Макияж. Уход за волосами. Уход за кожей

Макияж. Уход за волосами. Уход за кожей

» » Уравнения. Выражения, тождества, уравнения

Уравнения. Выражения, тождества, уравнения

Основная цель - систематизировать и обобщить сведения

о преобразованиях алгебраических выражений и решений урав-нений с одной переменной.

В соответствии с требованием федерального компонента госу-дарственного образовательного стандарта основного общего об-разования по математике первую тему 7 класса следует рассматри-вать как «связующее звено» между курсом математики 5–6 классов и курсом алгебры.

На уроках вводного повторения рекомендуется проводить в устной работе многократное повторение правил действий с раци-ональными числами. Нахождение значений числовых и буквенных выражений дает возможность закрепить вычислительные навыкис рациональными числами, а в случае необходимости (после не-больших проверочных работ) организовать тренировочные заня-тия, карточки с домашними заданиями для ликвидации выявлен-

ных пробелов. Уделяя развитию навыков вычисления серьезное внимание, систематически проводим устные разминки-вычисле-ния, комментирование с места.

При рассмотрении преобразований выражений повторяем из-

ученные ранее свойства действий над числами, подчеркивая, что


они составляют основу тождественных преобразований. Правила вывешиваются на дополнительную доску, сопровождая работу по теме как опорный сигнал.

Теоретические сведения при изучении темы «Уравнения с од-ной переменной», такие как «равносильность уравнений», фор-мулируются и разъясняются на конкретных примерах. Уровень сложности при изучении линейных уравнений остается таким же, как и в 6 классе. Однако, помогая учащимся проводить исследо-вание решения уравнения вида ax = b при различных значениях

а и b, средства алгебры способствуют развитию аналитического мышления.

Важная тема «Решение задач с помощью уравнений» остается трудной для большинства учащихся. Многие дети плохо читают,

и если навыки смыслового чтения не сформированы в достаточ-ной степени, то учителю предстоит добиваться коррекции умений учащихся на своих уроках. Многократное прочтение текста зада-чи, подводящий диалог о данных, подбор интересных по содержа-нию задач, особенно практического направления - всё это помо-гает осмыслить задачу и составить её математическую модель, то есть уравнение . В 7 классе продолжается работа по формированию у учащихся умения использовать аппарат уравнений как средство для решения задач. Такая работа, кроме того, способствует фор-мированию и коррекции еще одной из важных способностей уча-щихся - развитию речи.



Решить как можно больше задач на уроке возможно путем фронтальной работы с классом, иногда ограничивая работу толь-ко составлением уравнения, не решая его. Работа в группах помо-жет разделить этапы решения задач.

Ознакомление учащихся в 7 классе с простейшими статисти-ческими характеристиками:средним арифметическим,модой,ме-дианой, размахом, а также способами организации статистиче-ских исследований - в 8 классе носит обзорный характер и имеет цель сформировать представление о статистике как особом на-правлении в математике.

В 8 классе тема «Выражения» продолжается в изучении раци-ональных дробей. Максимально сокращая сложность выражений,необходимо уделять особое внимание отработке умений выпол-нять сложение, вычитание, умножение и деление дробей, так как они являются опорными преобразованиями дробных выражений.


Функции

Одно из основных понятий в математике сквозной линией на-

чинается в 7 классе (линейная функция y = kx + b ) и развивается

в старших классах (C = k x , y = x 2 , y = x 3 , y = x - в 8 классе). Форми-рование всех функциональных понятий и выработка соответству-

ющих навыков, а также изучение конкретных функций сопрово-ждаются рассмотрением примеров реальных зависимостей между величинами, что облегчает усвоение учебного материала для уча-щихся, устанавливает межпредметные связи, способствует усиле-нию прикладной направленности курса алгебры.

Степень

При изучении этой темы (в 7 классе - степень с натуральным показателем, а в 8 - степень с целым показателем) способствуем выработке умения выполнять действия над степенями и приме-нять свойства степени в вычислениях и преобразованиях выраже-ний. Этому помогают многократное повторение и проговаривание правил действий, опорные сигналы в виде формул, отражающие свойства степени. При выполнении заданий на нахождение зна-чений выражений, содержащих степени, особое внимание следует обратить на порядок действий.

Цели урока.

Образовательные :

  • закрепление сформированных умений по решению тригонометрических уравнений;
  • отработка формул тригонометрии;
  • углубление понимания методов решения тригонометрических уравнений;
  • подготовка к контрольной работе № 4.

Развивающие:

  • формировать навык проводить анализ ситуации с последующим выбором наиболее рационального выхода из нее;
  • развитие познавательного интереса учащихся.

