Макияж. Уход за волосами. Уход за кожей

Макияж. Уход за волосами. Уход за кожей

» » Периодические и непериодические десятичные дроби. Периодические десятичные дроби

Периодические и непериодические десятичные дроби. Периодические десятичные дроби

Помните, как в самом первом уроке про десятичные дроби я говорил, что существуют числовые дроби, не представимые в виде десятичных (см. урок «Десятичные дроби »)? Мы еще учились раскладывать знаменатели дробей на множители, чтобы проверить, нет ли там чисел, отличных от 2 и 5.

Так вот: я наврал. И сегодня мы научимся переводить абсолютно любую числовую дробь в десятичную. Заодно познакомимся с целым классом дробей с бесконечной значащей частью.

Периодическая десятичная дробь - это любая десятичная дробь, у которой:

  1. Значащая часть состоит из бесконечного количества цифр;
  2. Через определенные интервалы цифры в значащей части повторяются.

Набор повторяющихся цифр, из которых состоит значащая часть, называется периодической частью дроби, а количество цифр в этом наборе - периодом дроби. Остальной отрезок значащей части, который не повторяется, называется непериодической частью.

Поскольку определений много, стоит подробно рассмотреть несколько таких дробей:

Эта дробь встречается в задачах чаще всего. Непериодическая часть: 0; периодическая часть: 3; длина периода: 1.

Непериодическая часть: 0,58; периодическая часть: 3; длина периода: снова 1.

Непериодическая часть: 1; периодическая часть: 54; длина периода: 2.

Непериодическая часть: 0; периодическая часть: 641025; длина периода: 6. Для удобства повторяющиеся части отделены друг от друга пробелом - в настоящем решении так делать не обязательно.

Непериодическая часть: 3066; периодическая часть: 6; длина периода: 1.

Как видите, определение периодической дроби основано на понятии значащей части числа . Поэтому если вы забыли что это такое, рекомендую повторить - см. урок « ».

Переход к периодической десятичной дроби

Рассмотрим обыкновенную дробь вида a /b . Разложим ее знаменатель на простые множители. Возможны два варианта:

  1. В разложении присутствуют только множители 2 и 5. Эти дроби легко приводятся к десятичным - см. урок «Десятичные дроби ». Такие нас не интересуют;
  2. В разложении присутствует что-то еще, кроме 2 и 5. В этом случае дробь непредставима в виде десятичной, зато из нее можно сделать периодическую десятичную дробь.

Чтобы задать периодическую десятичную дробь, надо найти ее периодическую и непериодическую часть. Как? Переведите дробь в неправильную, а затем разделите числитель на знаменатель «уголком».

При этом будет происходить следующее:

  1. Сначала разделится целая часть , если она есть;
  2. Возможно, будет несколько чисел после десятичной точки;
  3. Через некоторое время цифры начнут повторяться .

Вот и все! Повторяющиеся цифры после десятичной точки обозначаем периодической частью, а то, что стоит спереди - непериодической.

Задача. Переведите обыкновенные дроби в периодические десятичные:

Все дроби без целой части, поэтому просто делим числитель на знаменатель «уголком»:

Как видим, остатки повторяются. Запишем дробь в «правильном» виде: 1,733 ... = 1,7(3).

В итоге получается дробь: 0,5833 ... = 0,58(3).

Записываем в нормальном виде: 4,0909 ... = 4,(09).

Получаем дробь: 0,4141 ... = 0,(41).

Переход от периодической десятичной дроби к обыкновенной

Рассмотрим периодическую десятичную дробь X = abc (a 1 b 1 c 1). Требуется перевести ее в классическую «двухэтажную». Для этого выполним четыре простых шага:

  1. Найдите период дроби, т.е. подсчитайте, сколько цифр находится в периодической части. Пусть это будет число k ;
  2. Найдите значение выражения X · 10 k . Это равносильно сдвигу десятичной точки на полный период вправо - см. урок «Умножение и деление десятичных дробей »;
  3. Из полученного числа надо вычесть исходное выражение. При этом периодическая часть «сжигается», и остается обычная дробь ;
  4. В полученном уравнении найти X . Все десятичные дроби переводим в обыкновенные.

