое окружение в неблагоприятную сторону и как результат - оказываются вытесненными популяциями других видов, для которых вызванные преобразования среды оказываются экологически выгодными. В биоценозе происходит таким образом смена господствующих видов. Здесь четко прослеживается правило (принцип) экологического дублирования (рис. 12.35). Длительное существование биоценоза возможно лишь в том случае, если изменения среды, вызванные деятельностью одних живых организмов благоприятны для других, с противоположными требованиями.

Рис. 12.35. Потоки энергии и механизм обеспечения

надежности биотических систем в биосфере

(по Н. Ф. Реймерсу, 1994):

1, 2, З... - потоки энергии через виды; а-а... - связи между ними, А - состояние до исчезновения вида; Б - вид 3 исчез, проходившие через него потоки энергии идут через дублирующие виды 2 и 4

На основе конкурентных взаимодействий видов в ходе сукцессии происходит постепенное формирование более устойчивых комбинаций, соответствующих конкретным абиотическим условиям среды. Пример сукцессии, приводящей к смене одного сообщества другим, - зарастание небольшого озера с последующим появлением на его месте болота, а затем леса (рис. 12.36).

Рис. 12.36. Сукцессия при зарастании небольшого озера

(по А.О. Рувинскому и др., 1993)

Вначале по краям озера образуется сплавна - плавающий ковер из осок, мхов и других растений. Постоянно озеро заполняется отмершими остатками растений - торфом. Образуется болото, постепенно зарастающее лесом. Последовательный ряд постепенно и закономерно сменяющих друг друга в сукцессии сообществ называется сукцессионной серией.

Сукцессии в природе чрезвычайно разномасштабны. Их можно наблюдать в банках с культурами, представляющими собой планктонные сообщества - различные виды плавающих водорослей и их потребителей - коловраток, жгутиковых в лужах и прудах, на заброшенных пашнях, выветрившихся скалах и др. В организации экосистем иерархичность проявляется и в сукцессионных процессах - более крупные преобразования биоценозов складываются из более мелких. В стабильных экосистемах с отрегулированным круговоротом веществ также постоянно осуществляются локальные сукцессионные смены, поддерживающие сложную внутреннюю структуру сообществ.

Типы сукцессионных смен. Выделяют два главных типа сукцессионных смен: 1 - с участием автотрофного и гетеротрофного населения; 2 - с участием только гетеротрофов. Сукцессии второго типа совершаются лишь в таких условиях, где создается предварительный запас или постоянное поступление органических соединений, за счет которых и существует сообщество: в кучах или буртах навоза, в разлагающейся растительной массе, в загрязненных органическими веществами водоемах и т. д.

Процесс сукцессии. По Ф. Клементсу (1916), процесс сукцессии состоит из следующих этапов: 1. Возникновение незанятого жизнью участка. 2. Миграция на него различных организмов или их зачатков. 3. Приживание их на данном участке. 4. Конкуренции их между собой и вытеснение отдельных видов. 5. Преобразование живыми организмами местообитания, постепенной стабилизации условий и отношений. Сукцессии со сменой растительности могут быть первичными и вторичными.

Первичной сукцессией называется процесс развития и смены экосистем на незаселенных ранее участках, начинающихся с их колонизации. Классический пример - постоянное обрастание голых скал с развитием в конечном итоге на них леса. Так, в первичных сукцессиях, протекающих на скалах Уральских гор, различают следующие этапы.

1. Поселение эндолитических и накипных лишайников, сплошь покрывающих каменистую поверхность. Накипные лишайники несут своеобразную микрофлору и содержат богатую фауну простейших, коловраток, нематод. Мелкие клещи - сапрофаги и пер-вичнобескрылые насекомые обнаруживаются сначала только в трещинах. Активность всего населения прерывиста, отмечается главным образом после выпадения осадков в виде дождя или смачивания скал влагой туманов. Данные сообщества организмов называют пионерными.

2. Преобладание листоватых лишайников, которые постепенно образуют сплошной ковер. Под круговинками лишайников в результате выделяемых ими кислот и механического сокращения слоевищ при высыхании образуются выщербленности, идет отмирание слоевищ и накопление детрита. В большом количестве под лишайниками встречаются мелкие членистоногие: коллемболы, панцирные клещи, личинки комаров-толкунчиков, сеноеды и другие. Образуется микрогоризонт, состоящий из их экскрементов.

