Макияж. Уход за волосами. Уход за кожей

Макияж. Уход за волосами. Уход за кожей

» » Что такое митохондрии? Их строение и функции. Строение митохондрии

Что такое митохондрии? Их строение и функции. Строение митохондрии

II. Митохондрии (строение и функции)

Полисомы. Синтез цитоплазматических белков

Рибосомы представляют собой мельчайшие органеллы, присутствующие в цитоплазме клетки. Несмотря на свои размеры, они являются сложными молекулярными ансамб­леями, состоящими из рибосомальной РНК (р-РНК) различной длины и рибосомальных белков . В цитоплазме рибосомы встречаются в виде 2-х форм:

1. В диссоциированном состоянии (две субъединицы: малая и большая), которое свидетельствует об их неактивном статусе;

2. В ассоциированном виде – это форма их активного статуса.

Большая субъединица образуется тремя молекулами РНК, имеет форму полушара с 3 выступами, взаимодействующие с «шипиками» малой субъединицы.

Малая субъединица содержит лишь одну молекулу РНК и выглядит в виде «шапочки» с шипиками, обращёнными в сторону большой субъединицы. Ассоциация субъединиц рибосомы – это взаимодействие рельефов их поверхностей.

Функции субъединиц:

1. Малая ответственна за связывание с матричной РНК;

2. Большая – за образование полипептидной цепи.

Полисомы – это группа рибосом (от 5 до 30) связанных нитью м-РНК с образованием функционального комплекса. На нём происходит синтез цитоплазматических белков, необходимых клетке для роста, развития органелл дифференцировки.

Этапы синтеза цитоплазматических белков:

1. Выход из ядра м-РНК;

2. Сборка рибосом;

3. Образование функциональной полисомы;

4. Синтез сигнального пептида;

5. Считывание последовательности аминокислот в составе пептида сигнал-распознающей частицы (СРЧ);

6. Завершение синтеза цитоплазматического белка на полисоме. См рис. 1

Рис. 1: Схема синтеза цитоплазматических белков

II. Митохондрии (строение и функции)

Митохондрии – это система энергообеспечения клетки. На светооптическом уровне их выявляют при окраске по Альтману, они выглядят в виде зёрнышек и нитей. В цитоплазме они распределены диффузно, а в специализированных клетках сосредоточенны в участках, где имеется наибольшая потребность в энергии.

Электронномикроскопический уровень организации митохондрии : в ней выделяют две мембраны: наружную и внутреннюю. См. рис. 2

Рис. 2: Схема строения митохондрии

Наружная мембрана – это мешок с относительно ровной поверхностью, она по химическому составу и свойствам близка к плазмолемме, отличается она более высокой проницаемостью и содержит ферменты метаболизма жирных кислот, фосфолипидов и липидов.

Функция:

1. Отграничение митохондрии в гиалоплазме;

2. Транспорт в митохондрию субстратов для клеточного дыхания.

Внутренняя мембрана – неровная, она формирует кристы в виде пластин (ламеллярные кристы) с увеличением площади её поверхности. Главным компонентом этой мембраны являются молекулы белков, относящиеся к ферментам дыхательной цепи, цитохромы.

На поверхности крист в некоторых клетках описывают грибовидные частицы (F 1 -частицы), в которых различают головку (9 нм) и ножку (3 нм). Считают, что именно здесь происходит синтез АТФ и АДФ.

Между наружной и внутренней мембранами образуется небольшое (около 15 – 20 нм) пространство, которое называют наружной камерой митохондрий. Внутренняя камера ограничена соответственно внутренней митохондриальной мембраной и содержит матрикс.

Матрикс митохондрий имеет гелеобразную фазу и отличается высоким содержанием белка. В нём встречаются митохондриальные гранулы – частицы диаметром 20 – 50 нм высокой электронной плотности, они содержат ионы Са 2+ и Mg 2+ . Матрикс митохондрий содержит также митохондриальные ДНК и рибосомы. На первых происходит синтез транспортных белков митохондриальных мембран и некоторых белков, участвующих в фосфолировании АДФ. ДНК здесь состоит из 37 генов и не содержит некодирующие последовательность нуклеотидов.

Функции митохондрий:

1. Обеспечение клетки энергией в виде АТФ;

2. Участие в синтезе стероидных гормонов;

3. Участие в синтезе нуклеиновых кислот;

4. Депонирование кальция.