Задача. Приведите к обыкновенной неправильной дроби числа:

  • 9,(6);
  • 32,(39);
  • 0,30(5);
  • 0,(2475).

Работаем с первой дробью: X = 9,(6) = 9,666 ...

В скобках содержится лишь одна цифра, поэтому период k = 1. Далее умножаем эту дробь на 10 k = 10 1 = 10. Имеем:

10X = 10 · 9,6666 ... = 96,666 ...

Вычитаем исходную дробь и решаем уравнение:

10X − X = 96,666 ... − 9,666 ... = 96 − 9 = 87;
9X = 87;
X = 87/9 = 29/3.

Теперь разберемся со второй дробью. Итак, X = 32,(39) = 32,393939 ...

Период k = 2, поэтому умножаем все на 10 k = 10 2 = 100:

100X = 100 · 32,393939 ... = 3239,3939 ...

Снова вычитаем исходную дробь и решаем уравнение:

100X − X = 3239,3939 ... − 32,3939 ... = 3239 − 32 = 3207;
99X = 3207;
X = 3207/99 = 1069/33.

Приступаем к третьей дроби: X = 0,30(5) = 0,30555 ... Схема та же самая, поэтому я просто приведу выкладки:

Период k = 1 ⇒ умножаем все на 10 k = 10 1 = 10;

10X = 10 · 0,30555 ... = 3,05555 ...
10X − X = 3,0555 ... − 0,305555 ... = 2,75 = 11/4;
9X = 11/4;
X = (11/4) : 9 = 11/36.

Наконец, последняя дробь: X = 0,(2475) = 0,2475 2475 ... Опять же, для удобства периодические части отделены друг от друга пробелами. Имеем:

k = 4 ⇒ 10 k = 10 4 = 10 000;
10 000X = 10 000 · 0,2475 2475 = 2475,2475 ...
10 000X − X = 2475,2475 ... − 0,2475 2475 ... = 2475;
9999X = 2475;
X = 2475: 9999 = 25/101.

Как известно, множество рациональных чисел (Q) включает в себя множества целых чисел (Z), которое в свою очередь включает множество натуральных чисел (N). Помимо целых чисел в рациональные числа входят дроби.

Почему же тогда все множество рациональных чисел рассматривают иногда как бесконечные десятичные периодические дроби? Ведь кроме дробей, они включают и целые числа, а также непериодические дроби.

Дело в том, что все целые числа, а также любую дробь можно представить в виде бесконечной периодической десятичной дроби. То есть для всех рациональных чисел можно использовать одинаковый способ записи.

Как представляется бесконечная периодическая десятичная дробь? В ней повторяющуюся группу цифр после запятой берут в скобки. Например, 1,56(12) - это дробь, у которой повторяется группа цифр 12, т. е. дробь имеет значение 1,561212121212... и так без конца. Повторяющаяся группа цифр называется периодом.

Однако в подобном виде мы можем представить любое число, если будем считать его периодом цифру 0, которая также повторяется без конца. Например, число 2 - это то же самое, что 2,00000.... Следовательно, его можно записать в виде бесконечной периодической дроби, т. е. 2,(0).

То же самое можно сделать и с любой конечной дробью. Например:

0,125 = 0,1250000... = 0,125(0)

Однако на практике не используют преобразование конечной дроби в бесконечную периодическую. Поэтому разделяют конечные дроби и бесконечные периодические. Таким образом, правильнее говорить, что к рациональным числам принадлежат

  • все целые числа,
  • конечные дроби,
  • бесконечные периодические дроби.

При этом просто помнят, что целые числа и конечные дроби представимы в теории в виде бесконечных периодических дробей.