3. Поселение литофильных мхов Hedwidia u Pleurozium schreberi. Под ними погребаются лишайники и подлишайниковые пленочные почвы. Ризоиды мхов здесь прикрепляются не к камню, а к мелкозему, который имеет мощность не менее 3 см. Колебания температуры и влажности под мхами в несколько раз меньше, чем под лишайниками. Усиливается деятельность микроорганизмов, увеличивается разнообразие групп животных.

4. Появление гипновых мхов и сосудистых растений. В разложении растительных остатков и формировании почвенного профиля постепенно уменьшается роль мелких членистоногих и растет участие более крупных беспозвоночных - сапрофагов: энхитреид, дождевых червей, личинок насекомых.

5. Заселение крупными растениями, способствующее дальнейшему накоплению и образованию почвы. Ее слой оказывается достаточным для развития кустарников и деревьев. Их опадающие листья и ветви не дают расти мхам и большинству других мелких видов, начавших сукцессию. Так, постепенно на изначально голых скалах идет процесс смены лишайников мхами, мхов травами и наконец лесом. Такие сукцессии в геоботанике называют экогенетически-ми, так как они ведут к преобразованию самого местообитания.

Вторичная сукцессия - это восстановление экосистемы, когда-то уже существовавшей на данной территории. Она начинается в том случае, если уже в сложившемся биоценозе нарушены установившиеся взаимосвязи организмов в результате извержения вулкана, пожара, вырубки, вспашки и т. д. Смены, ведущие к восстановлению прежнего биоценоза, получили название в геоботанике демутационных. Примером может служить динамика видового, разнообразия на острове, Кракатау после полного уничтожения аборигенной флоры и фауны вулканическим взрывом в 1893 году (рис. 12.37).

Рис. 12.37. Динамика видового разнообразия на о. Кракатау после

полного уничтожения аборигенной флоры и фауны вулканическим

взрывом в 1893 г. (по Р. МакАртуру и Е. О. Вильсону, 1967)

Примечание крестики - число видов растений, светлые кружки - число видов гнездящихся птиц, зачерненные кружки - суммарное число видов растений и животных

Другой пример, вторичная сукцессия сибирского темно-хвойного леса (пихтово-кедровой тайги) после опустошительного лесного пожара (рис. 12.38). На более выжженных местах из спор, занесенных ветром, появляются мхи-пионеры: через 3-5лет после пожара наиболее обильны «пожарный мох» -Funaria hygrometrica, Geratodon; purpureus, и др. Из высших растений весьма быстро заселяют гари Иван-чай (Chamaenerion angustifolium), который уже через 2-3 месяца обильно цветет на пожарище, а также вейник наземный (Calamagrostis epigeios) и другие виды.

Рис. 12.38. Вторичная сукцессия сибирского темно-хвойного леса

(пихтово-кедровой тайги) после опустошительного лесного пожара

(по Н. Ф. Реймерсу, 1990)

Примечание: числа в прямоугольниках - колебания в длительности прохождения фаз вторичной сукцессии (в скобках указан срок их окончания). Биомасса и биологическая продуктивность показаны в произвольном масштабе (кривые отражают качественную и количественную стороны процесса)

Наблюдается дальнейшее происхождение фаз сукцессии: вейниковый луг сменяется кустарниками, затем березовым или осиновым лесом, смешанным сосново-лиственным лесом, сосновым лесом, сосново-кедровым лесом, и, наконец, через 250 лет происходит восстановление кедрово-пихтового леса.

Вторичные сукцессии совершаются, как правило, быстрее и легче, чем первичные, так как в нарушенном местообитании сохраняется почвенный профиль, семена, зачатки и часть прежнего населения и прежних связей. Демутация не является повторением какого-либо этапа первичных сукцессии.

Климаксовоя экосистема. Сукцессия завершается стадией, когда все виды экосистемы, размножаясь, сохраняют относительно посто-яннуючисленностьидальнейшейсменыеесоставанепроисходит. Такое равновесное состояние называют климаксом, а экосистему - кли-максовой. В разных абиотических условиях формируются неодинаковые климаксовые экосистемы. В жарком и влажном климате это будет дождевой тропический лес, в сухом и жарком - пустыня. Основные биомы земли - это климаксовые экосистемы соответствующих географических областей.

Изменения в экосистеме во время сукцессии. Продуктивность и биомасса. Как уже отмечалось, сукцессия является закономерным, направленным процессом, а изменения, которые происходят на той или иной ее стадии, свойственны любому сообществу и не зависят от его видового состава или географического местоположения. Основными называют четыре типа сукцесси-онных изменений.

