Макияж. Уход за волосами. Уход за кожей

Макияж. Уход за волосами. Уход за кожей

» » Материальная точка. Материальная точка: определение, величины, примеры и решение задач

Материальная точка. Материальная точка: определение, величины, примеры и решение задач

Что такое материальная точка? Какие физические величины связаны с ней, для чего вообще вводится понятие материальной точки? В этой статье мы порассуждаем об этих вопросах, приведем примеры задач, которые связаны с обсуждаемым понятием, а также поговорим о формулах, применяемых для их решения.

Определение

Итак, что же такое материальная точка? Разные источники дают определение в несколько разном литературном стиле. То же самое касается и преподавателей в вузах, колледжах и общеобразовательных учреждениях. Однако, согласно стандарту, материальной точкой называется тело, размерами которого (в сравнении с размерами системы отсчета) можно пренебречь.

Связь с реальными объектами

Казалось бы, как можно принять за материальную точку человека, велосипедиста, автомобиль, корабль и даже самолет, о которых в большинстве случаев идет речь в задачах по физике, когда речь заходит о механике движущегося тела? Давайте смотреть глубже! Для определения координаты движущегося тела в любой момент времени необходимо знать несколько параметров. Это и начальная координата, и скорость движения, и ускорение (если оно, конечно же, имеет место), и время.

Что необходимо для решения задач с материальными точками?

Координатную связь можно найти, только привязавшись к системе координат. Вот такой своеобразной системой координат для автомобиля и другого тела становится наша планета. А в сравнении с ее величиной размерами тела действительно можно пренебречь. Соответственно, если тело мы принимаем за материальную точку, ее координату в двухмерном (трехмерном) пространстве можно и нужно находить как координату геометрической точки.

Движение материальной точки. Задачи

В зависимости от сложности, задачи могут приобретать определенные условия. Соответственно, отталкиваясь от данных нам условий, можно использовать определенные формулы. Иногда, даже имея весь арсенал формул, решить задачу, что называется, "в лоб" все равно не представляется возможным. Поэтому крайне важно не просто знать формулы кинематики, имеющие отношение к материальной точке, но и уметь их использовать. То есть выражать нужную величину, а системы уравнений приравнивать. Вот основные формулы, которые мы будем применять в ходе решения задач:

Задача № 1

Автомобиль, стоящий на стартовой черте, резко начинает движение из неподвижного положения. Узнать, за какое время он разгонится до 20 метров в секунду, если его ускорение составляет 2 метра на секунду в квадрате.

Сразу хочется сказать, что эта задача - практически самое простое, что может ожидать ученика. Слово “практически” стоит здесь не просто так. Все дело в том, что проще может быть только подставить прямые значения в формулы. Нам же следует сначала выразить время, а затем произвести расчеты. Для решения задачи понадобится формула определения мгновенной скорости (мгновенная скорость - это скорость тела в определенный момент времени). Она имеет следующий вид:

Как мы видим, в левой части уравнения у нас стоит мгновенная скорость. Она нам там абсолютно не нужна. Поэтому делаем простые математические действия: произведение ускорения на время оставляем в правой части, а начальную скорость переносим влево. При этом следует внимательно следить за знаками, поскольку один неправильно оставленный знак может в корне изменить ответ к задаче. Далее немного усложняем выражение, избавляясь от ускорения в правой части: делим на него. В итоге справа у нас должно остаться чистое время, слева - двухуровневое выражение. Все это дело просто меняем местами, чтобы смотрелось привычнее. Остается только подставить величины. Итак, получается, что автомобиль разгонится за 10 секунд. Важно: мы решили задачу, предполагая, что в автомобиль в ней - материальная точка.

Задача № 2

Материальная точка начинает экстренное торможение. Определить, какой была начальная скорость в момент экстренного торможения, если до полной остановки тела прошло 15 секунд. Ускорение принять равным 2 метрам на секунду в квадрате.