С другой стороны, понятия конечной и бесконечной дроби употребимы к десятичным дробям. Если говорить об обыкновенных дробях, то как конечную, так и бесконечную десятичную дробь можно однозначно представить в виде обыкновенной дроби. Значит, с точки зрения обыкновенных дробей, периодические и конечные дроби - это одно и то же. Кроме того, целые числа также могут быть представлены в виде обыкновенной дроби, если представить, что мы делим это число на 1.

Как представить десятичную бесконечную периодическую дробь в виде обыкновенной? Чаще используют примерно такой алгоритм:

  1. Приводят дробь к виду, чтобы после запятой оказался только период.
  2. Умножают бесконечную периодическую дробь на 10 или 100 или … так, чтобы запятая передвинулась вправо на один период (т. е. один период оказался в целой части).
  3. Приравнивают исходную дробь (a) переменной x, а полученную путем умножения на число N дробь (b) - к Nx.
  4. Из Nx вычитают x. Из b вычитаю a. Т. е. составляют уравнение Nx – x = b – a.
  5. При решении уравнения получается обыкновенная дробь.

Пример перевода бесконечной периодической десятичной дроби в обыкновенную дробь:
x = 1,13333...
10x = 11,3333...
10x * 10 = 11,33333... * 10
100x = 113,3333...
100x – 10x = 113,3333... – 11,3333...
90x = 102
x =

Имеется иное представление рационального числа 1/2, отличное от представлений вида 2/4, 3/6, 4/8 и т. д. Мы подразумеваем представление в виде десятичной дроби 0,5. Одни дроби имеют конечные десятичные представления, например,

в то время как десятичные представления других дробей бесконечны:

Эти бесконечные десятичные дроби можно получить из соответствующих рациональных дробей, деля числитель на знаменатель. Например, в случае дроби 5/11, деля 5,000... на 11, получаем 0,454545...

Какие рациональные дроби имеют конечные десятичные представления? Прежде чем ответить на этот вопрос в общем случае, рассмотрим конкретный пример. Возьмем, скажем, конечную десятичную дробь 0,8625. Мы знаем, что

и что любая конечная десятичная дробь может быть записана в виде рациональной десятичной дроби со знаменателем, равным 10, 100, 1000 или какой-либо другой степени 10.

Приводя дробь справа к несократимой дроби, получаем

Знаменатель 80 получен делением 10 000 на 125 - наибольший общий делитель 10 000 и 8625. Поэтому в разложение на простые множители числа 80, как и числа 10 000, входят только два простых множителя: 2 и 5. Если бы мы начинали не с 0,8625, а с любой другой конечной десятичной дроби, то получившаяся несократимая рациональная дробь тоже обладала бы этим свойством. Иначе говоря, в разложение знаменателя b на простые множители могли бы входить лишь простые числа 2 и 5, поскольку b есть делитель некоторой степени 10, а . Это обстоятельство оказывается определяющим, а именно имеет место следующее общее утверждение:

Несократимая рациональная дробь имеет конечное десятичное представление тогда и только тогда, когда число b не имеет простых делителей, личных от 2 и 5.

Отметим, что при этом b не обязано иметь среди своих простых делителей оба числа 2 и 5: оно может делиться лишь на одно из них или не делиться на них вовсе. Например,

здесь b соответственно равно 25, 16 и 1. Существенным является отсутствие у b других делителей, отличных от 2 и 5.

Сформулированное выше предложение содержит выражение тогда и только тогда. До сих пор мы доказали лишь ту часть, которая относится к обороту только тогда. Именно мы показали, что разложение рационального числа в десятичную дробь будет конечным лишь в том случае, когда b не имеет простых делителей, отличных от 2 и 5.

(Иными словами, если b делится на простое число, отличное от 2 и 5, то несократимая дробь не имеет конечного десятичного выражения.)

