Макияж. Уход за волосами. Уход за кожей

Макияж. Уход за волосами. Уход за кожей

» » Как построить сечение тетраэдра. Презентация на тему "сечения тетраэдра"

Как построить сечение тетраэдра. Презентация на тему "сечения тетраэдра"

На этом уроке мы рассмотрим тетраэдр и его элементы (ребро тетраэдра, поверхность, грани, вершины). И решим несколько задач на построение сечений в тетраэдре, используя общий метод для построения сечений.

Тема: Параллельность прямых и плоскостей

Урок: Тетраэдр. Задачи на построение сечений в тетраэдре

Как построить тетраэдр? Возьмем произвольный треугольник АВС . Произвольную точку D , не лежащую в плоскости этого треугольника. Получим 4 треугольника. Поверхность, образованная этими 4 треугольниками, и называется тетраэдром (Рис. 1.). Внутренние точки, ограниченные этой поверхностью, также входят в состав тетраэдра.

Рис. 1. Тетраэдр АВСD

Элементы тетраэдра
А, B , C , D - вершины тетраэдра .
AB , AC , AD , BC , BD , CD - ребра тетраэдра .
ABC , ABD , BDC , ADC - грани тетраэдра .

Замечание: можно принять плоскость АВС за основание тетраэдра , и тогда точка D является вершиной тетраэдра . Каждое ребро тетраэдра является пересечением двух плоскостей. Например, ребро АВ - это пересечение плоскостей АВ D и АВС . Каждая вершина тетраэдра - это пересечение трех плоскостей. Вершина А лежит в плоскостях АВС , АВ D , А D С . Точка А - это пересечение трех означенных плоскостей. Этот факт записывается следующим образом: А = АВС АВ D АС D .

Тетраэдр определение

Итак, тетраэдр - это поверхность, образованная четырмя треугольниками.

Ребро тетраэдра - линия перечесения двух плоскостей тетраэдра.

Составьте из 6 спичек 4 равных треугольника. На плоскости решить задачу не получается. А в пространстве это сделать легко. Возьмем тетраэдр. 6 спичек - это его ребра, четыре грани тетраэдра и будут четырьмя равными треугольниками. Задача решена.

Дан тетраэдр АВС D . Точка M принадлежит ребру тетраэдра АВ , точка N принадлежит ребру тетраэдра В D и точка Р принадлежит ребру D С (Рис. 2.). Постройте сечение тетраэдра плоскостью MNP .

Рис. 2. Рисунок к задаче 2 - Построить сечение тетраэдра плоскостью

Решение :
Рассмотрим грань тетраэдра D ВС . В этой грани точки N и P принадлежат грани D ВС , а значит, и тетраэдру. Но по условию точки N, P принадлежат секущей плоскости. Значит, NP - это линия пересечения двух плоскостей: плоскости грани D ВС и секущей плоскости. Предположим, что прямые NP и ВС не параллельны. Они лежат в одной плоскости D ВС. Найдем точку пересечения прямых NP и ВС . Обозначим ее Е (Рис. 3.).

Рис. 3. Рисунок к задаче 2. Нахождение точки Е

Точка Е принадлежит плоскости сечения MNP , так как она лежит на прямой , а прямая целиком лежит в плоскости сечения MNP .

Также точка Е лежит в плоскости АВС , потому что она лежит на прямой ВС из плоскости АВС .

Получаем, что ЕМ - линия пересечения плоскостей АВС и MNP, так как точки Е и М лежат одновременно в двух плоскостях - АВС и MNP. Соединим точки М и Е , и продолжим прямую ЕМ до пересечения с прямой АС . Точку пересечения прямых ЕМ и АС обозначим Q .

Итак, в этом случае NPQМ - искомое сечение.

Рис. 4. Рисунок к задаче 2.Решение задачи 2

Рассмотрим теперь случай, когда NP параллельна BC . Если прямая NP параллельна какой-нибудь прямой, например, прямой ВС из плоскости АВС , то прямая NP параллельна всей плоскости АВС .

Искомая плоскость сечения проходит через прямую NP , параллельную плоскости АВС , и пересекает плоскость по прямой МQ . Значит, линия пересечения МQ параллельна прямой NP . Получаем, NPQМ - искомое сечение.