Задача, в принципе, достаточно похожа на предыдущую. Но здесь есть пара своих нюансов. Во-первых, нам нужно определить скорость, которую мы обычно называем начальной. То есть в определенный момент начинается отсчет времени и расстояния, пройденного телом. Скорость при этом действительно будет подпадать под данное определение. Второй нюанс - знак ускорения. Напомним, что ускорение - это величина векторная. Следовательно, в зависимости от направления она будет изменять свой знак. Положительное ускорение наблюдается в том случае, если направление скорости тела совпадает с его направлением. Проще говоря, когда тело ускоряется. В противном случае (то есть в нашей ситуации с торможением) ускорение будет отрицательным. И эти два фактора нужно учитывать, чтобы решить данную задачу:

Как и в прошлый раз, сначала выразим необходимую нам величину. Чтобы избежать возни со знаками, начальную скорость оставим там, где она есть. С противоположным знаком переносим в другую часть уравнения произведение ускорения на время. Так как торможение было полным, конечная скорость составляет 0 метров в секунду. Подставляя эти и другие значения, легко находим начальную скорость. Она будет равна 30 метрам в секунду. Легко заметить, что, зная формулы, справляться с простейшими задачами не так уж и сложно.

Задача № 3

В определенный момент времени диспетчеры начинают слежение за перемещением воздушного объекта. Его скорость в этот момент равняется 180 километрам в час. Через промежуток времени, равный 10 секундам, его скорость увеличивается до 360 километров в час. Определите расстояние, пройденное самолетом за время перелета, если время полета составило 2 часа.

На самом деле в широком понимании данная задача имеет множество нюансов. Например, разгон воздушного судна. Понятно, что по прямолинейной траектории наше тело двигаться бы не могло в принципе. То есть ему нужно взлететь, набрать скорость, а потом уже на определенной высоте какой-то отрезок расстояния двигаться прямолинейно. В расчет не берутся отклонения, а также замедление самолета при посадке. Но это не наше дело в данном случае. Поэтому мы будем решать задачу в рамках школьных знаний, общих сведений о кинематическом движении. Чтобы решить задачу, нам понадобится следующая формула:

Но вот тут нас ожидает загвоздка, о которой мы говорили ранее. Знать формулы недостаточно - их нужно уметь использовать. То есть выводить одну величину при помощи альтернативных формул, находить ее и подставлять. При просмотре начальных сведений, которые имеются в задаче, сразу становится понятно, что решить ее просто так не получится. Об ускорении ничего не сказано, зато есть информация о том, как изменилась скорость за определенный промежуток времени. Значит, ускорение мы можем найти самостоятельно. Берем формулу нахождения мгновенной скорости. Она имеет вид

Ускорение и время оставляем в одной части, а начальную скорость переносим в другую. Затем делением обеих частей на время освобождаем правую часть. Здесь сразу же можно подсчитать ускорение, подставив прямые данные. Но гораздо целесообразнее выражать и дальше. Полученную для ускорения формулу подставляем в основную. Там можно немного сократить переменные: в числителе время дано в квадрате, а в знаменателе - в первой степени. Поэтому от этого знаменателя можно избавиться. Ну а дальше - простая подстановка, поскольку больше выражать ничего не надо. Ответ должен получиться следующий: 440 километров. Ответ будет другим, если переводить величины в другую размерность.

Заключение

Итак, что же мы выяснили в ходе этой статьи?

1) Материальная точка - это тело, размерами которого по сравнению с размерами системы отсчета можно пренебречь.

2) Для решения задач, связанных с материальной точкой, есть несколько формул (приведены в статье).

3) Знак ускорения в этих формулах зависит от параметра движения тела (ускорение или торможение).

МАТЕРИАЛЬНАЯ ТОЧКА – модельное понятие (абстракция) классической механики, обозначающее тело исчезающе малых размеров, но обладающее некоторой массой .

С одной стороны, материальная точка – простейший объект механики, так как его положение в пространстве определяется всего тремя числами. Например, тремя декартовыми координатами той точки пространства, в которой находится наша материальная точка.

С другой стороны, материальная точка – основной опорный объект механики, так как именно для нее сформулированы основные законы механики. Все другие объекты механики – материальные тела и среды – могут быть представлены в виде той или иной совокупности материальных точек. Например, любое тело можно «разрезать» на малые части и каждую из них принять в качестве материальной точки с соответствующей массой.

Когда можно «заменить» реальное тело материальной точкой при постановке задачи о движении тела, зависит от тех вопросов, на которые должно ответить решение формулируемой задачи.

Возможны различные подходы к вопросу об использовании модели материальной точки.

Один из них носит эмпирический характер. Считают, что модель материальной точки применима тогда, когда размеры движущихся тел пренебрежимо малы по сравнению с величиной относительных перемещений этих тел. В качестве иллюстрации можно привести Солнечную систему. Если считать, что Солнце – неподвижная материальная точка и считать оно действует на другую материальную точку-планету по закону всемирного тяготения, то задача о движении точки-планеты имеет известное решение. Среди возможных траекторий движения точки есть и такие, на которых выполняются законы Кеплера, эмпирически установленные для планет солнечной системы.

