Макияж. Уход за волосами. Уход за кожей

Макияж. Уход за волосами. Уход за кожей

» » Неравные квадраты. Квадратные неравенства

Неравные квадраты. Квадратные неравенства

Квадратными неравенствами называют , которые можно привести к виду \(ax^2+bx+c\) \(⋁\) \(0\), где \(a\),\(b\) и \(с\) - любые числа (причем \(a≠0\)), \(x\) – неизвестная , а \(⋁\) – любой из знаков сравнения (\(>\),\(<\),\(≤\),\(≥\)).

Проще говоря, такие неравенства выглядят как , но со вместо знака равно.
Примеры:

\(x^2+2x-3>0\)
\(3x^2-x≥0\)
\((2x+5)(x-1)≤5\)

Как решать квадратные неравенства?

Квадратные неравенства обычно решают . Ниже приведен алгоритм, как решать квадратные неравенства с дискриминантом больше нуля. Решение квадратных неравенств с дискриминантом равным нулю или меньше нуля – разобраны отдельно.

Пример. Решите квадратное неравенство \(≥\) \(\frac{8}{15}\)
Решение:

\(\frac{x^2}{5}+\frac{2x}{3}\) \(≥\) \(\frac{8}{15}\)

\(D=100+4⋅3⋅8=196=14^2\)
\(x_1=\frac{-10-14}{6}=-4\) \(x_2=\frac{-10+14}{6}=\frac{2}{3}\)

Когда корни найдены, запишем неравенство в виде.

\(3(x+4)(x-\frac{2}{3})≥0\)

Теперь начертим числовую ось, отметим на ней корни и расставим знаки на интервалах.

Выпишем в ответ интересующие нас интервалы. Так как знак неравенства \(≥\), то нам нужны интервалы со знаком \(+\), при этом сами корни мы включаем в ответ (скобки на этих точках – квадратные).

Ответ : \(x∈(-∞;-4]∪[ \frac{2}{3};∞)\)

Квадратные неравенства с отрицательным и равным нулю дискриминантом

Алгоритм выше работает, когда дискриминант больше нуля, то есть имеет \(2\) корня. Что делать в остальных случаях? Например, таких:

\(1) x^2+2x+9>0\)

\(2) x^2+6x+9≤0\)

\(3)-x^2-4x-4>0\)

\(4) -x^2-64<0\)

\(D=4-36=-32<0\)

\(D=-4 \cdot 64<0\)


Если \(D<0\), то квадратный трехчлен имеет постоянный знак, совпадающий со знаком коэффициента \(a\) (тем, что стоит перед \(x^2\)).

То есть, выражение:
\(x^2+2x+9\) – положительно при любых \(x\), т.к. \(a=1>0\)
\(-x^2-64\) - отрицательно при любых \(x\), т.к. \(a=-1<0\)


Если \(D=0\), то квадратный трехчлен при одном значении \(x\) равен нулю, а при всех остальных имеет постоянный знак, который совпадает со знаком коэффициента \(a\).

То есть, выражение:
\(x^2+6x+9\) - равно нулю при \(x=-3\) и положительно при всех остальных иксах, т.к. \(a=1>0\)
\(-x^2-4x-4\) - равно нулю при \(x=-2\) и отрицательно при всех остальных, т.к. \(a=-1<0\).


Как найти икс, при котором квадратный трехчлен равен нулю? Нужно решить соответствующее квадратное уравнение.

С учетом этой информации давайте решим квадратные неравенства:

1) \(x^2+2x+9>0\)
\(D=4-36=-32<0\)

Неравенство, можно сказать, задает нам вопрос: «при каких \(x\) выражение слева больше нуля?». Выше мы уже выяснили, что при любых. В ответе можно так и написать: «при любых \(x\)», но лучше туже самую мысль, выразить на языке математики.

Ответ: \(x∈(-∞;∞)\)

2) \(x^2+6x+9≤0\)
\(D=36-36=0\)

Вопрос от неравенства: «при каких \(x\) выражение слева меньше или равно нулю?» Меньше нуля оно быть не может, а вот равно нулю – вполне. И чтобы выяснить при каком иске это произойдет, решим соответствующие квадратное уравнение.

Давайте соберем наше выражение по \(a^2+2ab+b^2=(a+b)^2\).

Сейчас нам мешает только квадрат. Давайте вместе подумаем - какое число в квадрате равно нулю? Ноль! Значит, квадрат выражения равен нулю только если само выражение равно нулю.

\(x+3=0\)
\(x=-3\)

Это число и будет ответом.

Ответ: \(-3\)

3)\(-x^2-4x-4>0\)
\(D=16-16=0\)

Когда выражение слева больше нуля?

Как выше уже было сказано выражение слева либо отрицательно, либо равно нулю, положительным оно быть не может. Значит ответ – никогда. Запишем «никогда» на языке математике, с помощью символа «пустое множество» - \(∅\).

Ответ: \(x∈∅\)

4) \(-x^2-64<0\)
\(D=-4 \cdot 64<0\)

Когда выражение слева меньше нуля?

Всегда. Значит неравенство выполняется при любых \(x\).

Ответ: \(x∈(-∞;∞)\)

Определение квадратного неравенства

Замечание 1

Квадратным неравенство называется т.к. переменная возведена в квадрат. Также квадратные неравенства называют неравенствами второй степени .

Пример 1

Пример .

$7x^2-18x+3 0$, $11z^2+8 \le 0$ – квадратные неравенства.

Как видно из примера, не все элементы неравенства вида $ax^2+bx+c > 0$ присутствуют.