Точка М лежит на боковой грани А D В тетраэдра АВС D . Постройте сечение тетраэдра плоскостью, которое проходит через точку М параллельно основанию АВС .

Рис. 5. Рисунок к задаче 3 Построить сечение тетраэдра плоскостью

Решение:
Секущая плоскость φ параллельна плоскости АВС по условию, значит, эта плоскость φ параллельна прямым АВ , АС , ВС .
В плоскости АВ D через точку М проведем прямую PQ параллельно АВ (рис. 5). Прямая PQ лежит в плоскости АВ D . Аналогично в плоскости АС D через точку Р проведем прямую РR параллельно АС . Получили точку R . Две пересекающиеся прямые PQ и РR плоскости РQR соответственно параллельны двум пересекающимся прямым АВ и АС плоскости АВС , значит, плоскости АВС и РQR параллельны. РQR - искомое сечение. Задача решена.

Дан тетраэдр АВС D . Точка М - точка внутренняя, точка грани тетраэдра АВ D . N - внутренняя точка отрезка D С (Рис. 6.). Построить точку пересечения прямой NM и плоскости АВС .

Рис. 6. Рисунок к задаче 4

Решение:
Для решения построим вспомогательную плоскость D МN . Пусть прямая D М пересекает прямую АВ в точке К (Рис. 7.). Тогда, СК D - это сечение плоскости D МN и тетраэдра. В плоскости D МN лежит и прямая NM , и полученная прямая СК . Значит, если NM не параллельна СК , то они пересекутся в некоторой точке Р . Точка Р и будет искомая точка пересечения прямой NM и плоскости АВС .

Рис. 7. Рисунок к задаче 4. Решение задачи 4

Дан тетраэдр АВС D . М - внутренняя точка грани АВ D . Р - внутренняя точка грани АВС . N - внутренняя точка ребра D С (Рис. 8.). Построить сечение тетраэдра плоскостью, проходящей через точки М , N и Р .

Рис. 8. Рисунок к задаче 5 Построить сечение тетраэдра плоскостью

Решение:
Рассмотрим первый случай, когда прямая MN не параллельна плоскости АВС . В прошлой задаче мы нашли точку пересечения прямой MN и плоскости АВС . Это точка К , она получена с помощью вспомогательной плоскости D МN , т.е. мы проводим D М и получаем точку F . Проводим СF и на пересечении MN получаем точку К .

Рис. 9. Рисунок к задаче 5. Нахождение точки К

Проведем прямую КР . Прямая КР лежит и в плоскости сечения, и в плоскости АВС . Получаем точки Р 1 и Р 2 . Соединяем Р 1 и М и на продолжении получаем точку М 1 . Соединяем точку Р 2 и N . В результате получаем искомое сечение Р 1 Р 2 NМ 1 . Задача в первом случае решена.
Рассмотрим второй случай, когда прямая MN параллельна плоскости АВС . Плоскость МNР проходит через прямую МN параллельную плоскости АВС и пересекает плоскость АВС по некоторой прямой Р 1 Р 2 , тогда прямая Р 1 Р 2 параллельна данной прямой MN (Рис. 10.).

Рис. 10. Рисунок к задаче 5. Искомое сечение

Теперь проведем прямую Р 1 М и получим точку М 1 . Р 1 Р 2 NМ 1 - искомое сечение.

Итак, мы рассмотрели тетраэдр, решили некоторые типовые задачи на тетраэдр. На следующем уроке мы рассмотрим параллелепипед.

1. И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М. : Мнемозина, 2008. - 288 с. : ил. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни)

2. Шарыгин И. Ф. - М.: Дрофа, 1999. - 208 с.: ил. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений

3. Е. В. Потоскуев, Л. И. Звалич. - 6-е издание, стереотип. - М. : Дрофа, 008. - 233 с. :ил. Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики

Дополнительные веб-ресурсы

2. Как построить сечение тетраэдра. Математика ().

3. Фестиваль педагогических идей ().