Основной функцией митохондрий является синтез АТФ - универсальной формы химической энергии в любой живой клетке. Как иг у прокариот, данная молекула может образовываться двумя путями: в результате гликолизе) или в процессе мембранного фосфорилирования, связанного с использованием энергии трансмембранного электрохимического градиента (англ.)русск. протонов (ионов водорода). Митохондрии реализуют оба эти пути, первый из которых характерен для начальных процессов окисления субстрата и происходит в матриксе, а второй завершает процессы энергообразования и связан с кристами митохондрий. При этом своеобразие митохондрий как энергообразующих органелл эукариотической клетки определяет именно второй путь генерации АТФ, получивший название «хемиосмотического сопряжения». По сути это последовательное превращение химической энергии восстанавливающих эквивалентов НАДН в электрохимический протонный градиент AjiH+ по обе стороны внутренней мембраны митохондрии, что приводит в действие мембранно-связанную АТФ-синтетазу и завершается образованием макроэргической связи в молекуле АТФ.

В основе всех мембран клетки лежит двойной слой молекул липидов. Их гидрофобные «хвосты», состоящие из остатков молекул жирных кислот, обращены внутрь двойного слоя. Снаружи располагаются гидрофильные «головки», состоящие из остатка молекулы спирта глицерина. В состав мембран чаще всего входят фосфолипиды и гликолипиды (их молекулы наиболее полярны), а также жиры и жироподобные вещества (например, холестерин). Липиды являются основой мембраны, обеспечивают ее устойчивость и прочность, т.е. выполняют структурную (строительную) функцию. Эта функция возможна благодаря гидрофобности липидов.

Пластиды. Гипотезы их возникновения в растительной клетке. Субмикроскопическое строение хлоропластов, их функции, расположение их в органах

Пластиды - органоиды эукариотических растений и некоторых фотосинтезирующих простейших (например, эвглены зеленой). Покрыты двойной мембраной и имеют в своём составе множество копий кольцевой ДНКВ целом организмы можно разделить на две группы: на организмы, клетки которых содержат настоящие клеточные ядра, и организмы, которые этим свойством не обладают. Первые называются эукариотами, вторые - прокариотами. К прокариотам относятся бактерии и сине-зеленые водоросли. Эукариоты объединяют все остальные одно- и многоклеточные живые существа. В противоположность прокариотам, кроме обладания клеточными ядрами, эти существа отличаются выраженной способностью к образованию органоидов. Органоиды - это разделенные мембранами составные части клеток. Так, самыми большими клеточными органоидами (по крайней мере, различимыми в световой микроскоп), которыми обладают эукариоты, являются митохондрии, а растительные организмы обладают еще и пластидами. Митохондрии и пластиды большей частью отделены от цитоплазмы клетки двумя мембранами. (Некоторые подробности строения. Митохондрии часто называют "силовыми станциями" эукариотических клеток, так как они играют большую роль в образовании и превращении энергии в клетке. Пластиды для растений не менее важны: хлоропласта, которые являют собой основной тип пластид, заключают в себе механизм фотосинтеза, который осуществляет превращение солнечного Света в химическую энергию.

У различных групп организмов хлоропласты значительно различаются по размерам, строению и количеству в клетке. Особенности строения хлоропластов имеют большое таксономическое значение

Основная функция хлоропластов, состоит в улавливании и преобразовании световой энергии.

В состав мембран, образующих граны, входит зеленый пигмент - хлорофилл. Именно здесь происходят световые реакции фотосинтеза - поглощение хлорофиллом световых лучей и превращение энергии света в энергию возбужденных электронов. Электроны, возбужденные светом, т. е. обладающие избыточной энергией, отдают свою энергию на разложение

воды и синтез АТФ. При разложении воды образуются кислород и водород. Кислород выделяется в атмосферу, а водород связывается белком ферредоксином.

2. Пластиды. Гипотезы их возникновения в растительной клетке. Субмикроскопическое строение хромопластов, их функции, расположение их в органах

Хромопласт (окрашенные пласты) - окрашенные незелёные тела, заключающиеся в телах высших растений, в отличие от зелёных тел (хлоропластов).