Например, в неравенстве $\frac{5}{11} y^2+\sqrt{11} y>0$ нет свободного члена (слагаемое $с$), а в неравенстве $11z^2+8 \le 0$ нет слагаемого с коэффициентом $b$. Такие неравенства также являются квадратными, но их еще называют неполными квадратными неравенствами . Это лишь означает, что коэффициенты $b$ или $с$ равны нулю.

Методы решения квадратных неравенств

При решении квадратных неравенств используют такие основные методы:

  • графический;
  • метод интервалов;
  • выделения квадрата двучлена.

Графический способ

Замечание 2

Графический способ решения квадратных неравенств $ax^2+bx+c > 0$ (или со знаком $

Данные промежутки и являются решением квадратного неравенства .

Метод интервалов

Замечание 3

Метод интервалов решения квадратных неравенств вида $ax^2+bx+c > 0$ (знак неравенства может быть также $

Решениями квадратного неравенства со знаком $«»$ – положительные промежутки, со знаками $«≤»$ и $«≥»$ – отрицательные и положительные промежутки (соответственно), включая точки, которые отвечают нулям трехчлена.

Выделение квадрата двучлена

Метод решения квадратного неравенства выделением квадрата двучлена заключается в переходе к равносильному неравенству вида $(x-n)^2 > m$ (или со знаком $

Неравенства, которые сводятся к квадратным

Замечание 4

Зачастую при решении неравенств их нужно привести к квадратным неравенствам вида $ax^2+bx+c > 0$ (знак неравенства может быть также $ неравенствами, которые сводятся к квадратным.

Замечание 5

Самым простым способом приведения неравенств к квадратным может быть перестановка в исходном неравенстве слагаемых или перенос их, например, из правой части в левую.

Например, при переносе всех слагаемых неравенства $7x > 6-3x^2$ из правой части в левую получается квадратное неравенство вида $3x^2+7x-6 > 0$.

Если переставить в левой части неравенства $1,5y-2+5,3x^2 \ge 0$ слагаемые в порядке убывания степени переменной $у$, то это приведет к равносильному квадратному неравенству вида $5,3x^2+1,5y-2 \ge 0$.

При решении рациональных неравенств часто используют приведение их к квадратным неравенствам. При этом необходимо перенести все слагаемые в левую часть и преобразовать получившееся выражение к виду квадратного трехчлена.

Пример 2

Пример .

Привести неравенство $7 \cdot (x+0,5) \cdot x > (3+4x)^2-10x^2+10$ к квадратному.

Решение .

Перенесем все слагаемые в левую часть неравенства:

$7 \cdot (x+0,5) \cdot x-(3+4x)^2+10x^2-10 > 0$.

Используя формулы сокращенного умножения и раскрывая скобки, упростим выражение в левой части неравенства:

$7x^2+3,5x-9-24x-16x^2+10x^2-10 > 0$;

$x^2-21,5x-19 > 0$.

Ответ : $x^2-21,5x-19 > 0$.

Понятие математического неравенства возникло в глубокой древности. Это произошло тогда, когда у первобытного человека появилась потребность при счёте и действиях с различными предметами сравнивать их количество и величину. Начиная с античных времён неравенствами пользовались в своих рассуждениях Архимед, Евклид и другие прославленные деятели науки: математики, астрономы, конструкторы и философы.

Но они, как правило, применяли в своих работах словесную терминологию. Впервые современные знаки для обозначения понятий «больше» и «меньше» в том виде, каком их сегодня знает каждый школьник, придумали и применили на практике в Англии. Оказал такую услугу потомкам математик Томас Гарриот. А случилось это около четырёх столетий назад.

Известно множество видов неравенств. Среди них простые, содержащие одну, две и больше переменных, квадратные, дробные, сложные соотношения и даже представленные системой выражений. А понять, как решать неравенства, лучше всего на различных примерах.

Не опоздать на поезд

Для начала представим себе, что житель сельской местности спешит на железнодорожную станцию, которая находится на расстоянии 20 км от его деревни. Чтобы не опоздать на поезд, отходящий в 11 часов, он должен вовремя выйти из дома. В котором часу это необходимо сделать, если скорость его движения составляет 5 км/ч? Решение этой практической задачи сводится к выполнению условий выражения: 5 (11 - Х) ≥ 20, где Х - время отправления.

Это понятно, ведь расстояние, которое необходимо преодолеть селянину до станции равно скорости движения, умноженной на количество часов в пути. Прийти раньше человек может, но вот опоздать ему никак нельзя. Зная, как решать неравенства, и применив свои умения на практике, в итоге получим Х ≤ 7, что и является ответом. Это значит, что селянину следует отправиться на железнодорожную станцию в семь утра или несколько ранее.

Числовые промежутки на координатной прямой

Теперь выясним, как отобразить описываемые соотношения на Полученное выше неравенство не является строгим. Оно означает, что переменная может принимать значения меньше 7, а может быть равным этому числу. Приведём другие примеры. Для этого внимательно рассмотрим четыре рисунка, представленных ниже.

На первом из них можно увидеть графическое изображение промежутка [-7; 7]. Он состоит из множества чисел, размещённых на координатной прямой и находящихся между -7 и 7, включая границы. При этом точки на графике изображаются в виде закрашенных кругов, а запись промежутка производится с использованием

Второй рисунок является графическим представлением строгого неравенства. В данной случае пограничные числа -7 и 7, показанные выколотыми (не закрашенными) точками, не включаются в указанное множество. А запись самого промежутка производится в круглых скобках следующим образом: (-7; 7).

То есть, выяснив, как решать неравенстватакого типа, и получив подобный ответ, можно заключить, что он состоит из чисел, находящихся между рассматриваемыми границами, кроме -7 и 7. Следующие два случая необходимо оценивать аналогичным образом. На третьем рисунке даются изображения промежутков (-∞; -7] U }