Сделай дома задачи по теме "Тетраэдр", как находить ребро тетраэдра, грани тетраэдра, вершины и поверхность тетраэдра

1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М.: Мнемозина, 2008. - 288 с.: ил. Задания 18, 19, 20 стр. 50

2. Точка Е середина ребра МА тетраэдра МАВС . Постройте сечение тетраэдра плоскостью, проходящей через точки В, С и Е .

3. В тетраэдре МАВС точка М принадлежит грани АМВ, точка Р - грани ВМС, точка К - ребру АС. Постройте сечение тетраэдра плоскостью, проходящей через точки М, Р, К.

4. Какие фигуры могут получиться в результате пересечения плоскостью тетраэдра?

Сегодня еще раз разберем, как построить сечение тетраэдра плоскостью .
Рассмотрим самый простой случай (обязательный уровень), когда 2 точки плоскости сечения принадлежат одной грани, а третья точка - другой грани.

Напомним алгоритм построения сечений такого вида (случай: 2 точки принадлежат одной грани).

1. Ищем грань, которая содержит 2 точки плоскости сечения. Проводим прямую через две точки, лежащие в одной грани. Находим точки ее пересечения с ребрами тетраэдра. Часть прямой, оказавшаяся в грани, есть сторона сечения.

2. Если многоугольник можно замкнуть - сечение построено. Если нельзя замкнуть, то находим точку пересечения построенной прямой и плоскости, содержащей третью точку.

1. Видим, что точки E и F лежат в одной грани (BCD), проведем прямую EF в плоскости (BCD).
2. Найдем точку пересечения прямой EF c ребром тетраэдра BD, это точка Н.
3. Теперь следует найти точку пересечения прямой EF и плоскости, содержащей третью точку G, т.е. плоскости (ADC).
Прямая CD лежит в плоскостях (ADC) и (BDC), значит она пересекается с прямой EF, и точка К является точкой пересечения прямой EF и плоскости (ADC).
4. Далее находим еще две точки, лежащие в одной плоскости. Это точки G и K, обе лежат в плоскости левой боковой грани. Проводим прямую GK, отмечаем точки, в которых эта прямая пересекает ребра тетраэдра. Это точки M и L.
4. Осталось "замкнуть" сечение, т.е.соединить точки, лежащие в одной грани. Это точки M и H, и также L и F. Оба этих отрезка - невидимы, проводим их пунктиром.


В сечении получился четырехугольник MHFL. Все его вершины лежат на ребрах тетраэдра. Выделим получившееся сечение.

Теперь сформулируем "свойства" правильно построенного сечения:

1. Все вершины многоугольника, которое является сечением, лежат на ребрах тетраэдра (параллелепипеда, многоугольника).

2. Все стороны сечения лежат в гранях многогранника.
3. В каждой грани многоранника может находиться не более одной (одна или ни одной!) стороны сечения

В каждой из этих граней отмечаются вершины противоположные вершине A, это будут вершины B, C и D. Полученные отрезки AB, AC, AD, BC, DC и BD между как граней куба, поэтому ABCD является правильным тетраэдром.

Обратите внимание

Тетраэдр является одним из пяти возможных правильных многогранников. К правильным многогранникам относятся так же: октаэдр, додекаэдр, икосаэдр и гексаэдр или куб. Куб – простейший для построения многогранник, все остальные могут быть построены с его помощью.

Стереометрия, как часть геометрии, гораздо ярче и интереснее именно тем, что фигуры здесь не плоскостные, а объемные. В многочисленных задачах требуется рассчитать параметры параллелепипедов, конусов, пирамид и других трехмерных фигур. Иногда уже на этапе построения возникают сложности, которые легко устраняются, если следовать простым принципам стереометрии.

Вам понадобится

  • - линейка;
  • - карандаш;
  • - циркуль;
  • - транспортир.

Инструкция

Определитесь с количеством граней, а также количеством углов в многоугольниках самих граней перед . Если в условии говорится о правильном многограннике, то стройте его так, чтобы он был выпуклый (не ломанный), чтобы грани представляли собой правильные многоугольники, а в каждой вершине трехмерной фигуры сходилось одинаковое количество ребер.