1. В процессе сукцессии виды растений и животных непрерывно сменяются. 2. Сукцессионные изменения всегда сопровождаются повышением видового разнообразия организмов. 3. Биомасса органического вещества увеличивается по ходу сукцессии. 4. Снижение чистой продукции сообщества и повышение интенсивности дыхания - важнейшие явления сукцессии.

Следует также отметить, что смена фаз сукцессии идет в соответствии с определенными правилами. Каждая фаза готовит среду для возникновения последующей. Здесь действует закон последовательности прохождения фаз развития: фазы развития природной системы могут следовать лишь в эволюционно закрепленном (исторически, экологически обусловленном) порядке, обычно от относительно простого к сложному, как правило, без выпадения промежуточных этапов, но, возможно, с очень быстрым их прохождением или эволюционно закрепленным отсутствием. Когда экосистема приближается к состоянию климакса, в ней, как и во всех равновесных системах, происходит замедление всех процессов развития. Это положение находит отражение в законе сукцессионного замедления: процессы, идущие в зрелых равновесных экосистемах, находящихся в устойчивом состоянии, как правило, проявляют тенденцию к снижению темпов. При этом восстановительный тип сукцессии меняется на вековой их ход, т. е. саморазвитие идет в пределах климакса или узлового развития. Эмпирический закон сукцессионного замедления является следствием правила Г. Одума и Р. Пинкертона, или правила максимума энергии поддержания зрелой системы: сукцессия идет в направлении фундаментального сдвига потока энергии в сторону увеличения ее количества, направленного на поддержание системы. Правило Г. Одума и Р. Пинкертона, в свою очередь, базируется на правиле максимума энергии в биологических системах, сформулированном А. Лоткой. Вопрос этот в дальнейшем был хорошо разработан Р. Маргалефом, Ю. Одумом и известен как доказательство принципа «нулевого максимума», или минимализации прироста в зрелой экосистеме: экосистема в сукцессионном развитии стремится к образованию наибольшей биомассы при наименьшей биологической продуктивности.

Линдеман (1942) экспериментально доказал, что сукцессии сопровождаются повышением продуктивности вплоть до климаксового сообщества, в котором превращение энергии происходит наиболее эффективно. Данные исследований сукцессии дубовых и дубово-ясеневых лесов показывают, что на поздних стадиях их продуктивность действительно возрастает. Однако при переходе к кли-максному сообществу обычно происходит снижение общей продуктивности. Таким образом, продуктивность в старых лесах ниже, чем в молодых, которые, в свою очередь, могут иметь меньшую продуктивность, чем предшествовавшие им более богатые видами ярусы травянистых растений. Сходное падение продуктивности наблюдается и в некоторых водных системах. Для этого есть несколько причин. Одна из них то, что накопление питательных веществ в растущей биомассе леса на корню может вести к уменьшению их круговорота. Снижение общей продуктивности могло быть просто результатом уменьшения жизненности особей по мере увеличения их среднего возраста в сообществе.

По мере прохождения сукцессии все большая доля доступных питательных веществ накапливается в биомассе сообщества, и соответственно уменьшается их содержание в абиотическом компоненте экосистемы (в почве или воде).

Возрастает также количество образующегося детрита. Главными первичными консументами становятся не травоядные, а детритоядные организмы. Соответствующие изменения происходят и в трофических сетях. Детрит становится основным источником питательных веществ.

В ходе сукцессии увеличивается замкнутость биогеохимических круговоротов веществ. Примерно за 10 лет с момента начала восстановления растительного покрова разомкнутость круговоротов уменьшается со 100 до 10%, а далее она еще больше снижается, достигая минимума в климаксовой фазе. Правило увеличения замкнутости биогеохимического круговорота веществ в ходе сукцессии, со всей уверенностью можно утверждать, нарушается антропогенной трансформацией растительности и вообще естественных экосистем. Несомненно, это ведет к длинному ряду аномалий в биосфере и ее подразделениях.