Та часть предложения, которая относится к слову тогда, утверждает, что если целое число b не имеет f других простых делителей, кроме 2 и 5, то несократимая рациональная дробь может быть представлена конечной десятичной дробью. Чтобы это доказать, мы должны взять произвольную несократимую рациональную дробь , у которой b не имеет других простых делителей, кроме 2 и 5, и убедиться в том, что соответствующая ей десятичная дробь конечна. Рассмотрим сначала пример. Пусть

Для получения десятичного разложения преобразуем эту дробь в дробь, знаменатель которой представляет собой целую степень десяти. Этого можно достигнуть, умножив числитель и знаменатель на :

Приведенное рассуждение можно распространить на общий случай следующим образом. Предположим, что b имеет вид , где тип - неотрицательные целые числа (т. е. положительные числа или нуль). Возможны два случая: либо меньше или равно (это условие записывается ), либо больше (что записывается ). При умножим числитель и знаменатель дроби на

Тот факт, что многие квадратные корни являются иррациональными числами , нисколько не умаляет их значения, в частности, число $\sqrt2$ очень часто используется в различных инженерных и научных расчетах. Это число можно вычислить с той точностью, которая необходима в каждом конкретном случае. Вы можете получить это число с таким количеством знаков после запятой, на которое у вас хватит терпения.

Например, число $\sqrt2$ можно определить с точностью до шести десятичных знаков: $\sqrt2=1,414214$. Эта величина не очень сильно отличается от истинного значения, поскольку $1,414214 \times 1,414214=2,000001237796$. Этот ответ отличается от 2 на величину, едва превышающую одну миллионную. Поэтому значение $\sqrt2$, равное $1,414214$, считается вполне приемлемым для решения большинства практических задач. В том случае, когда требуется большая точность, нетрудно получить столько значащих цифр после запятой, сколько необходимо в данном случае.

Однако если вы проявите редкостное упрямство и попробуете извлекать квадратный корень из числа $\sqrt2$ до тех пор, пока не добьетесь точного результата, вы никогда не закончите своей работы. Это бесконечный процесс. Сколько бы десятичных знаков после запятой вы ни получили, всегда останется еще несколько.

Этот факт может поразить вас так же сильно, как и превращение $\frac13$ в бесконечную десятичную дробь $0,333333333…$ и так бесконечно или превращение $\frac17$ в $0,142857142857142857…$ и так далее бесконечно. На первый взгляд может показаться, что эти бесконечные и иррациональные квадратные корни - это явления одного порядка, но это совсем не так. Ведь у этих бесконечных дробей есть дробный эквивалент, в то время как у $\sqrt2$ такого эквивалента нет. А почему, собственно? Дело в том, что десятичным эквивалентом $\frac13$ и $\frac17$, а также бесконечного числа других дробей являются периодические бесконечные дроби.

В то же время десятичный эквивалент $\sqrt2$ является непериодической дробью. Это утверждение справедливо также для любого иррационального числа.

Проблема заключается в том, что любая десятичная дробь, которая является приближенным значением корня квадратного из 2, представляет собой непериодическую дробь . Как далеко мы ни продвинемся в расчетах, любая дробь, которую мы получим, будет непериодической.

Представьте себе дробь с огромным количеством непериодических цифр после запятой. Если вдруг после миллионной цифры вся последовательность десятичных знаков повторится, значит, десятичная дробь - периодическая и для нее существует эквивалент в виде отношения целых чисел. Если у дроби с огромным количеством (миллиарды или миллионы) непериодических десятичных знаков в какой-то момент появляется бесконечная серия повторяющихся цифр, например $…55555555555…$, это также означает, что данная дробь - периодическая и для нее существует эквивалент в виде отношения целых чисел.

Однако в случае их десятичные эквиваленты полностью непериодические и не могут превратиться в периодические.

Разумеется, вы можете задать следующий вопрос: «А кто может знать и сказать наверняка, что происходит с дробью, скажем, после триллионного знака? Кто может гарантировать, что дробь не станет периодической?» Существуют способы неопровержимо доказать, что иррациональные числа являются непериодическими, но такие доказательства требуют сложного математического аппарата. Но если бы вдруг оказалось, что иррациональное число становится периодической дробью , это означало бы полный крах основ математических наук. И на самом деле это вряд ли возможно. Это вам не просто на костяшки перекидывать со стороны на сторону, здесь сложная математическая теория.