Помните об особых многогранниках, для которых есть постоянные характеристики:
- тетраэдр состоит из треугольников, имеет 4 вершины, 6 ребер, сходящихся в вершинах по 3, а также 4 грани;
- гесаэдр, или куб, состоит из квадратов, имеет 8 вершин, 12 ребер, сходящихся по по 3 на вершинах, а также ;
- октаэдр состоит из треугольников, имеет 6 вершин, 12 ребер, примыкающих по 4 к вершинам, а также 8 граней;
- – это двенадцатигранная фигура, состоящая из пятиугольников, имеющая 20 вершин, а также 30 ребер, примыкающих к вершине по 3;
- , в свою очередь, имеет 20 треугольных граней, 30 ребер, примыкающих по 5 к каждой из 12 вершин.

Начните построение с , если ребра многогранника параллельны. Это касается параллелепипеда, . При этом будет удобнее начинать построение с рисования основания многогранника, а затем достраивать грани соответственно заданным углам относительно плоскости основания. Для куба и прямого параллелепипеда это будет прямой угол между плоскостью основания и боковых граней. Для наклонного параллелепипеда соблюдайте условия задачи, при необходимости используя транспортир. Помните, что плоскости верхней и нижней грани этой фигуры параллельны.

Постройте неправильный с учетом количества углов в каждой из граней, а также числа смежных . При построении многогранника не забывайте, что грани многогранных фигур не всегда равновеликие, с одинаковым количеством углов. Например, в основании может быть ромб, а боковые грани ее будут составлять с разной длиной ребер.

Видео по теме

Обратите внимание

Если в задаче просят изобразить тетраэдр, гексаэдр (или куб), октаэдр, додекаэдр, икосаэдр, то сразу отмечайте, что речь идет об изначально правильном многограннике с соответствующим числом граней.

Полезный совет

Многогранник в общем смысле состоит из определенного количества плоских многоугольников. При этом обязательно соблюдаются следующие условия:
- смежность многоугольников, из которых состоит многогранник. Это означает, что сторона одного многоугольника одновременно является стороной и другого – смежного;
- все многоугольники непрерывно связаны между собой. Это так называемый принцип «связности».

Изготовить модель тетраэдра можно из самых разных материалов. Один из наиболее доступных вариантов - склеить его из бумаги. При этом клей требуется не всегда, поскольку самоклеющаяся бумага тоже подходит для таких целей.

Вам понадобится

  • - бумага для построения развертки;
  • - бумага для модели;
  • - линейка;
  • - карандаш;
  • - транспортир;
  • - ножницы;
  • - компьютер с AutoCAD.

Инструкция

Начните с построения развертки. Если вы собираетесь клеить тетраэдр из обычной плотной бумаги, развертку можно сделать прямо на ней. Для самоклеющейся бумаги лучше начертите выкройку, как это выполняется в классическом моделировании. Можно использовать и компьютер с AutoCAD или любым другим графическим редактором, позволяющим строить правильные многоугольники.

Урок по теме:

«Построение сечений тетраэдра и параллелепипеда»

Цели урока

1. Ознакомиться с основами решения задач на построение сечений тетраэдра и параллелепипеда плоскостью.

2. Выделить виды задач на построение сечений.

3. Выработать навыки решения задач на построение сечений тетраэдра и параллелепипеда.

4. Формирование пространственного воображения.

Ход урока.

I Организационный момент.

II Проверка домашнего задания.

Ребята, какие геометрические тела мы изучали на последних уроках? (тетраэдр, параллелепипед).

Что называется тетраэдром?

Что называется параллелепипедом?

А теперь проверим устное домашнее задание.

В учебнике на стр. 31 читаем и отвечаем на вопросы 14,15.

14. Существует ли тетраэдр у которого пять углов граней прямые?

(Нет, так как в четырёх треугольниках, образующих, может быть только четыре прямых угла, по одному в каждом не более).

15. Существует ли параллелепипед, у которого:

а ) Только одна грань прямоугольник. (Нет, так как противоположные грани параллелепипеда равны).

б ) Только две смежные грани ромбы. (Нет, ромбами могут быть только противоположные грани).

в ) Все углы грани острые. (Нет, у параллелограмма есть как острые, так и тупые углы, а каждая грань параллелограмм).

г ) Все углы грани прямые. (Да, в прямоугольном параллелепипеде).

д ) Число всех острых углов грани не равно числу всех тупых углов грани. (Нет, острых и тупых углов поровну в каждой грани).