Воспитательные:

  • воспитание познавательного интереса к учебному процессу;
  • формирование умения анализировать поставленную задачу;
  • воспитание эмоционально-положительной направленности на практическую деятельность;
  • воспитание информационной культуры учащихся.

Тип урока: урок закрепления изученного материала.

Ход урока

I. Организационный момент. Актуализация знаний.

Сегодня - последний урок по данной теме, следующий – контрольная работа. Тригонометрические формулы необходимо знать и уверенно применять для успешного решения задач по тригонометрии.

“Дороги не те знания, которые отлагаются в мозгу, как жир; дороги те, которые превращаются в умственные мышцы” - писал Г. Спесер, английский философ и социолог. Так и знания формул необходимо не для того, чтобы всю жизнь мы упрощали выражения, решали уравнения, а для того, чтобы наш мозг постоянно трудился.

На доске написаны уравнения и начала формул, которые учитель задает в качестве дополнительных заданий ученикам, ответившим у доски: Рисунок 1 .

1. Проверка домашнего задания - № 480 (а, б, в, г)

Учитель: Какими формулами вы пользовались при выполнении домашнего задания?

Ученики: Формулами двойного аргумента.

Учитель (вызвал 4 человека к доске для решения ДЗ): пока ребята записывают решение ДЗ, подумайте и скажите, какие формулы надо использовать при решении записанных на доске заданий: Приложение.

(На интерактивной доске - все задания, которые предстоит решить на следующем этапе урока. Ученики выбирают и проговаривают формулы, необходимые для решения соответствующего задания). Рисунок 2 .

№ 480 (а, б, в, г) (домашняя работа) Рисунок 3 .

2. Подготовка к контрольной работе.

(Учитель вызывает учеников к доске, они решают, отвечают на дополнительные вопросы)

1. Найти значение выражений: Рисунок 4

3. Блиц-опрос Презентация (Приложение . Слайды 4-6)

А вы сейчас попытайтесь ответить на мои вопросы: (но … очень быстро!!!)

1. Кофункция тангенса – это? (Котангенс)

2. От чего зависит значение функции? (От аргумента)

3. Мера измерения угла? (Градус, радиан)

4. Какой функции недостает: синус, косинус, котангенс? (Тангенс)

5. Значение тригонометрических функций повторяется через? (Период)

6. y = cosx – тригонометрическая… (Функция)

7. Как называется график функции y = sinx? (Синусоида)

8. (0;?) – Что это? (Ордината)

9. Он не только в земле, но и в математике? (Корень)

10. Предложение, требующее доказательства? (Теорема)

11. Число из , косинус которого равен а? (Арккосинус)

12. Отношение противолежащего катета к гипотенузе? (Синус)

13. y = sinx - нечетная функция, y = cosx -? (Четная)

14. Функции синус, косинус, тангенс и котангенс изучаются в разделе математики, который называется… (Тригонометрия)

Немного истории…

Учитель: В начале изучения темы “Тригонометрия” вы получили задание:

Подготовить сообщение или презентацию

УРАВНЕНИЯ С ОДНОЙ ПЕРЕМЕННОЙ

УРАВНЕНИЕ И ЕГО КОРНИ

Решим задачу: «На двух полках 40 книг, причем на верхней полке в 8 раза больше книг, чем на нижней. Сколько книг на нижней полке?»

Обозначим буквой х число книг на нижней полке. Тогда число книг на верхней полке равно Зх . По условию задачи на обеих полках находится 40 книг. Это условие можно записать в виде равенства:

3x + x = 40.

Чтобы найти неизвестное число книг, мы составили равенство, содержащее переменную. Такие равенства называют уравнениями . Переменную в уравнении называют также неизвестным числом или просто неизвестным .

Нам надо найти число, при подстановке которого вместо х в уравнение Зх + х = 40 получается верное равенство. Такое число называют решением уравнения или корнем уравнения . Равенство Зх + х = 40 верно при х = 10 . Число 10 - корень уравнения Зх + х = 40 .

Определение . Корнем уравнения называется значение переменной, при котором уравнение обращается в верное равенство .

Уравнение Зх + х = 40 имеет один корень. Можно привести примеры уравнений, которые имеют два, три и более корней или вообще не имеют корней.

Так, уравнение (х-4)(х - 5) (х-6)=0 имеет три корня: 4, б и 6. Действительно, каждое из этих чисел обращает в нуль один из множителей произведения (х-4) (х-5)(х-б), а значит, и само произведение. При любом другом значении х ни один из множителей в нуль не обращается, а значит, не обращается в нуль и произведение. Уравнение х + 2 = х не имеет корней, так как при любом значении х левая часть уравнения на 2 больше правой части.