Снижение разнообразия видов в климаксе не означает малой его экологической значимости. Разнообразие видов формирует сукцессию, ее направление, обеспечивает заполненность реального пространства жизнью. Недостаточное количество видов, составляющих комплекс, не могло бы сформировать сукцессионный ряд, и постепенно, с разрушением климаксовых экосистем произошло бы полное опустынивание планеты. Значение разнообразия функционально как в статике, так и в динамике. Следует отметить, что там, где разнообразие видов недостаточно для формирования биосферы, служащей основой нормального естественного хода сукцессионного процесса, а сама среда резко нарушена, сукцессия не достигает фазы климакса, а заканчивается узловым сообществом - параклимаксом, длительно или кратковременно производным сообществом. Чем глубже нарушенность среды того или иного пространства, тем на более ранних фазах оканчивается сукцессия.

При потере одного или группы видов в результате их уничтожения (антропогенное исчезновение местообитаний, реже вымирание) достижение климакса не является полным восстановлением природной обстановки. Фактически это новая экосистема, потому что в ней возникли новые связи, утеряны многие старые, сложилась иная «притертость» видов. В старое состояние экосистема вернуться не может, так как утерянный вид восстановить невозможно.

При изменении любого абиотического или биотического фактора, например, при устойчивом похолодании, интродукции нового вида, вид, который плохо приспособлен к новым условиям, ожидает один из трех путей (рис. 12.39).

Рис. 12.39. Эволюционная сукцессия (по Б. Небелу, 1993)

1. Миграция. Часть популяции может мигрировать, найти местообитания с подходящими условиями и продолжить там свое существование.

2. Адаптация. В генофонде могут присутствовать аллели, которые позволят отдельным особям выжить в новых условиях и оставить потомство. Через несколько поколений под действием естественного отбора возникает популяция, хорошо приспособленная к изменившимся условиям существования.

3. Вымирание. Если ни одна особь популяции не может мигрировать, опасаясь воздействия неблагоприятных факторов, а те уходят за пределы устойчивости всех индивидов, то популяция вымрет, а ее генофонд исчезает. Если одни виды вымирают, а выжившие особи других размножаются, адаптируются и изменяются под действием естественного отбора, можно говорить об эволюционной сукцессии.

Закон эволюционно-экологической необратимости гласит: экосистема, потерявшая часть своих элементов или сменившаяся другой в результате дисбаланса экологических компонентов, не может вернуться к первоначальному своему состоянию в ходе сукцессии, если в ходе изменений произошли эволюционные (микроэволюционные) перемены в экологических элементах (сохранившихся или временно утерянных). В том случае, когда какие-то виды утеряны в промежуточных фазах сукцессии, то данная потеря может быть функционально скомпенсирована, но не полностью. При снижении разнообразия за критический уровень, ход сукцессии искажается, и фактически климакс, идентичный прошлому, достигнут не может быть.

Для оценки характера восстановленных экосистем закон эволюционно-экологической необратимости имеет важное значение. При потере элементов это, по сути дела, совершенно экологически новые природные образования с вновь образовавшимися закономерностями и связями. Так, перенос в прошлом выбывшего из состава экосистемы вида в ходе его реакклиматизации не является механическим его возвращением. Это фактически внедрение нового вида в обновленную экосистему. Закон эволюционно-экологической необратимости подчеркивает направленность эволюции не только на уровне биосистем, но и на всех других иерархических уровнях сложения биоты.

Биологическая продуктивность экосистем.

Источник: методичка «Остров», лекция 4.

Ответ:

Автотрофные экосистемы, используя энергию Солнца, углекислый газ и минеральные вещества, производят различные органические вещества – древесину, листья, плоды, т.е. живую биомассу. Производительность экосистемы измеряется количеством органического вещества, которое создано за единицу времени на единице площади, и называется биологической продуктивностью.

Общая годовая продукция сухого органического вещества на планете составляет 150-200 миллиардов тонн. В океане образуется 1/3 этой продукции, на суше – 2/3. Почти вся чистая первичная продукция планеты служит для поддержания жизни гетеротрофов. Неиспользуемая консументами энергия запасается в их телах, в органических осадках водоемов, в гумусе почвы.

Различают первичную, валовую, чистую, вторичную продукцию сообществ.

Биологическая продукция измеряется количеством сухой или сырой массы органического вещества (растений), производимого в единицу времени на единицу площади (т/га в год, г/м 2 в день) или в энергетических единицах – эквивалентном числе джоулей.

Растения создают первичную продукцию , вторичная продукция сообществ (создается гетеротрофами) – прирост за единицу времени массы консументов.. Вторичную продукцию вычисляют отдельно для каждого трофического уровня, так как прирост массы на каждом из них происходит за счет энергии, поступающей с предыдущего уровня. Гетеротрофы живут за счет чистой первичной продукции сообщества.