III Объяснение новой темы.

Теперь переходим к новой теме. Запишите тему урока. Цель сегодняшнего урока:

1. Ознакомиться с основами решения задач на построение сечений тетраэдра и параллелепипеда плоскостью.

2. Выделить виды задач на построение сечений.

3. Выработать навыки решения задач на построение сечений тетраэдра и параллелепипеда.

4. Формирование пространственного воображения.

Итак, для решения многих геометрических задач, связанных с тетраэдром и параллелепипедом, полезно уметь строить на рисунке их сечения различными плоскостями.

Что же мы будем понимать под секущей плоскостью ? В учебнике на стр. 27 найдём ответ на этот вопрос.

Секущей плоскостью называют любую плоскость, по обе стороны от которой имеются точки данного многогранника.

Следующее понятие – это сечение. И снова за помощью обращаемся к учебнику. А теперь посмотрите, как выглядит точное определение сечения.

v Где располагаются стороны многоугольника, который является сечением?

v Где располагаются вершины многоугольника, который является сечением?

А теперь ответим на вопрос. Что значит построить сечение многогранника плоскостью. Таким образом, мы в каждой грани будем строить отрезки, по которым секущая плоскость пересекает грани.

Чтобы грамотно построить сечение надо уметь применять различные теоремы и свойства. Ответим на вопрос.

Какие из данных утверждений могут пригодиться при построении сечений?

1. Если две плоскости имеют общую точку, то они пересекаются по прямой, содержащей эту точку.

2. Если прямая, лежащая, в одной из пересекающихся плоскостей, пересекает другую плоскость, то она пересекает линию пересечения плоскостей.

3. Если две параллельные плоскости, пересечены третьей, то линии пересечения плоскостей параллельны.

4. Секущая, плоскость пересекает грань многогранника по ломаной линии.

5. В сечении параллелепипеда плоскостью, может получиться:

v отрезок

v треугольник

v четырёхугольник

v пятиугольник

v шестиугольник

v Семиугольник

А теперь вспомним способы задания плоскости:

При построении сечений важно знать:

https://pandia.ru/text/78/131/images/image003_53.jpg" width="559" height="288 src=">

https://pandia.ru/text/78/131/images/image005_39.jpg" width="564" height="355 src=">

Теперь в учебнике рассмотрим основные задачи на построение сечений. И так, задача первая, где необходимо построить сечение тетраэдра по трём точкам, принадлежащим секущей, плоскости, причём две из них лежат в одной плоскости, а третья лежит в другой плоскости.
.jpg" width="588" height="359 src=">

Решение задач. Проверка правильности решения с помощью слайдов.

V Итог урока.

Представьте ситуацию:

Ваш одноклассник заболел и пропустил уроки, на которых проходили тему «Построение сечений многогранников». Вам нужно по телефону объяснить эту тему. Сформулируйте пошаговый алгоритм.

https://pandia.ru/text/78/131/images/image015_14.jpg" width="600" height="284 src=">

А сейчас я проведу тестирование. Вам необходимо выполнить три задания в течение трёх минут. Выберите и выпишите номер рисунков, на которых изображено верные сечения тетраэдра и параллелепипеда, а так же верный рисунок.

VI Домашнее задание . n.14, вопрос 16, № 000,106. Придумать и решить одну задачу на построение сечения тетраэдра или параллелепипеда.

Тема: « Построение сечений тетраэдра и параллелепипеда».

Предмет : геометрия

Класс: 10

Используемые педагогические технологии:

технология проектного обучения, информационные технологии .

Тема урока : Построение сечений тетраэдра и параллелепипеда

Тип урока : урок закрепления и развития знаний.

Формы работы на уроке : фронтальная, индивидуальная

Список используемых источников и программно-педагогических средств:

1. . Геометрия. 10-11 классы,- М: Просвещение, 2006г.

2. . Задачи на развитие пространственных представлений. Книга для учителя. - М.: Просвещение, 1991.

3. Г. Прокопенко. Методы решения задач на построение сечений многогранников. 10 класс . ЧПГУ, г. Челябинск. Еженедельная учебно-методическая газета "Математика" 31/2001.