Решить уравнение - значит найти все его корни или доказать, что их нет.

Уравнение х 2 =4 имеет два корня - числа 2 и -2. Уравнение (х-2) (х+2)=0 также имеет корни 2 и -2. Уравнения, имеющие одни и те же корни, называют равносильными уравнениями . Уравнения, не имеющие корней, также считают равносильными.

Уравнения обладают следующими свойствами:

1) если к обеим частям уравнения прибавить одно и то же число, то получится уравнение, равносильное данному;

2) если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

Рассмотрим уравнение х 2 - 2 = 7. Прибавив к левой и правой частям этого уравнения число 2, получим уравнение х 2 = 9. Докажем, что уравнения х 2 - 2 = 7 и х 2 = 9 равносильны.

Пусть некоторое значение х является корнем первого уравнения, т. е. при этом значении- х уравнение х 2 -2 = 7 обращается в верное равенство. Прибавив к обеим частям этого равенства число 2, мы снова получим верное равенство. Значит, при этом значении х второе уравнение также обращается в верное равенство. Мы доказали, что каждый корень первого уравнения является корнем второго уравнения.

Допустим теперь, что некоторое значение х является корнем второго уравнения х 2 = 9, т. е. обращает его в верное равенство. После вычитания из обеих частей этого равенства числа 2 мы получим верное равенство. Значит, при этом значении х первое уравнение также обращается в верное равенство. Поэтому каждый корень второго уравнения является корнем первого.

Таким образом, уравнения х 2 - 2 = 7 и х 2 = 9 имеют одни и те же корни, т. е. являются равносильными.

Подобными рассуждениями устанавливается справедливость обоих свойств уравнений в общем случае.

3) Можно также доказать, что если в уравнении перенести слагаемое ив одной части в другую, изменив его знак, то получится уравнение, равносильное данному . Например, перенеся в уравнении 5х = 2х + 9 слагаемое 2х с противоположным знаком из правой части уравнения в левую, получим уравнение 5х-2дс=9, ему равносильное.

Перенос слагаемых из одной части уравнения в другую часто применяется при решении уравнений.

ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙ

Каждое из уравнений 5х = - 4, - 0,2х = 0, -х= -6,5 имеет вид ах = b где а и b - числа. В первом уравнении а = 5, b= - 4, во втором а= -0,2, b = 0, в третьем а= - 1, b= -6,5. Такие уравнения называют линейными уравнениями с одной переменной .

Определение . Уравнение вида ах = b, где х - переменная, а и b - числа, называется линейным уравнением с одной переменной .

Число а называется коэффициентом при переменной , а число b - свободным членом .

Рассмотрим линейное уравнение ах = b, в котором коэффициент а не равен нулю. Разделив обе части уравнения на а, получим . Значит, линейное уравнение ах=b в котором а≠ 0, имеет единственный корень

Рассмотрим теперь линейное уравнение ах = b, у которого коэффициент а равен нулю. Если а = 0 и b≠ О, то уравнение ах =b не имеет корней, так как равенство Ox = b, где b≠ 0, не является верным ни при каком x. Если а = 0 и b = О, то любое значение х является корнем уравнения, так как равенство 0х = 0 верно при любом х.

Решение многих уравнений сводится к решению линейных уравнений.

Пример . Решим уравнение

Раскроем скобки:

Перенесем слагаемое -х в левую часть уравнения, а слагаемое 28 в правую, изменив при этом их знаки:

Приведем подобные слагаемые:

Заменяя последовательно одно уравнение другим, равносильным ему, мы получили линейное уравнение, в котором коэффициент при х отличен от нуля. Разделим обе части уравнения на этот коэффициент:

Число -5 является корнем уравнения .

Может случиться, Что при решении уравнения мы придем к линейному уравнению вида 0х=b. В этом случае исходное уравнение либо не имеет корней, либо его корнем является любое число. Например, уравнение сводится к уравнению Ох = 7, и, значит, оно не имеет корней. Уравнение сводится к уравнению 0х = 0, и, значит, любое число является его корнем.

  • Равенство с переменной называют уравнением.
  • Решить уравнение – значит найти множество его корней. Уравнение может иметь один, два, несколько, множество корней или не иметь их вовсе.
  • Каждое значение переменной, при котором данное уравнение превращается в верное равенство, называется корнем уравнения.
  • Уравнения, имеющие одни и те же корни, называются равносильными уравнениями.
  • Любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.
  • Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.