Таким образом, при описании орбитальных движений планет модель материальной точки вполне удовлетворительна. (Однако, построение математической модели таких явлений как солнечные и лунные затмения требует учета реальных размеров Солнца, Земли и Луны, хотя эти явления, очевидно, связаны с орбитальными движениями.)

Отношение диаметра Солнца к диаметру орбиты ближайшей планеты – Меркурию – составляет величину ~ 1·10 –2 , а отношения диаметров ближних к Солнцу планет к диаметрам их орбит – величины ~ 1 ÷ 2·10 –4 . Могут ли эти числа служить формальным критерием для пренебрежения размерами тела в других задачах и, следовательно, для приемлемости модели материальной точки? Практика показывает, что нет.

Например, маленькая пуля размером l = 1 ÷ 2 см пролетает расстояние L = 1 ÷ 2 км, т.е. отношение , однако траектория полета (да и дальность) существенно зависит не только от массы пули, но и от ее формы, и от того, вращается ли она. Поэтому даже маленькую пулю, строго говоря, нельзя считать материальной точкой. Если в задачах внешней баллистики метаемое тело часто считают материальной точкой, то это сопровождается оговорками ряда дополнительных условий, как правило, эмпирически учитывающих реальные характеристики тела.

Если обратиться к космонавтике, то когда космический аппарат (КА) выведен на рабочую орбиту, при дальнейших расчетах траектории его полета он считается материальной точкой, так как никакие изменения формы КА не оказывают сколько-нибудь заметного влияния на траекторию. Лишь иногда, при коррекциях траектории возникает необходимость обеспечения точной ориентации реактивных двигателей в пространстве.

Когда же спускаемый отсек приблизится к поверхности Земли на расстояние ~100 км, он сразу «превращается» в тело, поскольку от того, каким «боком» он входит в плотные слои атмосферы, зависит, доставит ли отсек в нужную точку Земли космонавтов и возвращаемые материалы.

Модель материальной точки оказалась практически неприемлемой для описания движений таких физических объектов микромира, как элементарные частицы, атомные ядра, электрон и т.п.

Другой подход к вопросу об использовании модели материальной точки носит рациональный характер. По закону изменения количества движения системы, примененному к отдельному телу, центр масс С тела имеет такое же ускорение, как и некоторая (назовем ее эквивалентной) материальная точка, на которую действуют те же силы, что и на тело, т.е.

Вообще говоря, результирующая сила может быть представлена в виде суммы , где зависит только от и (радиус-вектор и скорость точки С), а – и от угловой скорости тела и его ориентации.

Если F 2 = 0, то приведенное выше соотношение превращается в уравнение движения эквивалентной материальной точки.

В этом случае говорят, что движение центра масс тела не зависит от вращательного движения тела. Таким образом, возможность использования модели материальной точки получает математическое строгое (а не только эмпирическое) обоснование.

Естественно, что на практике условие F 2 = 0 выполняется редко и обычно F 2 № 0, однако может оказаться, что F 2 в каком-то смысле мало по сравнению с F 1 . Тогда можно говорить, что модель эквивалентной материальной точки является некоторым приближением при описании движения тела. Оценка точности такого приближения может быть получена математически и если эта оценка окажется приемлемой для «потребителя», то замена тела на эквивалентную материальную точку допустима, в противном случае такая замена приведет к значительным ошибкам.

Это может иметь место и тогда, когда тело движется поступательно и с точки зрения кинематики его можно «заменить» на некоторую эквивалентную точку.

Естественно, что модель материальной точки не пригодна для ответа на такие вопросы, как «почему Луна обращена к Земле лишь одной своей стороной?» Подобные явления связаны с вращательным движением тела.

Виталий Самсонов

Все тела, которые нас окружают состоят из колоссально большого числа атомов или молекул, то есть представляют собой макроскопические системы

Механические свойства тел

Механические свойства тел определяются их внутренним строением, состоянием, химическим составом, изучение которых выходит за рамки механики, потому изучаются в других разделах физики. В механике же при рассмотрении реальных тел в зависимости от условий конкретной задачи пользуются упрощенными моделями: материальной точки, абсолютно твердого тела и другими.

Материальной точкой (МТ) называют тело, размерами и формой которого можно пренебречь в данной конкретной физической задачи. Критерием этого является то, что характерные расстояния, которые тело проходит в процессе данного движения (масштаб движения, обозначим L) должны быть на порядки величины (хотя бы на 1-2 порядка) больше, чем характерные размеры тела. Таким образом, критерием того, что физическое тело можно считать МТ будет выполнение условия. Сам термин «материальная точка» как бы подчеркивает, что размерами тела пренебрегаем, но в то же время это физический объект, имеющий массу. В этом смысле, корректнее было бы пользоваться термином «точечная масса», аналогично тому, как это делается в электростатике, где используют понятие «точечный заряд».

На читайте похожие рефераты:

В физике очень важно понятие порядка величины: как это понятие нужно использовать уже даже для корректного определения МТ, то кратко вспомним это определение. Такое сравнение через порядок величины позволяет корректно устанавливать, можно считать это тело в данной конкретной физической задачи материальной точкой, или нет. Проще — можно пренебречь размерами тела по сравнению с характерными расстояниями, проходящей тело в процессе данного движения.

Теперь очевидно, что в процессе движения Земли вокруг Солнца ее можно, конечно же, считать материальной точкой. В процессе же движения тел по земной поверхности. или вблизи Земли (движение спутников), Земля уже не может считаться материальной точкой, и наоборот, будем сравнивать размеры этих тел с размерами Земли в каждой конкретной задачи.

Любое тело или систему тел изучается в механике, можно рассматривать как систему материальных точек. Для этого нужно условно разбить все тела системы на достаточно большое количество частей, таких, чтобы размеры каждой из этих частей были несравненно малыми по сравнению с размерами самих тел.

Абсолютно твердым телом называют тело, расстояние между — любыми двумя точками которого остается неизменной. Такая модель может быть использована в задачах, в которых деформациями тела можно пренебречь. Фактически абсолютно твердое тело — это система МТ, жестко связаны между собой.

На читайте похожие рефераты:

Движения тела в физике

Любое движение абсолютно твердого тела можно разложить на два основных вида движения — поступательное и вращательное.

Поступательное движение — это такое движение, при котором любая прямая, соединяющая две произвольные точки этого тела, проведенная в движущемся теле, остается параллельной самой себе. Поступательно движутся, например, поршень в цилиндре двигателя или тепловой машины, кабина лифта при опускании и поднимании. Ниже будет показано, что в каждый момент времени скорости и ускорения всех точек тела при поступательном движении будут одинаковыми, а значит для описания такого движения твердого тела достаточно рассмотреть движение какой-либо одной его точки.

Cтраница 1


Понятие материальной точки - абстрактное, но его введение облегчает решение практических задач.  

Понятием материальной точки пользуются в тех случаях, когда размеры тела малы по сравнению с расстоянием, пройденным им при движении, а также при изучении поступательного движения тела, при котором все его точки за одно и то же время проходят одинаковые пути. Например, Землю можно считать материальной точкой при изучении ее движения вокруг Солнца, но при изучении движения тел на поверхности Земли ее следует считать протяженной.  

Понятием материальной точки, представляющим собой известное абстрагирование от реальных свойств движущихся тел, широко пользуются в механике, так как введение этого понятия вносит значительное упрощение в исследование движения тел.  

К понятию материальной точки, безусловно, привели наблюдаемы тела; материальную точку можно себе представить подобной лишенному признаков протяженности, формы, пространственной ориентации, всех внутренних свойств, сохранившему лишь инерцию и трансляцию, движущемуся телу, к которому добавляется лишь понятие силы. Материальные тела, которые психологически вызвали образование понятия материальная точка, со своей стороны сами должны были теперь рассматриваться как система материальных точек. Необходимо отметить, что по своей сущности эта теоретическая система является атомистической и механистической. Ньютона простые движения материальных точек.  

Можно воспользоваться понятием материальной точки для изучения поступательного движения абсолютно твердого тела, так как все точки движутся одинаково. Для определения положения материальной точки в пространстве и описания ее движения необходимы следующие понятия.  

Естественно, что понятие материальной точки является абстракцией, что никаких материальных точек в природе нет. Однако постановка ряда задач механики такова, что позволяет с успехом пользоваться этой абстракцией.  

В каких случаях пользуются понятием материальной точки.  

Принципиальным для классической механики является понятие материальной точки. По сути вся она и строится на основании законов движения материальной точки, постепенно усложняясь и переходя к рассмотрению все более сложных объектов - и так вплоть до механики жидкости и газа.  

Одним из основных понятий механики является понятие материальной точки.  

Однако этими случаями не ограничивается применение понятия материальной точки. Оно оказывается полезным и при более сложных видах движения. Представим себе, что по какой-нибудь поверхности катится шарик. При этом движении центр шарика описывает какую-то линию (прямую или кривую), траектории же остальных его точек представляют собой различ ные сложные кривые линии.  

При формулировании основных законов динамики пользуются понятием материальной точки. Под материальной точкой понимают тело конечной массы, размерами и различием в движении отдельных точек которого по условиям задачи можно пренебречь. В дальнейшем будет показано, что поступательно движущееся тело можно рассматривать как материальную точку с массой, равной массе всего тела.  

Для построения моделей механических систем важнейшей абстракцией является понятие материальной точки. Под материальной точкой понимается физический объект, в геометрическом смысле эквивалентный математической точке, но обладающий массой. Эквивалентность в геометрическом смысле означает отсутствие у материальной точки геометрической внутренней структуры, формы и размеров.  

Для построения моделей механических систем важнейшей абстракцией является понятие материальной точки. За материальную точку принимают материальное тело, размеры которого пренебрежимо малы в сравнении с расстояниями между телами. В предельном случае это понятие превращается в понятие математической точки.  

Так, например, в механике при анализе движения тел пользуются понятием материальной точки, но нельзя просто сказать, что данное тело можно считать материальной трчкой; нужно обязательно прибавить, в каком движении это тело можно считать точкой.  

Основываясь на возможности локализации физических предметов во времени и пространстве, в классической механике исследование законов перемещения начинается с самого простого случая. Этим случаем является движение материальной точки. Схематической идеей аналитическая механика формирует предпосылки для изложения

Материальная точка - это объект, обладающий бесконечно малым размером и конечной массой. Данная идея полностью отвечает представлениям о дискретности материи. Ранее физики пытались определить ее в качестве совокупности элементарных частиц, находящихся в состоянии перемещения. В связи с этим материальная точка в своей динамике стала как раз тем необходимым для теоретических построений инструментом.

Динамика рассматриваемого объекта исходит из инерциального принципа. Согласно ему, материальная точка, не находящаяся под влиянием внешних сил, сохраняет свое состояние покоя (либо перемещения) с течением времени. Данное положение выполняется достаточно строго.

В соответствии с принципом инерции, материальная точка (свободная) перемещается равномерно и прямолинейно. Рассматривая частный случай, в рамках которого скорость равна нулю, можно сказать, что объект сохраняет состояние покоя. В связи с этим можно предположить, что влияние определенной силы на рассматриваемый предмет сводится просто к изменению его скорости. Самой простой гипотезой является предположение, что изменение скорости, которой обладает материальная точка, прямо пропорционально показателю силы, воздействующей на нее. При этом коэффициент пропорциональности уменьшается с увеличением инерции.

Естественной является характеристика материальной точки с помощью величины коэффициента инерции - массы. В этом случае главный закон динамики объекта может формулироваться так: сообщаемое ускорение в каждый момент времени равно отношению силы, которая действует на объект, к ее массе. Изложение кинематики, таким образом, предшествует изложению динамики. Масса, которая в динамике характеризует материальную точку, вводится a posteriori (из опыта), в то время как наличие траектории, положения, ускорения, скорости допускается a priori.

В связи с этим уравнения динамики объекта утверждают, что произведение массы рассматриваемого объекта на какую-либо из компонент ее ускорения равно соответствующей компоненте силы, действующей на объект. Предположив, что сила является известной функцией времени и координат, определение координат для материальной точки в соответствии со временем производят посредством трех обычных второго порядка по времени.

В соответствии с хорошо известной теоремой из курса решение указанной системы уравнений однозначно определяется заданием координат, а также их первых производных в какой-либо начальный временной промежуток. Другими словами, при известном положении материальной точки и ее скорости в определенный момент можно точно определить характер ее перемещения во все будущие периоды.

В результате становится ясно, что классическая динамика рассматриваемого объекта находится в абсолютном соответствии с принципом физического детерминизма. Согласно ему, предстоящее состояние (положение) материального мира может быть предсказано полностью при наличии параметров, определяющих его положение в определенный предыдущий момент.

В связи с тем, что размер материальной точки бесконечно мал, ее траектория будет представлять собой линию, занимающую в только одномерный континуум. В каждом участке траектории имеет место определенное значение силы, задающее перемещение в следующий бесконечно малый отрезок времени.