Хромопласты содержат лишь жёлтые, оранжевые и красноватые пигменты из ряда каротинов (см. хлорофилл). Чисто-красные, синие и фиолетовые пигменты (антоциан) и некаротинного характера - жёлтые (антохлор) у высших растений растворены в клеточном соке. Форма хромопластов разнообразна: они бывают круглые, многоугольные, палочковидные, веретенообразные, серповидные, трёхрогие и т. - д. Хромопласты происходят большей частью из хлоропластов (хлорофилльных зёрен), которые теряют хлорофилл и крахмал, что заметно в лепестках, в ткани плодов и т. д. Развитие каротина в хлоропласте понятно из того, что первый в них содержится вместе с хлорофиллом. Так же как и у хлоропластов, у хромопластов пигмент образует в протоплазматической, бесцветной основе лишь отдельные включения, причём иногда в виде настоящих кристаллов, игольчатых, волосовидных, прямых или изогнутых и т. д.

Функция хлоропластов: фотосинтез. Полагают, что хлороплас"гы произошли от древних эндосимбиотических цианобактерий (теория симбиогенеза). Основанием для такого предположения является сходство хлоропластов и современных бактерий по ряду признаков (кольцевая, «голая» ДНК, рибосомы 70S-типа, способ размножения).

Пластиды. Гипотезы их возникновения в растительной клетке. Субмикроскопическое строение лейкопластов, их функции, расположение их в органах

Лейкопласты - бесцветные сферические пластиды в клетках растений.

Лейкопласты образуются в запасающих тканях (клубнях, корневищах), клетках эпидермы и других частях растений. Синтезируют и накапливают крахмал (так называемые амилопласты), жиры, белки. Лейкопласты содержат ферменты, с помощью которых из глюкозы, образованной в процессе фотосинтеза, синтезируется крахмал. На свету лейкопласты превращаются в хлоропласты.

Форма варьирует (шаровидные, округлые, чашевидные и др.). Лейкопласты ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя образует малочисленные тилакоиды. В строме имеются кольцевая «голая» ДНК, рибосомы TOS-типа, ферменты синтеза и гидролиза запасных питательных веществ. Пигменты отсутствуют. Особенно много лейкопластов имеют клетки подземных органов растения (корни, клубни, корневища и др.). Функция лейкопластов: синтез, накопление и хранение запасных питательных веществ. Амилопласты - лейкопласты, которые синтезируют и накапливают крахмал, элайопласты - масла, протеинопласты

белки. В одном и том же лейкопласте могут накапливаться разные вещества.

Двумембранная органелла - митохондрия - характерна для клеток эукариот. От функций митохондрий зависит работа организма в целом.

Строение

Митохондрии состоят из трёх взаимосвязанных компонентов:

  • наружной мембраны;
  • внутренней мембраны;
  • матрикса.

Внешняя гладкая мембрана состоит из липидов, между которых находятся гидрофильные белки, образующие канальцы. Сквозь эти канальцы проходят молекулы при транспорте веществ.

Наружная и внутренняя мембраны находятся на расстоянии 10-20 нм. Межмембранное пространство заполнено ферментами. В отличие от ферментов лизосом, участвующих в расщеплении веществ, ферменты межмембранного пространства переносят остатки фосфорной кислоты к субстрату с затратой АТФ (процесс фосфорилирования).

Внутренняя мембрана упакована под внешней мембраной в виде многочисленных складок - крист.
Они образованы:

  • липидами, проницаемыми только для кислорода, углекислого газа, воды;
  • ферментными, транспортными белками, участвующими в окислительных процессах и транспорте веществ.

Здесь за счёт дыхательной цепи происходит вторая стадия клеточного дыхания и образование 36 молекул АТФ.

ТОП-4 статьи которые читают вместе с этой

Между складками находится полужидкое вещество - матрикс.
В состав матрикса входят:

  • ферменты (сотни разных видов);
  • жирные кислоты;
  • белки (67 % белков митохондрий);
  • митохондриальная кольцевая ДНК;
  • митохондриальные рибосомы.

Наличие рибосом и ДНК свидетельствует о некоторой автономности органоида.

Рис. 1. Строение митохондрий.

Ферментативные белки матрикса участвуют в окислении пирувата - пировиноградной кислоты в ходе клеточного дыхания.

Значение

Основная функция митохондрий в клетке - синтез АТФ, т.е. генерация энергии. В результате клеточного дыхания (окисления) образуется 38 молекул АТФ. Синтез АТФ происходит на основе окисления органических соединений (субстрата) и фосфорилирования АДФ. Субстратом для митохондрий являются жирные кислоты и пируват.

Рис. 2. Образование пирувата в результате гликолиза.

Общее описание процесса дыхания представлено в таблице.