Первичная продукция подразделяется на валовую первичную продукцию – количество вещества, создаваемого растениями за единицу времени при данной скорости фотосинтеза, то есть общая продукция фотосинтеза (расходуется на процессы жизнедеятельности, выделения, рост биомассы органического вещества), и чистую первичную продукцию – величина прироста растений (биомассы органического вещества).

При переходе с одного трофического уровня на другой, 90% энергии теряется. Поэтому количество вторичной биологической продукции в 20-50 раз меньше, чем первичной.

Продуктивность основных экосистем планеты показана в табл. 2 - 4.

Под биомассой понимают массу организма, организмов определенной группы, всего сообщества в целом или экосистемы. Под биомассой понимают всю живую органическую массу, которая содержится в экосистеме или ее элементах вне зависимости от того, за какой период она образовалась и накопилась. Различают фитомассу (массу живых растений), зоомассу, микробную массу, массу мертвого вещества. Также различают биомассу надземную, подземную, водную.

Таблица 2

Продуктивность экологических систем за год

Как вы уже знаете, вещества в экосистеме используются многократно, превращаясь по принципу круговорота. Причем в движении веществ участвуют живые организмы, поэтому круговорот веществ является биогенным. Он начинается с поступления химических элементов из почвы (вода и минеральные соли) и атмосферы (углекислый газ) в живые организмы — продуценты. Продуценты синтезируют органические вещества, часть которых дальше передается по пищевой цепи консументам, а часть остается неиспользованной. Определенное количество органических веществ продуцентов и консументов возвращается в почву с трупным материалом, экскрементами (детрит). В результате деятельности редуцентов они превращаются в минеральные вещества, атомы которых снова вовлекаются продуцентами в круговорот. Но совершенно замкнутым круговорот веществ быть не может. Атомы некоторых химических элементов могут на длительное время выводиться из круговорота, накапливаясь в литосфере в составе известняка (мела), каменного угля, природного газа, нефти, торфа, руд различных металлов.

Превращение энергии в экосистеме идет несколько иначе, чем превращение веществ. Поток солнечной энергии, поступивший в экосистему, как бы разделяется на два русла — пастбищное и детритное . В каждом из них энергия расходуется на поддержание жизнедеятельности организмов. Соотношение количества энергии, проходящей через пастбищные и детритные цепи, в разных типах экосистем разное. Потеря энергии в пищевых цепях может быть восполнена только за счет поступления новых порций солнечной энергии или готового органического вещества (энергия корма). Поэтому в экосистеме не может быть круговорота энергии, аналогичного круговороту веществ. Экосистема функционирует только за счет направленного потока энергии.

Благодаря многократному использованию вещества и постоянному притоку энергии экосистемы способны длительно поддерживать стабильное существование. Населяющие их продуценты, консументы и редуценты при этом обеспечивают возобновление своей биомассы, несмотря на то что запас веществ в биосфере ограничен и не пополняется. Скорость возобновления биомассы организмов экосистемы называется биологической продуктивностью. Она выражается количеством образующейся продукции.

Продукция экосистемы — количество биомассы, образующейся в экосистеме на единице площади или в единице объема биотопа за единицу времени.

Экосистемы сильно различаются по количеству образующейся продукции. Она убывает в следующей последовательности: тропический лес — субтропический лес — лес в зоне умеренного климата — степь — океан — пустыня.

Образующаяся продукция может по-разному расходоваться в разных экосистемах. Если скорость ее потребления отстает от скорости образования, то это ведет к приросту биомассы экосистемы и накоплению избытка детрита. В результате будет наблюдаться образование торфа на болотах, зарастание мелких водоемов, создание запаса подстилки в таежных лесах и т. д. В стабильных экосистемах практически вся образующаяся продукция тратится в сетях питания. В результате биомасса экосистемы остается практически постоянной.

Биомасса экосистемы — общее количество органического вещества всех живых организмов, накопившегося в данной экосистеме за предыдущий период ее существования.

Биомасса экосистемы выражается в единицах сырой массы или массы сухого органического вещества на единицу площади: в г/м 2 , кг/м 2 , кг/га, т/км 2 (наземные экосистемы) или на единицу объема (водные экосистемы).

Биомасса экосистемы и ее биологическая продуктивность могут сильно отличаться. Например, в густом лесу общая биомасса организмов очень велика по сравнению с ее годовым приростом — продукцией. Тогда как в пруду небольшая накопленная биомасса фитопланктона имеет высокую скорость возобновления — образования продукции за счет быстрого размножения.