Примеры. Решить уравнение.

1. 1,5х+4 = 0,3х-2.

1,5х-0,3х = -2-4. Собрали слагаемые, содержащие переменную, в левой части равенства, а свободные члены – в правой части равенства. При этом применяли свойство:

1,2х = -6. Привели подобные слагаемые по правилу:

х = -6 : 1,2. Обе части равенства разделили на коэффициент при переменной, так как

х = -5. Делили по правилу деления десятичной дроби на десятичную дробь:

чтобы разделить число на десятичную дробь, нужно перенести запятые в делимом и делителе на столько цифр вправо, сколько их стоит после запятой в делителе, а затем выполнить деление на натуральное число:

6 : 1,2 = 60 : 12 = 5.

Ответ: 5.

2. 3(2х-9) = 4(х-4).

6х-27 = 4х-16. Раскрыли скобки, используя распределительный закон умножения относительно вычитания: (a-b) c = a c-b c.

6х-4х = -16+27. Собрали слагаемые, содержащие переменную, в левой части равенства, а свободные члены – в правой части равенства. При этом применяли свойство: любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.

2х = 11. Привели подобные слагаемые по правилу: чтобы привести подобные слагаемые, надо сложить их коэффициенты и полученный результат умножить на их общую буквенную часть (т.е. к полученному результату приписать их общую буквенную часть).

х = 11 : 2. Обе части равенства разделили на коэффициент при переменной, так как если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.

Ответ: 5,5.

3. 7х- (3+2х)=х-9.

7х-3-2х = х-9. Раскрыли скобки по правилу раскрытия скобок, перед которыми стоит знак «-»: если перед скобками стоит знак «-», то убираем скобки, знак «-» и записываем слагаемые, стоявшие в скобках, с противоположными знаками.

7х-2х-х = -9+3. Собрали слагаемые, содержащие переменную, в левой части равенства, а свободные члены – в правой части равенства. При этом применяли свойство: любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.

4х = -6. Привели подобные слагаемые по правилу: чтобы привести подобные слагаемые, надо сложить их коэффициенты и полученный результат умножить на их общую буквенную часть (т.е. к полученному результату приписать их общую буквенную часть).

х = -6 : 4. Обе части равенства разделили на коэффициент при переменной, так как если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.

Ответ: -1,5.

3 (х-5) = 7 12 — 4 (2х-11). Умножили обе части равенства на 12 – наименьший общий знаменатель для знаменателей данных дробей.

3х-15 = 84-8х+44. Раскрыли скобки, используя распределительный закон умножения относительно вычитания: чтобы разность двух чисел умножить на третье число, можно отдельно уменьшаемое и отдельно вычитаемое умножить на третье число, а затем из первого результата вычесть второй результат, т.е. (a-b) c = a c-b c.

3х+8х = 84+44+15. Собрали слагаемые, содержащие переменную, в левой части равенства, а свободные члены – в правой части равенства. При этом применяли свойство: любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.

11х = 143. Привели подобные слагаемые по правилу: чтобы привести подобные слагаемые, надо сложить их коэффициенты и полученный результат умножить на их общую буквенную часть (т.е. к полученному результату приписать их общую буквенную часть).

х = 143 : 11. Обе части равенства разделили на коэффициент при переменной, так как если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.

Ответ: 13.

5. Решить самостоятельно уравнения:

а) 3-2,6х = 5х+1,48;

б) 1,6 · (х+5) = 4 · (4,5-0,6х);

в) 9х- (6х+2,5) = — (х-5,5);


5а) 0,2; 5б) 2,5; 5в) 2; 5г) -1.

Страница 1 из 1 1

Уравнения

Как решать уравнения?

В этом разделе мы вспомним (или изучим – уж кому как) самые элементарные уравнения. Итак, что такое уравнение? Говоря человеческим языком, это какое-то математическое выражение, где есть знак равенства и неизвестное. Которое, обычно, обозначается буквой «х» . Решить уравнение - это найти такие значения икса, которые при подстановке в исходное выражение, дадут нам верное тождество. Напомню, что тождество – это выражение, которое не вызывает сомнения даже у человека, абсолютно не отягощенного математическими знаниями. Типа 2=2, 0=0, ab=ab и т.д. Так как решать уравнения? Давайте разберёмся.

Уравнения бывают всякие (вот удивил, да?). Но всё их бесконечное многообразие можно разбить всего на четыре типа.

4. Все остальные.)