Где происходит

Вещества

Процессы

Цитоплазма

В результате гликолиза разлагается на две молекулы пировиноградной кислоты, которые поступают в матрикс

Отщепляется ацетильная группа, которая присоединяется к коферменту А (КоА), образуя ацетил-кофермент-А (ацетил-КоА), и выделяется молекула углекислого газа. Ацетил-КоА также может формироваться из жирных кислот в отсутствии синтеза углеводов

Ацетил-КоА

Вступает в цикл Кребса или цикл лимонной кислоты (цикл трикарбоновых кислот). Начинается цикл с образования лимонной кислоты. Далее в результате семи реакций образуется две молекулы углекислого газа, НАДН и ФАДН2

НАДН и ФАДН2

Окисляясь, НАДН разлагается на НАД + , два высокоэнергетических электрона (е –) и два протона Н + . Электроны передаются в дыхательную цепь, содержащую три ферментных комплекса, на внутренней мембране. Прохождение электрона по комплексам сопровождается выделением энергии. Одновременно протоны высвобождаются в межмембранное пространство. Свободные протоны стремятся вернуться в матрикс, что создаёт электрический потенциал. При нарастании напряжения Н + устремляются внутрь через АТФ-синтазу - специальный белок. Энергия протонов используется для фосфорилирования АДФ и синтеза АТФ. Соединяясь с кислородом, Н + образует воду

Рис. 3. Процесс клеточного дыхания.

Митохондрии - органеллы, от которых зависит работа целого организма. Признаками нарушения функций митохондрий являются снижение скорости потребления кислорода, увеличение проницаемости внутренней мембраны, набухание митохондрии. Эти изменения происходят вследствие токсического отравления, инфекционного заболевания, гипоксии.

Что мы узнали?

Из урока биологии узнали об особенностях строения митохондрий, кратко рассмотрели функции и процесс клеточного дыхания. Благодаря работе митохондрий пировиноградная кислота, образованная в процессе гликолиза, и жирные кислоты окисляются до углекислого газа и воды. В результате клеточного дыхания высвобождается энергия, которая тратится на жизнедеятельность организма.

Тест по теме

Оценка доклада

Средняя оценка: 4.4 . Всего получено оценок: 67.

Митохондрии растительной клетки. Их структура и функции

Форма − округлые или гантелевидные тельца.

Размеры − длина 1-5 мкм, диаметром 0,4-0,5 мкм.

Количество в клетке − от десятков до 5 000.

Структура . Состоят в основном из белка (60-65 %) и липидов (30 %). Это двухмембранные органоиды. Толщина наружной и внутренней мембран − 5-6 нм каждая. Перимитохондриальное пространство (промежуток между мемранами) заполнено жидкостью типа сыворотки. Внутренняя мембрана образует различной формы складки − кристы . На внутренней поверхности внутренней мембраны расположены грибовидные частицы − оксисомы, содержащие окислительные ферменты. Внутреннее содержимое митохондрий − матрикс . В матриксе содержатся рибосомы и митохондриальная ДНК (0,5 %), которая имеет кольцевое строение и отвечает за синтез белков митохондрий. Митохондрии имеют все типы РНК (1 %), делятся независимо от деления ядра, в клетке образуются от предсуществующих митохондрий путем деления или почкования. Полупериод жизни митохондрий − 5−10 дней.

Функции . Митохондрии являются центрами энергетической активности клеток. В митохондриях функционируют системы аэробного дыхания и окислительного фосфорелирования. Во внутренней мембране митохондрий локализованы компоненты электронтранспортной цепи и АТФ-синтетазные комплексы, осуществляющие транспорт электронов и протонов и синтез АТФ. В матриксе располагаются системы окисления ди- и трикарбоновых кислот, ряд систем синтеза липидов, аминокислот и др.

Митохондрии способны передвигаться к местам усиленного потребления энергии. Они могут ассоциировать друг с другом путем тесного сближения или при помощи тяжей. При анаэробном дыхании митохондрии исчезают.

Митохондрии имеют округлую и продолговатую форму диаметром 0,4–0,5 мкм и длиной 1–5 мкм (рис. 1.3).

Количество митохондрий варьирует от единиц до 1 500–2 000 на растительную клетку.

Митохондрии ограничены двумя мембранами: наружной и внутренней, толщина каждой из них 5–6 нм. Наружная мембрана выглядит растянутой, а внутренняя образует складки, называемые гребнями (кристами), различной формы. Пространство между мембранами, в состав которого входит также внутреннее пространство крист, называется межмембранным (перимитохондриальным) пространством. Оно служит средой для внутренней мембраны и матрикса митохондрий.