Первичная и вторичная продукция

В зависимости от того, какие вещества и энергия используются для возобновления биомассы, в экосистеме различают первичную и вторичную продуктивность . Соответственно, образующаяся при этом продукция называется первичной и вторичной.

Первичная продукция — биомасса, созданная автотрофными организмами (продуцентами) из минеральных веществ в процессе фото- или хемосинтеза. Основное количество возникающих таким путем органических веществ создают зеленые растения. Эффективность превращения поглощаемой ими солнечной энергии в энергию химических связей органических веществ составляет в среднем 1 %. Эта закономерность получила название правила 1 % . Первичная продукция является очень важной характеристикой экосистемы. Именно накопленная в ней энергия позволяет существовать всем гетеротрофным организмам (консументам и редуцентам) и создавать свою продукцию.

Вторичная продукция — биомасса, созданная гетеротрофными организмами (консументами и редуцентами) из органического вещества после его частичного расщепления.

Как первичная, так и вторичная продукция на трофических уровнях в пастбищных цепях могут использоваться для разных целей. Вся первичная продукция, созданная продуцентами в результате фотосинтеза, называется валовой первичной продукцией (ВПП). Она является единственным источником энергии для консументов. Та часть продукции предыдущего трофического уровня, которая потребляется организмами последующего трофического уровня, условно называется кормом (К). Часть корма на каждом трофическом уровне затрачивается организмами на поддержание процессов жизнедеятельности — траты на дыхание (ТД). А вторая его часть после частичного расщепления используется на образование биомассы консументов — вторичной продукции (ВтП). Продукция продуцентов, которая может быть съедена консументами I порядка, называется чистой первичной продукцией (ЧПП).

Однако не вся продукция, образовавшаяся на трофическом уровне, переходит на следующий уровень в качестве корма. Часть ее, как правило, остается на трофическом уровне в качестве запаса — неиспользуемая продукция (НП). Совокупность неиспользованной продукции всех трофических уровней экосистемы составляет чистую продукцию сообщества.

Чистая продукция сообщества (ЧПС) — часть продукции экосистемы, которая может быть использована в пределах самой экосистемы для ее развития. Она также может быть изъята человеком без ущерба для экосистемы. В молодых экосистемах, где численность консументов еще невелика, запас чистой продукции сообщества большой. Такие экосистемы можно вовлекать в хозяйственный оборот. По мере усложнения видового состава экосистемы количество чистой продукции сообщества постепенно снижается. На конечной стадии развития экосистемы оно приближается к нулю. Вмешательство в такие равновесные экосистемы чревато нарушением пищевых связей между организмами и может привести к разрушению экосистем.

При распределении первичной и вторичной продукции на трофических уровнях экосистемы соблюдается балансовое равенство . Это значит, что на каждом трофическом уровне сумма всех видов продукции равна количеству продукции, поступившей из предыдущего уровня в качестве корма. При решении задач на балансовое равенство следует учитывать следующие закономерности распределения видов продукции в экосистеме:

  1. валовая первичная продукция (ВПП) = траты на дыхание (ТД I) + чистая первичная продукция (ЧПП);
  2. чистая первичная продукция (ЧПП) = неиспользуемая продукция (НП I) + корм (К II);
  3. корм (К II) = траты на дыхание (ТД II) + вторичная продукция (ВтП II);
  4. вторичная продукция (ВтП II) = неиспользуемая продукция (НП II) + корм (К III) и т.д;
  5. чистая продукция сообщества (ЧПС) = неиспользуемая продукция (НП I) + неиспользуемая продукция (НП II) + … + неиспользуемая продукция (НП n).

Римская цифра в подстрочном индексе обозначает номер трофического уровня в пищевой цепи.

В экосистеме происходит непрерывный круговорот веществ и направленный поток энергии. Благодаря этому идет образование биомассы организмов. Скорость возобновления биомассы называется биологической продуктивностью. Она выражается количеством продукции — биомассой, образующейся на единице площади или в единице объема за единицу времени. Различают первичную и вторичную продукции. Вся неиспользованная продукция называется чистой продукцией сообщества.

Чтобы оценить значение того или иного вида для круговорота веществ в данном биогеоценозе необходимо знать не только его биомассу, но и относительную скорость ее создания, т.е.биологическую продуктивность .

Таким образом,

Биологическая продуктивность - это скорость создания определенного количества биомассы растений, животных и микроорганизмов, входящих в состав биогеоценоза.

Биологическая продуктивность определяется количеством биомассы, синтезируемой за единицу времени на единицу площади (или объема) и выражается чаще всего в граммах углерода или сухого органического вещества или в энергетических единицах – эквивалентном числе калорий или джоулей.

Биологическую продуктивность можно выразить продукцией за сезон, за год, за несколько лет или за любую другую единицу времени.

Для наземных и донных организмов биологическая продуктивность определяется количеством биомассы на единицу площади, а для планктонных и почвенных - на единицу объема.

Ключевое слово в понятии продуктивность – скорость. Однако вместо термина «продуктивность» часто используется термин «продукция», но при этом все равно учитывается фактор времени.

Биологическую продуктивность нельзя смешивать с биомассой.

Биомасса - это выраженное в единицах массы (веса) или энергии количество живого вещества тех или иных организмов, обитающих на исследуемой площади или в исследуемом объеме.

Например:

    планктонные водоросли за год на единицу площади синтезируют столько же органического вещества, сколько и высокопродуктивные леса, однако биомасса последних в сотни тысяч раз больше;

    популяции мелких млекопитающих по сравнению с крупными обладают большей скоростью роста и размножения и поэтому имеют более высокую продуктивность при равной биомассе.

Различают первичную и вторичную продуктивность экосистем.

Первичная продуктивность экосистем - это скорость, с которой автотрофные организмы (продуценты) в процессе фотосинтеза связывают солнечную энергию и запасают ее в форме химических связей органических веществ, т.е. скорость образования биомассы органического вещества автотрофами (продуцентами).

Первичная продуктивность подразделяется на валовую и чистую продуктивность.

Валовая первичная продуктивность – это скорость накопления органического вещества продуцентами, включая затраты на дыхание (т.е. включая ту его часть, которая будет израсходована в процессах жизнедеятельности растений).

Так, например, в тропических лесах и зрелых лесах умеренной зоны затраты на дыхание составляют 40-70%, а у планктонных водорослей и у большинства сельскохозяйственных культур – 40%.

Чистая первичная продуктивность – это скорость накопления органического вещества в растительных тканях за вычетом той его части, которая использовалась на дыхание растений.

Поэтому чистая первичная продукция, накопленная в виде биомассы растений всегда меньше валовой первичной продукции, созданной ими в процессе фотосинтеза.

Чистая первичная продуктивность автотрофных организмов (продуцентов) может служить источником питания для гетеротрофных организмов, которые на ее основе образуют свою биомассу.

Вторичная продуктивность - это скорость образования биомассы гетеротрофными организмами (консументами).

Вторичная продуктивность уже не делится на валовую и чистую продуктивность, так как гетеротрофы увеличивают свою массу за счет первичной ранее созданной продукции.

Вторичную продуктивность рассчитывают отдельно для каждого трофического уровня, так как прирост биомассы на каждом из них происходит за счет энергии, поступающей с предыдущего уровня.

При этом необходимо учитывать, что при переходе с одного трофического уровня консументов на другой значительная часть энергии расходуется в процессах жизнедеятельности, поэтому вторичная продукция каждого последующего трофического уровня будет меньше продукции предыдущего.

Если в экосистеме скорость образования чистой первичной продукции выше темпов переработки ее консументами, то это ведет к увеличению биомассы продуцентов.

Если при этом присутствует недостаточная утилизация продуктов опада в цепях разложения редуцентами, то происходит накопление мертвого органического вещества (в форме каменного угля, горючих сланцев, сухих листьев и т.д.).

В стабильных экосистемах биомасса остается постоянной, так как практически вся созданная продукция расходуется в цепях питания разнообразными консументами и редуцентами, т.е. природа стремится использовать полностью валовую продукцию.

Однако равенство между приходом и расходом продукции – явление достаточно редкое и наблюдается в наиболее стабильных сообществах, например, в тропической зоне. Однако это создает объективные трудности для развития там сельского хозяйства.

Человек, выжигая пышный тропический лес надеется получить на освободившейся территории высокие урожаи. Однако вскоре оказывается, что почвы на этой территории абсолютно бесплодны – вся годовая продукция росшего на этом месте леса потреблялась различными консументами и редуцентами и в почвах ничего не откладывалось.

Кроме первичной и вторичной продукции биогеоценозов, различают промежуточную и конечную продукцию.

Промежуточная продукция - это продукция, которая после потребления членами биогеоценоза снова возвращается в круговорот веществ этой системы.

Конечная продукция - это продукция, которая выводится за пределы данной экосистемы.

Например, продукция, получаемая человеком в процессе возделывания сельскохозяйственных культур, разведения домашних животных, охоты, промысла и т.д.

Продуктивность различных экосистем неодинакова и зависит от ряда экологических факторов, в первую очередь, климатических (тепло, влага и др).

При этом первичная продукция органического вещества в экосистемах, богатых жизнью, может превосходить продукцию сравнительно бедных экосистем более, чем в 50 раз.

Наиболее продуктивны экосистемы эстуариев и коралловых рифов (средняя продуктивность достигает 20 г / м 2 в сутки), влажных тропических лесов и болот (средняя продуктивность составляет 10 г / м 2 в сутки).

Высокопродуктивные экосистемы встречаются там, где климатические условия благоприятны, особенно при дополнительном поступлении в экосистему энергии извне.

Поступление энергии со стороны абиотических компонентов уменьшает затраты живых организмов на поддержание собственной жизнедеятельности, т.е. они компенсируют свои затраты на дыхание.

Например, энергия приливов повышает продуктивность природной прибрежной экосистемы, компенсируя потери энергии при дыхании.

Низкой продуктивностью (0,1-0,5 г / м 2 в сутки) характеризуются экосистемы пустынь и тундр, в которых дефицит влаги и тепла лимитирует развитие низшего трофического уровня, а также открытые воды морей и океанов, где при избытке воды объем органических веществ сравнительно невысок.

При этом необходимо отметить, что большая часть земного шара покрыта океанами и пустынями с низкой продуктивностью, тогда как высокая продуктивность характерна для сравнительно незначительных участков Земли (эстуарии, коралловые рифы, болота, влажные леса).

Изменение первичной продуктивности экосистем по направлению с севера на юг происходит в следующем порядке:

    в наземных арктических биогеоценозах продуктивность низкая, а арктические моря, так же как и антарктические являются высокопродуктивными;

    в тропиках огромная часть суши занята малопродуктивными пустынями, бедны и моря этой зоны;

    в экваториальной зоне располагаются самые высокопродуктивные биогеоценозы коралловых рифов, эстуариев, болот и особенно влажных тропических лесов.

По мере продвижения с севера на юг увеличивается удельное количество солнечной энергии, попадающей на единицу поверхности Земли, что приводит к большему количеству видов, накоплению более значительной биомассы и повышению продуктивности экосистем суши.

В морских экосистемах иная ситуация, чем на суше.

Высока продуктивность северных морей, а также морей крайних южных широт, где из глубин поступают холодные воды, богатые кислородом и биогенами. В теплой воде кислород растворяется хуже и мало биогенов (тропики богаты видами, но сравнительно мало продуктивны).

Общая чистая первичная продуктивность на Земле составляет 170 млрд. тонн в год, из которых 115 млрд. тонн дают экосистемы суши, а 55 млрд. тонн - экосистемы морей.

Вторичная продукция (биомасса гетеротрофных организмов, прежде всего животных - зоомасса), во много раз меньше первичной продукции (биомассы растений - фитомассы).

В разных экосистемах зоомасса составляет незначительную долю биомассы (от 0,05% до 5% всей биомассы), тем не менее животные суши играют большую роль в регулировании процессов, происходящих в отдельных экосистемах и биосфере в целом.

Совершенно очевидно, что жизнь людей, их производственная деятельность зависят от продуктивности основных биогеоценозов, от первичной продукции и ее мирового распределения.

Питание людей обеспечивается главным образом сельскохозяйственными культурами, занимающими около 10% площади суши и дающие примерно 9,1 млрд. тонн органического вещества в год, что составляет значительную часть мировых ресурсов.

Кроме того, огромная масса первичной продукции используется человеком как техническое сырье в промышленности и быту (топливо, хлопок, лен, эфиромасличные культуры и др.), причем около 50% теряется в отходах.

Но человек потребляет не только первичную продукцию. Он изымает из биосферы большое количество вторичной продукции в виде животной пищи, расходы которой подсчитать очень трудно.

Таким образом, имеющиеся представления о продуктивности экосистем и мировом распределении первичной продукции дают возможность ориентироваться в обстановке, сложившейся на нашей планете и на строго научной основе разрабатывать мероприятия по рациональному использованию природных ресурсов.