Всех остальных, разумеется, больше всего, да...) Сюда входят и кубические, и показательные, и логарифмические, и тригонометрические и всякие другие. С ними мы в соответствующих разделах плотно поработаем.

Сразу скажу, что иногда и уравнения первых трёх типов так накрутят, что и не узнаешь их… Ничего. Мы научимся их разматывать.

И зачем нам эти четыре типа? А затем, что линейные уравнения решаются одним способом, квадратные другим, дробные рациональные - третьим, а остальные не решаются вовсе! Ну, не то, чтобы уж совсем никак не решаются, это я зря математику обидел.) Просто для них существуют свои специальные приёмы и методы.

Но для любых (повторяю - для любых! ) уравнений есть надёжная и безотказная основа для решения. Работает везде и всегда. Эта основа - Звучит страшно, но штука очень простая. И очень (очень!) важная.

Собственно, решение уравнения и состоит из этих самых преобразований. На 99%. Ответ на вопрос: "Как решать уравнения? " лежит, как раз, в этих преобразованиях. Намёк понятен?)

Тождественные преобразования уравнений.

В любых уравнениях для нахождения неизвестного надо преобразовать и упростить исходный пример. Причем так, чтобы при смене внешнего вида суть уравнения не менялась. Такие преобразования называются тождественными или равносильными.

Отмечу, что эти преобразования относятся именно к уравнениям. В математике ещё имеются тождественные преобразования выражений. Это другая тема.

Сейчас мы с вами повторим все-все-все базовые тождественные преобразования уравнений.

Базовые потому, что их можно применять к любым уравнениям – линейным, квадратным, дробным, тригонометрическим, показательным, логарифмическим и т.д. и т.п.

Первое тождественное преобразование: к обеим частям любого уравнения можно прибавить (отнять) любое (но одно и то же!) число или выражение (в том числе и выражение с неизвестным!). Суть уравнения от этого не меняется.

Вы, между прочим, постоянно пользовались этим преобразованием, только думали, что переносите какие-то слагаемые из одной части уравнения в другую со сменой знака. Типа:

Дело знакомое, переносим двойку вправо, и получаем:

На самом деле вы отняли от обеих частей уравнения двойку. Результат получается тот же самый:

х+2 - 2 = 3 - 2

Перенос слагаемых влево-вправо со сменой знака есть просто сокращённый вариант первого тождественного преобразования. И зачем нам такие глубокие познания? – спросите вы. В уравнениях низачем. Переносите, ради бога. Только знак не забывайте менять. А вот в неравенствах привычка к переносу может и в тупик поставить….

Второе тождественное преобразование : обе части уравнения можно умножить (разделить) на одно и то же отличное от нуля число или выражение. Здесь уже появляется понятное ограничение: на ноль умножать глупо, а делить и вовсе нельзя. Это преобразование вы используете, когда решаете что-нибудь крутое, типа

Понятное дело, х = 2. А вот как вы его нашли? Подбором? Или просто озарило? Чтобы не подбирать и не ждать озарения, нужно понять, что вы просто поделили обе части уравнения на 5. При делении левой части (5х) пятёрка сократилась, остался чистый икс. Чего нам и требовалось. А при делении правой части (10) на пять, получилась, знамо дело, двойка.

Вот и всё.

Забавно, но эти два (всего два!) тождественных преобразования лежат в основе решения всех уравнений математики. Во как! Имеет смысл посмотреть на примерах, что и как, правда?)

Примеры тождественных преобразований уравнений. Основные проблемы.

Начнём с первого тождественного преобразования. Перенос влево-вправо.

Пример для младшеньких.)

Допустим, надо решить вот такое уравнение:

3-2х=5-3х

Вспоминаем заклинание: "с иксами - влево, без иксов - вправо!" Это заклинание - инструкция по применению первого тождественного преобразования.) Какое выражение с иксом у нас справа? ? Ответ неверный! Справа у нас - ! Минус три икс! Стало быть, при переносе влево, знак поменяется на плюс. Получится:

3-2х+3х=5

Так, иксы собрали в кучку. Займёмся числами. Слева стоит тройка. С каким знаком? Ответ "с никаким" не принимается!) Перед тройкой, действительно, ничего не нарисовано. А это значит, что перед тройкой стоит плюс. Так уж математики договорились. Ничего не написано, значит, плюс. Следовательно, в правую часть тройка перенесётся с минусом. Получим:

-2х+3х=5-3

Остались сущие пустяки. Слева - привести подобные, справа - посчитать. Сразу получается ответ:

В этом примере хватило одного тождественного преобразования. Второе не понадобилось. Ну и ладно.)

Пример для старшеньких.)

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.