Митохондрии в целом содержат 65–70 % белка, 25–30 % липидов и небольшое количество нуклеиновых кислот. 70 % от общего содержания липидов составляют фосфолипиды (фосфатидилхолин и фосфатидилэтаноламин). Жирнокислотный состав характеризуется высоким содержанием насыщенных жирных кислот, обеспечивающих «жесткость» мембраны.

В митохондриях локализованы системы аэробного дыхания и окислительного фосфорилирования. В результате дыхания расщепляются органические молекулы, и высвобождается энергия с передачей ее на молекулу АТФ.

Митохондрии содержат белки, РНК, тяжи ДНК, рибосомы, сходные с бактериальными, и различные растворенные вещества. ДНК существует в виде кольцевых молекул, располагающихся в одном или нескольких нуклеотидах.

Пластиды, наряду с вакуолями и клеточной оболочкой – характерные компоненты растительных клеток. Каждая пластида окружена собственной оболочкой, состоящей из двух элементарных мембран. Внутри пластид различают мембранную систему и более или менее гомогенное вещество – строму. Внутренняя структура хлоропласта довольно сложна. Строма пронизана развитой системой мембран, имеющих форму плоских пузырьков, называемых тилакоидами.Тилакоиды собраны в стопки – граны, напоминающие столбики монет.

Хлоропласты, в которых протекает фотосинтез, содержат хлорофиллы и каротиноиды. Размер – 4–5 мкм. В одной клетке мезофилла листа может содержаться 40–50 хлоропластов, в мм 2 листа – около 500 000. В цитоплазме хлоропласты обычно располагаются параллельно клеточной оболочке.

Хлорофиллы и каротиноиды встроены в тилакоидные мембраны. Хлоропласты зеленых растений и водорослей часто содержат зерна крахмала и мелкие липидные (жировые) капли. Крахмальные зерна – это временные хранилища продуктов фотосинтеза. Они могут исчезнуть из хлоропластов, находящихся в темноте всего лишь 24 ч и появиться вновь уже через 3–4 ч после переноса растений на свет.

В изолированных хлоропластах осуществляется синтез РНК, который обычно контролируется только хромосомной ДНК. Образование хлоропластов и синтез находящихся в них пигментов в значительной степени контролируется хромосомной ДНК, малопонятным образом взаимодействующей с ДНК хлоропластов. Тем не менее, в отсутствие собственной ДНК хлоропласты не формируются.

Хлоропласты могут считаться основными клеточными органеллами, поскольку первыми стоят в цепи преобразования солнечной энергии, в результате которого мы получаем пищу и топливо. В хлоропластах протекают не только фотосинтез. Они участвуют в синтезе аминокислот и жирных кислот, служат хранилищем временных запасов крахмала.

Хромопласты (от греческого сhroma – цвет) – пигментированные пластиды. Многообразные по форме хромопласты не содержат хлорофилла, но синтезируют и накапливают каротиноиды, которые придают желтую, оранжевую и другую окраску. Корнеплоды моркови, плоды томатов окрашены пигментами, которые находятся в хромопластах.

Лейкопласты являются местом накопления запасного вещества – крахмала. Особенно много лейкопластов в клетках клубней картофеля. На свету лейкопласты могут преобразовываться в хлоропласты (клубни картофеля зеленеют). Осенью хлоропласты преобразуются в хромопласты и зеленые листья, и плоды желтеют и краснеют.

Митохондрии — это микроскопические мембранные органоиды, которые обеспечивают клетку энергией. Поэтому их называют энергетическими станциями (аккумулятором) клеток.

Митохондрии отсутствуют в клетках простейших организмов, бактерий, энтамеб, которые живут без использования кислорода. Некоторые зеленые водоросли, трипаносомы содержат одну большую митохондрию, а клетки сердечной мышцы, мозга имеют от 100 до 1000 данных органелл.

Особенности строения

Митохондрии относятся к двухмембранным органеллам, имеют внешнюю и внутреннюю оболочки, межмембранное пространство между ними и матрикс.

Внешняя мембрана . Она гладкая, не имеет складок, отграничивает внутреннее содержимое от цитоплазмы. Ширина ее равна 7нм, в составе находятся липиды и белки. Важную роль выполняет порин - белок, образующий каналы во внешней мембране. Они обеспечивают ионный и молекулярный обмен.

Межмембранное пространство . Величина межмембранного пространства около 20нм. Вещество, заполняющее его по составу сходно с цитоплазмой, за исключением крупных молекул, которые могут сюда проникнуть только путем активного транспорта.

Внутренняя мембрана . Построена в основном из белка, только треть отводится на липидные вещества. Большое количество белков являются транспортными, так как внутренняя мембрана лишена свободно проходимых пор. Она формирует много выростов – крист, которые выглядят, как приплюснутые гребни. Окисление органических соединений до CO 2 в митохондриях происходит на мембранах крист. Этот процесс кислородзависимый и осуществляется под действием АТФ-синтетазы. Высвобожденная энергия сохраняется в виде молекул АТФ и используется по мере необходимости.

Матрикс – внутренняя среда митохондрий, имеет зернистую однородную структуру. В электронном микроскопе можно увидеть гранулы и нити в клубках, которые свободно лежат между кристами. В матриксе находится полуавтономная система синтеза белка – здесь расположены ДНК, все виды РНК, рибосомы. Но все же большая часть белков поставляется с ядра, поэтому митохондрии называют полуавтономными органеллами.

Расположение в клетке и деление

Хондриом – это группа митохондрий, которые сосредоточены в одной клетке. Они по-разному располагаются в цитоплазме, что зависит от специализации клеток. Размещение в цитоплазме также зависит от окружающих ее органелл и включений. В клетках растений они занимают периферию, так как к оболочке митохондрии отодвигаются центральной вакуолью. В клетках почечного эпителия мембрана образует выпячивания, между которыми находятся митохондрии.

В стволовых клетках, где энергия используется равномерно всеми органоидами, митохондрии размещены хаотично. В специализированных клетках они, в основном, сосредоточены в местах наибольшего потребления энергии. К примеру, в поперечно-полосатой мускулатуре они расположены возле миофибрилл. В сперматозоидах они спирально охватывают ось жгутика, так как для приведения его в движение и перемещения сперматозоида нужно много энергии. Простейшие, которые передвигаются при помощи ресничек, также содержат большое количество митохондрий у их основания.

Деление . Митохондрии способны к самостоятельному размножению, имея собственный геном. Органеллы делятся с помощью перетяжки или перегородок. Формирование новых митохондрий в разных клетках отличается периодичностью, например, в печеночной ткани они сменяются каждые 10 дней.

Функции в клетке

  1. Основная функция митохондрий – образование молекул АТФ.
  2. Депонирование ионов Кальция.
  3. Участие в обмене воды.
  4. Синтез предшественников стероидных гормонов.

Молекулярная биология – это наука, изучающая роль митохондрий в метаболизме. В них также идет превращение пирувата в ацетил-коэнзим А, бета-окисление жирных кислот.

Таблица: строение и функции митохондрий (кратко)
Структурные элементы Строение Функции
Наружная мембрана Гладкая оболочка, построена из липидов и белков Отграничивает внутреннее содержимое от цитоплазмы
Межмембранное пространство Находятся ионы водорода, белки, микромолекулы Создает протонный градиент
Внутренняя мембрана Образует выпячивания – кристы, содержит белковые транспортные системы Перенос макромолекул, поддержание протонного градиента
Матрикс Место расположения ферментов цикла Кребса, ДНК, РНК, рибосом Аэробное окисление с высвобождением энергии, превращение пирувата в ацетил-коэнзим А.
Рибосомы Объединённые две субъединицы Синтез белка

Сходство митохондрий и хлоропластов


Общие свойства для митохондрий и хлоропластов обусловлены, прежде всего, наличием двойной мембраны.

Признаки сходства также заключаются в способности самостоятельно синтезировать белок. Эти органеллы имеют свое ДНК, РНК, рибосомы.

И митохондрии и хлоропласты могут делиться с помощью перетяжки.

Объединяет их также возможность продуцировать энергию, митохондрии более специализированы в этой функции, но хлоропласты во время фотосинтезирующих процессов тоже образуют молекулы АТФ. Так, растительные клетки имеют меньше митохондрий, чем животные, потому что частично функции за них выполняют хлоропласты.

Опишем кратко сходства и различия:

  • Являются двомембранными органеллами;
  • внутренняя мембрана образует выпячивания: для митохондрий характерны кристы, для хлоропластов – тиллакоиды;
  • обладают собственным геномом;
  • способны синтезировать белки и энергию.

Различаются данные органоиды своими функциями: митохондрии предназначены для синтеза энергии, здесь осуществляется клеточное дыхание, хлоропласты нужны растительным клеткам для фотосинтеза.