4. А. Мордкович. Семинар девятый. Тема: Построение сечений многогранников (позиционные задачи). Еженедельное приложение к газете "Первое сентября". Математика. 3/94.

5. Мультимедийный интерактивный курс "Открытая математика. Стереометрия." Физикон

6. «Живая геометрия»

Образовательные:

Проверить знание теоретического материала о многогранниках (тетраэдр, параллелепипед).

Продолжить формирование умения анализировать чертеж, выделять главные элементы при работе с моделью многогранника, намечать ход решения задачи, предвидеть конечный результат.

Отработать навыки решения задач на построение сечений многогранников.

Развивать графическую культуру и математическую речь.

Формировать навыки использования компьютерных технологий на уроках геометрии.

Развивающие:

Развивать познавательный интерес учащихся.

Формировать и развивать у учащихся пространственное воображение.

Воспитательные:

Воспитывать самостоятельность, аккуратность, трудолюбие.

Воспитывать умения работать индивидуально над задачей.

Воспитывать волю и настойчивость для достижения конечных результатов.

Техническое обеспечение:

Компьютер с установленными программами «Живая геометрия», Power Point, мультимедиапроектор.

Раздаточный материал:

Бланки-карточки с заданиями для практической работы, бланки-карточки с ответами для взаимопроверки, опоры – памятки, презентация по теме «Аксиомы стереометрии, следствия из них», презентация ученика «Построение сечений параллелепипеда», цветные карандаши.

Структура урока.

Приветствие. Организационный момент.

Постановка цели и задачи урока.

Повторение изученного материала с использованием презентации.

Актуализация опорных знаний.

Практическая работа на построение сечений.

Взаимопроверка.

Домашнее задание

Рефлексия.

Ход урока:

1)Приветствие. Организационный момент.

2) Постановка цели и задачи урока.

Задачи на построение сечений в многогранниках занимают заметное место в курсе стереометрии. Их роль обусловлена тем, что решение этого вида задач способствует усвоению аксиом стереометрии, следствий из них, развитию пространственных представлений и конструктивных навыков. Умение решать задачи на построение сечений являет­ся основой изучения почти всех тем курса стереометрии. При решении многих стереометрических задач используют сечения многогранников плоскостью.

На предыдущих уроках мы с вами познакомились с аксиомами стереометрии, следствиями из аксиом и с теоремами о параллельности прямых и плоскостей в пространстве. Мы рассмотрели алгоритмы построения несложных сечений куба, тетраэдра и параллелепипеда. Эти сечения, как правило, задавались точками, расположенными на ребрах или гранях многогранника. Сегодня на уроке мы с вами повторим геометрические утверждения, позволяющие сформулировать правила построения сечений. А также научимся применять эти знания при решении задачи на построение сечения тетраэдра и параллелепипеда плоскостью, проходящей через три данные точки, такие, что никакие три из этих точек не лежат в одной грани.

3) Повторение изученного материала с использованием презентации.

Давайте повторим некоторые вопросы теории.

    Что такое секущая плоскость? Как можно задать секущую плоскость? Что такое сечение тетраэдра (параллелепипеда)? Какие многоугольники мы получали при построении сечений тетраэдра? А какие многоугольники мы можем получить при построении сечений параллелепипеда? Давайте повторим аксиомы стереометрии, следствия из них и способы задания плоскости (презентация 1, слайды 1-10)

4) Актуализация опорных знаний.

Презентация ученика «Построение сечений параллелепипеда».

Теперь давайте вспомним алгоритм построения сечения тетраэдра на примере двух задач (презентация 1, слайды 11-12). (построение комментируется пошагово учителем).

Пащенко Алексей с помощью своей презентации напомнит нам об алгоритмах построения сечений параллелепипеда (презентация 2, слайды 1-5) (ученик демонстрирует слайды, комментируя последовательность построения)

https://pandia.ru/text/78/168/images/image002_167.gif" width="327" height="244">

Практическая работа по построению сечений параллелепипеда. Приложение 1

Приложение 2

Опора-памятка

    Аксиома 1 . Через любые три точки, не лежащие на одной прямой, проходит плоскость, и причем только одна. Аксиома 2 . Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости. Аксиома 3 . Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.

Следствия из аксиом: