Макияж. Уход за волосами. Уход за кожей

Макияж. Уход за волосами. Уход за кожей

» » Источники и виды ионизирующих излучений. Воздействие ионизирующих излучений на организм человека

Источники и виды ионизирующих излучений. Воздействие ионизирующих излучений на организм человека

Степень воздействия ионизирующих излучении на организм человека зависит от дозы излучения, ее мощности, плотности ионизации излучения, вида облучения, продолжительности воздействия, индивидуальной чувствительности, физиологического состояния организма и др.Под влиянием ионизирующих излучений в живой ткани , как и в любой среде, поглощается энергия и возникают возбуждение и ионизация атомов облучаемого вещества. В результате возникают первичные физико-химические процессы в молекулах живых клеток и окружающего их субстрата и как следствие - нарушение функций целого организма.Первичные эффекты на клеточном уровне проявляются в виде расщепления молекулы белка, окисления их радикалами ОН и Н, разрыва наименее прочных связей, а также повреждения механизма митоза и хромосомного аппарата, блокирования процессов обновления и дифференцировки клеток.

Наиболее чувствительными к действию радиации являются клетки постоянно обновляющихся тканей и органов (костный мозг, половые железы, селезенка и др.).

Эти изменения на клеточном уровне и гибель клеток могут приводить к нарушению функций отдельных органов и систем, межорганных связей, нарушению нормальной жизнедеятельности организма и к его гибели.

Облучение организма может быть внешним , когда источник излучения находится вне организма, ивнутренним - при попадании радиоактивного вещества (радионуклидов) внутрь организма через пищеварительный тракт, органы дыхания и через кожу.

При внешнем облучении наиболее опасными являются гамма-, нейтронное и рентгеновское излучение. Альфа- и бета-частицы из-за их незначительной проникающей способности вызывают в основном кожные поражения.

Внутреннее облучение опасно тем, что оно вызывает на различных органах долго незаживающие язвы.Облучение людей ионизирующими излучениями может привести к соматическим, сомато-стохастическим и генетическим последствиям .

Соматические эффекты проявляются в виде острой или хронической лучевой болезни всего организма, а также в виде локальных лучевых повреждений.

Сомато-стохастические эффекты проявляются в виде сокращения продолжительности жизни, злокачественные изменения кровообразующих клеток (лейкозы), опухоли различных органов и клеток. Это отдаленные последствия.

Генетические эффекты проявляются в последующих поколениях в виде генных мутаций как результат действия облучения на половые клетки при уровнях дозы, не опасных данному индивиду.

Острая лучевая болезнь характеризуется цикличностью протекания со следующими периодами:

    период первичной реакции;

    скрытый период; период формирования болезни; восстановительный период; период отдаленных последствий и исходов заболевания.

Хроническая лучевая болезнь формируется постепенно при длительном и систематическом облучении дозами, превышающими допустимые при внешнем и внутреннем облучении.Хроническая болезнь может быть легкой (I ступень), средней (II ступень) и тяжелой (III ступень).

Первая ступень лучевой болезни проявляется в виде незначительной головной боли, вялости, слабости, нарушения сна и аппетита и др.

Средняя или вторая ступень характеризуется усилением указанных симптомов и нервно-регуляторных нарушений с появлением функциональной недостаточности пищеварительных желез, сердечно-сосудистой и нервной систем, нарушением некоторых обменных процессов, стойкой лейко- и тромбоцитопенией.

При тяжелой степени , кроме того, развивается анемия, появляется резкая лейко- и тромбопения, возникают атрофические процессы в слизистой желудочно-кишечного тракта и др. (изменения в центральной нервной системе, выпадение волос).

Отдаленные последствия лучевой болезни проявляются в повышенной предрасположенности организма к злокачественным опухолям и болезням кроветворной системы.

Опасность радионуклидов, попавших внутрь организма, обусловливается рядом причин , - способностью некоторых из них избирательно накапливаться в отдельных органах, увеличением времени облучения до выведения нуклида из органа и его радиоактивною распада, ростом опасности высокоионизирующих альфа-и бета-частиц, которые малоэффективны при внешнем облучении.

Критические органы подразделяют на три группы :

I- все тело, репродуктивные органы (гонады), красный костный мозг;

II - мышцы, щитовидная железа, жировая ткань, печень, почки, селезенка, желудочно-кишечный тракт, легкие, хрусталик глаза;

III- костная ткань, кожный покров, руки, предплечья, ступни ног.

Радиоактивное излучение (или ионизирующее) – это энергия, которая высвобождается атомами в форме частиц или волн электромагнитной природы. Человек подвергается такому воздействию как через природные, так и через антропогенные источники.

Полезные свойства излучения позволили успешно использовать его в промышленности, медицине, научных экспериментах и исследованиях, сельском хозяйстве и других областях. Однако с распространением применения этого явления возникла угроза здоровью людей. Малая доза радиоактивного облучения способна повысить риск приобретения серьёзных заболеваний.

Отличие радиации от радиоактивности

Радиация, в широком смысле, означает излучение, то есть распространение энергии в виде волн или частиц. Радиоактивные излучения делят на три вида:

  • альфа-излучение – поток ядер гелия-4;
  • бета-излучение – поток электронов;
  • гамма-излучение – поток высокоэнергетических фотонов.

Характеристика радиоактивных излучений основана на их энергии, пропускных свойствах и виде испускаемых частиц.

Альфа-излучение, которое представляет собой поток корпускул с положительным зарядом, может быть задержано толщей воздуха или одеждой. Этот вид практически не проникает через кожный покров, но при попадании в организм, например, через порезы, очень опасен и пагубно действует на внутренние органы.

Бета-излучение обладает большей энергией – электроны движутся с высокой скоростью, а их размеры малы. Поэтому данный вид радиации проникает через тонкую одежду и кожу глубоко в ткани. Экранировать бета-излучение можно при помощи алюминиевого листа в несколько миллиметров или толстой деревянной доски.

Гамма-излучение – это высокоэнергетическое излучение электромагнитной природы, которое обладает сильной проникающей способностью. Для защиты от него нужно использовать толстый слой бетона или пластину из тяжёлых металлов таких, как платина и свинец.

Феномен радиоактивности был обнаружен в 1896 году. Открытие сделал французский физик Беккерель. Радиоактивность – способность предметов, соединений, элементов испускать ионизирующее изучение, то есть радиацию. Причина явления заключается в нестабильности атомного ядра, которое при распаде выделяет энергию. Существует три вида радиоактивности:

  • естественная – характерна для тяжёлых элементов, порядковый номер которых больше 82;
  • искусственная – инициируется специально с помощью ядерных реакций;
  • наведённая – свойственна объектам, которые сами становятся источником радиации, если их сильно облучить.

Элементы, обладающие радиоактивностью, называют радионуклидами. Каждый из них характеризуется:

  • периодом полураспада;
  • видом испускаемой радиации;
  • энергией радиации;
  • и другими свойствами.

Источники радиации

Человеческий организм регулярно подвергается действию радиоактивного излучения. Приблизительно 80% ежегодно получаемого количества приходится на космические лучи. В воздухе, воде и почве содержатся 60 радиоактивных элементов, являющихся источниками естественной радиации. Основным природным источником излучения считается инертный газ радон, высвобождающийся из земли и горных пород. Радионуклиды также проникают в организм человека с пищей. Часть ионизирующего облучения, которому подвергаются люди, исходит от антропогенных источников, начиная от атомных генераторов электричества и ядерных реакторов до используемой для лечения и диагностики радиации. На сегодняшний день распространёнными искусственными источниками излучения являются:

  • медицинское оборудование (основной антропогенный источник радиации);
  • радиохимическая промышленность (добыча, обогащение ядерного топлива, переработка ядерных отходов и их восстановление);
  • радионуклиды, применяющиеся в сельском хозяйстве, лёгкой промышленности;
  • аварии на радиохимических предприятиях, ядерные взрывы, радиационные выбросы
  • строительные материалы.

Радиационное облучение по способу проникновения в организм делится на два типа: внутреннее и внешнее. Последнее характерно для распылённых в воздухе радионуклидов (аэрозоль, пыль). Они попадают на кожу или одежду. В таком случае источники радиации можно удалить, смыв их. Внешнее же облучение вызывает ожоги слизистых оболочек и кожных покровов. При внутреннем типе радионуклид попадает в кровоток, например, введением в вену или через раны, и удаляется путём экскреции или с помощью терапии. Такое облучение провоцирует злокачественные опухоли.

Радиоактивный фон существенно зависит от географического положения – в некоторых регионах уровень радиации может превышать средний в сотни раз.

Влияние радиации на здоровье человека

Радиоактивное излучение из-за ионизирующего действия приводит к образованию в организме человека свободных радикалов – химически активных агрессивных молекул, которые вызывают повреждение клеток и их гибель.

Особенно чувствительны к ним клетки ЖКТ, половой и кроветворной систем. Радиоактивное облучение нарушает их работу и вызывает тошноту, рвоту, нарушение стула, температуру. Воздействуя на ткани глаза, оно может привести к лучевой катаракте. К последствиям ионизирующего излучения также относят такие повреждения, как склероз сосудов, ухудшение иммунитета, нарушение генетического аппарата.

Система передачи наследственных данных имеет тонкую организацию. Свободные радикалы и их производные способны нарушать структуру ДНК – носителя генетической информации. Это приводит к возникновению мутаций, которые сказываются на здоровье последующих поколений.

Характер воздействия радиоактивного излучения на организм определяется рядом факторов:

  • вид излучения;
  • интенсивность радиации;
  • индивидуальные особенности организма.

Результаты радиоактивного излучения могут проявиться не сразу. Иногда его последствия становятся заметны через значительный промежуток времени. При этом большая однократная доза радиации более опасна, чем долговременное облучение малыми дозами.

Поглощённое количество радиации характеризуется величиной, называемой Зиверт (Зв).

  • Нормальный радиационный фон не превышает 0,2 мЗв/ч, что соответствует 20 микрорентгенам в час. При рентгенографии зуба человек получает 0,1 мЗв.
  • Смертельная разовая доза составляет 6-7 Зв.

Применение ионизирующих излучений

Радиоактивное излучение широко применяется в технике, медицине, науке, военной и атомной промышленности и других сферах человеческой деятельности. Явление лежит в основе таких устройств, как датчики задымления, генераторы электроэнергии, сигнализаторы обледенения, ионизаторы воздуха.

В медицине радиоактивное излучение используется в лучевой терапии для лечения онкологических заболеваний. Ионизирующая радиация позволила создать радиофармацевтические препараты. С их помощью проводят диагностические обследования. На базе ионизирующего излучения устроены приборы для анализа состава соединений, стерилизации.

Открытие радиоактивного излучения было без преувеличения революционным – применение этого явления вывело человечество на новый уровень развития. Однако это также стало причиной возникновения угрозы экологии и здоровью людей. В связи с этим поддержание радиационной безопасности является важной задачей современности.


Ионизирующим излучением называется излучение, взаимодействие которого с веществом приводит к обра­зованию в этом веществе ионов разного знака. Ионизи­рующее излучение состоит из заряженных и незаря­женных частиц, к которым относятся также фотоны. Энергию частиц ионизирующего излучения измеряют во внесистемных единицах- электрон-вольтах, эВ. 1эВ = 1,6 10 -19 Дж.

Различают корпускулярное и фотонное ионизирую­щее излучение.

Корпускулярное ионизирующее излучение - поток элементарных частиц с массой покоя, отличной от нуля, образующихся при радиоактивном распаде, ядерных превращениях, либо генерируемых на ускорителях. К не­му относятся: α- и β-частицы, нейтроны (n), протоны (р) и др.

α-излучение - это поток частиц, являющихся ядра­ми атома гелия и обладающих двумя единицами заряда. Энергия α-частиц, испускаемых различными радионук­лидами, лежит в пределах 2-8 МэВ. При этом все ядра данного радионуклида испускают α-частицы, обладаю­щие одной и той же энергией.

β-излучение - это поток электронов или позитро­нов. При распаде ядер β-активного радионуклида, в от­личие от α-распада, различные ядра данного радионук­лида испускают β-частицы различной энергии, поэтому энергетический спектр β-частиц непрерывен. Средняя энергия β-спектра составляет примерно 0,3 Е тах. Мак­симальная энергия β-частиц у известных в настоящее время радионуклидов может достигать 3,0-3,5 МэВ.

Нейтроны (нейтронное излучение) - нейтральные элементарные частицы. Поскольку нейтроны не имеют электрического заряда, при прохождении через вещество они взаимодействуют только с ядрами атомов. В резуль­тате этих процессов образуются либо заряженные части­цы (ядра отдачи, протоны, нейтроны), либо g-излучение, вызывающие ионизацию. По характеру взаимодействия со средой, зависящему от уровня энергии нейтронов, они условно разделены на 4 группы:

1) тепловые нейтроны 0,0-0,5 кэВ;

2) промежуточные нейтроны 0,5-200 кэВ;

3) быстрые нейтроны 200 Кэв - 20 Мэв;

4) релятивистские нейтроны свыше 20 МэВ.

Фотонное излучение - поток электромагнитных ко­лебаний, которые распространяются в вакууме с посто­янной скоростью 300000 км/с. К нему относятся g-излу­чение, характеристическое, тормозное и рентгеновское
излучение.

Обладая одной и той же природой, эти виды электро­магнитных излучений различаются условиями образо­вания, а также свойствами: длиной волны и энергией.

Так, g-излучение испускается при ядерных превра­щениях или при аннигиляции частиц.

Характеристическое излучение - фотонное излуче­ние с дискретным спектром, испускаемое при измене­нии энергетического состояния атома, обусловленного перестройкой внутренних электронных оболочек.

Тормозное излучение - связано с изменением кине­тической энергии заряженных частиц, имеет непрерыв­ный спектр и возникает в среде, окружающей источник β-излучения, в рентгеновских трубках, в ускорителях электронов и т. п.

Рентгеновское излучение - совокупность тормозно­го и характеристического излучений, диапазон энергии фотонов которых составляет 1 кэВ – 1 МэВ.

Излучения характеризуются по их ионизирующей и проникающей способности.

Ионизирующая способность излучения определяется удельной ионизацией, т. е. числом пар ионов, создавае­мых частицей в единице объема массы среды или на единице длины пути. Излучения различных видов обла­дают различной ионизирующей способностью.

Проникающая способность излучений определяется величиной пробега. Пробегом называется путь, прой­денный частицей в веществе до ее полной остановки, обусловленной тем или иным видом взаимодействия.

α-частицы обладают наибольшей ионизирующей спо­собностью и наименьшей проникающей способностью. Их удельная ионизация изменяется от 25 до 60 тыс. пар ионов на 1 см пути в воздухе. Длина пробега этих частиц в воздухе составляет несколько сантиметров, а в мягкой биологической ткани - несколько десятков микрон.

β-излучение имеет существенно меньшую ионизиру­ющую способность и большую проникающую способ­ность. Средняя величина удельной ионизации в воздухе составляет около 100 пар ионов на 1 см пути, а макси­мальный пробег достигает нескольких метров при боль­ших энергиях.

Наименьшей ионизирующей способностью и наиболь­шей проникающей способностью обладают фотонные излучения. Во всех процессах взаимодействия электро­магнитного излучения со средой часть энергии преобра­зуется в кинетическую энергию вторичных электронов, которые, проходя через вещество, производят иониза­цию. Прохождение фотонного излучения через веще­ство вообще не может быть охарактеризовано понятием пробега. Ослабление потока электромагнитного излуче­ния в веществе подчиняется экспоненциальному закону и характеризуется коэффициентом ослабления р., кото­рый зависит от энергии излучения и свойств вещества. Но какой бы ни была толщина слоя вещества, нельзя пол­ностью поглотить поток фотонного излучения, а можно только ослабить его интенсивность в любое число раз.

В этом существенное отличие характера ослабления фотонного излучения от ослабления за­ряженных частиц, для кото­рых существует минимальная толщина слоя вещества-поглотителя (пробег), где происходит полное поглощение потока заряженных частиц.

Биологическое действие ионизирующих излучений. Под воздействием ионизирующего излучения на орга­низм человека в тканях могут происходить сложные физические и биологические процессы. В результате ионизации живой ткани происходит разрыв молекуляр­ных связей и изменение химической структуры различ­ных соединений, что в свою очередь приводит к гибели клеток.

Еще более существенную роль в формировании био­логических последствий играют продукты радиолиза воды, которая составляет 60-70% массы биологической ткани. Под действием ионизирующего излучения на воду образуются свободные радикалы Н·и ОН·, а в присут­ствии кислорода также свободный радикал гидропероксида (НО· 2) и пероксида водорода (Н 2 O 2), являющи­еся сильными окислителями. Продукты радиолиза вступают в химические реакции с молекулами тканей, образуя соединения, не свойственные здоровому орга­низму. Это приводит к нарушению отдельных функций или систем, а также жизнедеятельности организма в целом.

Интенсивность химических реакций, индуцирован­ных свободными радикалами, повышается, и в них вов­лекаются многие сотни и тысячи молекул, не затрону­тых облучением. В этом состоит специфика действия ионизирующего излучения на биологические объекты, то есть производимый излучением эффект обусловлен не столько количеством поглощенной энергии в облучае­мом объекте, сколько той формой, в которой эта энер­гия передается. Никакой другой вид энергии (тепловой, электрической и др.), поглощенной биологическим объек­том в том же количестве, не приводит к таким измене­ниям, какие вызывают ионизирующие излучения.

Ионизирующая радиация при воздействии на организм человека может вызвать два вида эффектов, которые клинической медициной относятся к болезням: детерминированные пороговые эффекты (лу­чевая болезнь, лучевой ожог, лучевая катаракта, лучевое бесплодие, аномалии в развитии плода и др.) и стохастические (вероятностные) беспороговые эффекты (злокачественные опухоли, лейкозы, наслед­ственные болезни).

Нарушения биологических процессов могут быть либо обратимыми, когда нормальная работа клеток облучен­ной ткани полностью восстанавливается, либо необрати­мыми, ведущими к поражению отдельных органов или всего организма и возникновению лучевой болезни.

Различают две формы лучевой болезни - острую и хроническую.

Острая форма возникает в результате облучения боль­шими дозами в короткий промежуток времени. При дозах порядка тысяч рад поражение организма может быть мгновенным («смерть под лучом»). Острая лучевая болезнь может возникнуть и при попадании внутрь орга­низма больших количеств радионуклидов.

Острые поражения развиваются при однократном равномерном гамма-облучении всего тела и поглощенной дозе выше 0,5 Гр. При дозе 0,25...0,5 Гр могут наблюдаться временные изменения в крови, которые быстро нормализуются. В интервале дозы 0,5...1,5 Гр возникает чувство усталости, менее чем у 10 % облученных может наблюдаться рвота, умеренные изменения в крови. При дозе 1,5...2,0 Гр наблюдает­ся легкая форма острой лучевой болезни, которая проявляется продол­жительной лимфопенией (снижение числа лимфоцитов - иммунокомпетентных клеток) , в 30...50 % случаев - рвота в первые сутки после облучения. Смертельные исходы не регистрируются.

Лучевая болезнь средней тяжести возникает при дозе 2,5...4,0 Гр. Почти у всех облученных в первые сутки наблюдаются тошнота, рво­та, резко снижается содержание лейкоцитов в крови, появляются подкожные кровоизлияния, в 20 % случаев возможен смертельный исход, смерть наступает через 2...6 недель после облучения. При дозе 4,0...6,0 Гр развивается тяжелая форма лучевой болезни, приводящая в 50 % случаев к смерти в течение первого месяца. При дозах, превы­шающих 6,0 Гр, развивается крайне тяжелая форма лучевой болезни, которая почти в 100 % случаев заканчивается смертью вследствие кровоизлияния или инфекционных заболеваний. Приведенные дан­ные относятся к случаям, когда отсутствует лечение. В настоящее время имеется ряд противолучевых средств, которые при комплекс­ном лечении позволяют исключить летальный исход при дозах около 10 Гр.

Хроническая лучевая болезнь может развиться при непрерывном или повторяющемся облучении в дозах, существенно ниже тех, кото­рые вызывают острую форму. Наиболее характерными признаками хронической лучевой болезни являются изменения в крови, ряд сим­птомов со стороны нервной системы, локальные поражения кожи, поражения хрусталика, пневмосклероз (при ингаляции плутония-239), снижение иммунореактивности организма.

Степень воздействия радиации зависит от того, является облуче­ние внешним или внутренним (при попадании радиоактивного изо­топа внутрь организма). Внутреннее облучение возможно при вдыха­нии, заглатывании радиоизотопов и проникновении их в организм через кожу. Некоторые вещества поглощаются и накапливаются в конкретных органах, что приводит к высоким локальным дозам ра­диации. Кальций, радий, стронций и другие накапливаются в костях, изотопы йода вызывают повреждение щитовидной железы, редкозе­мельные элементы - преимущественно опухоли печени. Равномер­но распределяются изотопы цезия, рубидия, вызывая угнетение кро­ветворения, атрофию семенников, опухоли мягких тканей. При внут­реннем облучении наиболее опасны альфа-излучающие изотопы по­лония и плутония.

Способность вызывать отдаленные последствия - лейкозы, зло­качественные новообразования, раннее старение - одно из ковар­ных свойств ионизирующего излучения.

Для решения вопросов радиационной безопасности в первую очередь представляют интерес эффекты, наблю­даемые при «малых дозах» - порядка нескольких сантизивертов в час и ниже, которые реально встречаются при практическом использовании атомной энергии.

Весьма важным здесь является то, что, согласно со­временным представлениям, выход неблагоприятных эффектов в диапазоне «малых доз», встречающихся в обычных условиях, мало зависит от мощности дозы. Это означает, что эффект определяется прежде всего сум­марной накопленной дозой вне зависимости от того, по­лучена она за 1 день, за 1 с или за 50 лет. Таким обра­зом, оценивая эффекты хронического облучения, следует иметь в виду, что эти эффекты накапливаются в орга­низме в течение длительного времени.

Дозиметрические величины и единицы их измерения. Действия ионизирующего излучения на вещество проявляется в ионизации и возбуждении атомов и моле­кул, входящих в состав вещества. Количественный ме­рой этого воздействия служит поглощенная доза Д п - средняя энергия, переданная излучением единице мас­сы вещества. Единица поглощенной дозы - грей (Гр). 1 Гр = 1 Дж/кг. На прак­тике применяется также внесистемная единица - 1 рад = 100 эрг/г = 1 10 -2 Дж/кг = 0,01 Гр.

Поглощенная доза излучения зависит от свойств из­лучения и поглощающей среды.

Для заряженных частиц (α, β, протонов) небольших энергий, быстрых нейтронов и некоторых других излу­чений, когда основными процессами их взаимодействия с веществом являются непосредственная ионизация и возбуждение, поглощенная доза служит однозначной ха­рактеристикой ионизирующего излучения по его воз­действию на среду. Это связано с тем, что между пара­метрами, характеризующими данные виды излучения (поток, плотность потока и др.) и параметром, характе­ризующим ионизационную способность излучения в сре­де - поглощенной дозой, можно установить адекватные прямые зависимости.

Для рентгеновского и g-излучений таких зависимос­тей не наблюдается, так как эти виды излучений кос­венно ионизирующие. Следовательно, поглощенная доза не может служить характеристикой этих излучений по их воздействию на среду.

До последнего времени в качестве характеристики рентгеновского и g-излучений по эффекту ионизации используют так называемую экспозиционную дозу. Экс­позиционная доза выражает энергию фотонного излуче­ния, преобразованную в кинетическую энергию вторич­ных электронов, производящих ионизацию в единице массы атмосферного воздуха.

За единицу экспозиционной дозы рентгеновского и g-излучений принимают кулон на килограмм (Кл/кг). Это такая доза рентгеновского или g-излучения, при воздействии которой на 1 кг сухого атмосферного возду­ха при нормальных условиях образуются ионы, несу­щие 1 Кл электричества каждого знака.

На практике до сих пор широко используется внеси­стемная единица экспозиционной дозы - рентген. 1 рен­тген (Р) - экспозиционная доза рентгеновского и g-из­лучений, при которой в 0,001293 г (1 см 3 воздуха при нормальных условиях) образуются ионы, несущие заряд в одну электростатическую единицу количества элект­ричества каждого знака или 1 Р=2,58 10 -4 Кл/кг. При экспозиционной дозе в 1 Р будет обра­зовано 2,08 10 9 пар ионов в 0,001293 г атмосферного воздуха.

Исследования биологических эффектов, вызываемых различными ионизирующими излучениями, показали, что повреждение тканей связано не только с количеством поглощенной энергии, но и с ее пространственным рас­пределением, характеризуемым линейной плотностью ионизации. Чем выше линейная плотность ионизации, или, иначе, линейная передача энергии частиц в среде на единицу длины пути (ЛПЭ), тем больше степень био­логического повреждения. Чтобы учесть этот эффект, введено понятие эквивалентной дозы.

Доза эквивалентная H T , R - поглощенная доза в органе или ткани D T , R , умноженная на соответствующий взвешивающий коэффициент для данного излучения W R :

H t , r =W R D T , R

Единицей измерения эквивалентной дозы является Джž кг -1 , имеющий специальное наименование зиверт (Зв).

Значения W R для фотонов, электронов и мюонов любых энергий составляет 1, для α-частиц, осколков деления, тяжелых ядер - 20. Взвешивающие коэффициенты для отдельных видов излучения при расчете эквивалентной дозы:

· Фотоны любых энергий…………………………………………………….1

· Электроны и мюоны (менее 10 кэВ)……………………………………….1

· Нейтроны с энергией менее 10 кэВ………………………………………...5

от 10 кэВ до 100 кэВ ……....………………………………………………10

от 100 кэВ до 2 МэВ………………………………………………………..20

от 2 МэВ до 20 МэВ………………………………………………………..10

более 20 МэВ…………………………………………………………………5

· Протоны, кроме протонов отдачи,

энергия более 2 МэВ………………………………….………………5

· Альфа-частицы,

осколки деления, тяжелые ядра………………………………………….20

Доза эффективная - величина, используемая как мера риска воз­никновения отдаленных последствий облучения всего тела человека и отдельных его органов с учетом их радиочувствительности Она представляет сумму произведений эквивалентной дозы в органе Н τТ на соответствующий взвешивающий коэффициент для данного орга­на или ткани W T:

гдеН τТ - эквивалентная доза в ткани Т за время τ .

Единица измерения эффективной дозы - Дж × кг -1 , называемая зивертом (Зв).

Значения W T для отдельных видов ткани и органов приведены ниже:

Вид ткани, орган W 1

Гонады................................................................................................................0,2

Костный мозг, (красный), легкие, желудок………………………………0,12

Печень, грудная железа, щитовидная железа. …………………………...0,05

Кожа……………………………………………………………………………0,01

Поглощенная, экспозиционная и эквивалентная дозы, отнесенные к единице времени, носят название мощнос­ти соответствующих доз.

Самопроизвольный (спонтанный) распад радиоактив­ных ядер следует закону:

N = N 0 ехр(-λt),

где N 0 - число ядер в данном объеме вещества в момент времени t = 0 ; N - число ядер в том же объеме к моменту времени t; λ - постоянная распада.

Постоянная λ имеет смысл вероятности распада ядра за 1 с; она равна доле ядер, распадающихся за 1 с. По­стоянная распада не зависит от общего числа ядер и имеет вполне определенное значение для каждого ра­диоактивного нуклида.

Приведенное выше уравнение показывает, что с те­чением времени число ядер радиоактивного вещества уменьшается по экспоненциальному закону.

В связи с тем, что период полураспада значительно­го числа радиоактивных изотопов измеряется часами и сутками (так называемые короткоживущие изотопы), его необходимо знать для оценки радиационной опасно­сти во времени в случае аварийного выброса в окружаю­щую среду радиоактивного вещества, выбора метода де­зактивации, а также при переработке радиоактивных отходов и последующем их захоронении.

Описанные виды доз относятся к отдельному челове­ку, то есть являются индивидуальными.

Просуммировав индивидуальные эффективные экви­валентные дозы, полученные группой людей, мы при­дем к коллективной эффективной эквивалентной дозе, которая измеряется в человеко-зивертах (чел-Зв).

Следует ввести еще одно определение.

Многие радионуклиды распадаются очень медленно и останутся в отдаленном будущем.

Коллективную эффективную эквивалентную дозу, которую получат поколения людей от какого-либо ра­диоактивного источника за все время его существова­ния, называют ожидаемой (полной) коллективной эф­фективной эквивалентной дозой.

Активность препарата - это мера количества ра­диоактивного вещества.

Определяется активность числом распадающихся ато­мов в единицу времени, то есть скоростью распада ядер радионуклида.

Единицей измерения активности является одно ядер­ное превращение в секунду. В системе единиц СИ она получила название беккерель (Бк).

За внесистемную единицу активности принята кюри (Ки) - активность такого числа радионуклида, в кото­ром происходит 3,7×10 10 актов распада в секунду. На практике широко пользуются производными Ки: мил­ликюри - 1 мКи = 1 ×10 -3 Ки; микрокюри - 1 мкКи = 1 ×10 -6 Ки.

Измерение ионизирующих излучений. Необходимо помнить, что не существует универсаль­ных методов и приборов, применимых для любых усло­вий. Каждый метод и прибор имеют свою область при­менения. Неучет этих замечаний может привести к грубым ошибкам.

В радиационной безопасности используют радиомет­ры, дозиметры и спектрометры.

Радиометры - это приборы, предназначенные для определения количества радиоактивных веществ (радио­нуклидов) или потока излучения. Например, газораз­рядные счетчики (Гейгера-Мюллера).

Дозиметры - это приборы для измерения мощнос­ти экспозиционной или поглощенной дозы.

Спектрометры служат для регистрации и анализа энергетического спектра и идентификации на этой осно­ве излучающих радионуклидов.

Нормирование. Вопросы радиационной безопасности регламентиру­ется Федеральным законом «О радиационной безопасно­сти населения», нормами радиационной безопасности (НРБ-99) и другими правилами и положениями. В зако­не «О радиационной безопасности населения» говорит­ся: «Радиационная безопасность населения - состояние защищенности настоящего и будущего поколений лю­дей от вредного для их здоровья воздействия ионизиру­ющего излучения» (статья 1).

«Граждане Российской Федерации, иностранные граждане и лица без гражданства, проживающие на тер­ритории Российской Федерации, имеют право на радиа­ционную безопасность. Это право обеспечивается за счет проведения комплекса мероприятий по предотвращению радиационного воздействия на организм человека иони­зирующего излучения выше установленных норм, пра­вил и нормативов, выполнения гражданами и организа­циями, осуществляющими деятельность с использованием источников ионизирующего излучения, требований к обеспечению радиационной безопасности» (статья 22).

Гигиеническая регламентация ионизирующего излученияосуществ­ляется Нормами радиационной безопасности НРБ-99 (Санитарны­ми правилами СП 2.6.1.758-99). Основные дозовые пределы облуче­ния и допустимые уровни устанавливаются для следующих категорий

облучаемых лиц:

· персонал - лица, работающие с техногенными источниками (группа А) или находящиеся по условиям работы в сфере их воздейст­вия (группа Б);

· все население, включая лиц из персонала, вне сферы и усло­вий их производственной деятельности.

Ионизирующее излучение – вид радиации, которая у всех ассоциируется исключительно со взрывами атомных бомб и авариями на АЭС.

Однако на деле ионизирующее излучение окружает человека и представляет собой естественный радиационный фон: оно образуется в бытовых приборах, на электрических вышках и т.д. При воздействии с источниками происходит облучение человека данным излучением.

Стоит ли бояться серьезных последствий – лучевой болезни или поражения органов?

Сила действия излучения зависит от продолжительности контакта с источником и его радиоактивности. Бытовые приборы, создающие незначительный «шум», не опасны для человека.

Но некоторые типы источников могут нанести серьезный вред организму. Чтобы предотвратить негативное воздействие, нужно знать базовую информацию: что такое ионизирующее излучение и откуда оно исходит, а также как влияет на человека.

Природа ионизирующего излучения

Ионизирующее излучение возникает при распаде радиоактивных изотопов.

Таких изотопов множество, они используются в электронике, атомной промышленности, добыче энергии:

  1. уран-238;
  2. торий-234;
  3. уран-235 и т.д.

Изотопы радиоактивного характера естественным образом распадаются с течением времени. Скорость распада зависит от вида изотопа и исчисляется в периоде полураспада.

По истечению определенного срока времени (у одних элементов этом могут быть несколько секунд, у других – сотни лет) количество радиоактивных атомов снижается ровно вдвое.

Энергия, которая высвобождается при распаде и уничтожении ядер, высвобождается в виде ионизирующего излучения. Оно проникает в различные структуры, выбивая из них ионы.

Ионизирующие волны основаны на гамма-излучении, измеряются в гамма-квантах. Во время передачи энергии не выделяются никакие частицы: атомы, молекулы, нейтроны, протоны, электроны или ядра. Воздействие ионизирующего излучения чисто волновое.

Проникающая способность излучения


Все виды разнятся по проникающей способности, то есть способность быстро преодолевать расстояния и проходить сквозь различные физические преграды.

Наименьшим показателем отличается альфа-излучение, а в основе ионизирующего излучения лежат гамма-лучи – самые проникающие из трех типов волн. При этом альфа-излучение оказывает самое отрицательное действие.

Что отличает гамма-излучение?

Оно опасно из-за следующих характеристик:

  • распространяется со скоростью света;
  • проходит через мягкие ткани, дерево, бумагу, гипсокартон;
  • останавливается только толстым слоем бетона и металлическим листом.

Для задержки волн, которыми распространяется данное излучение, на АЭС ставят специальные коробы. Благодаря им радиации не может ионизировать живые организмы, то есть нарушать молекулярную структуру людей.

Снаружи коробы состоят из толстого бетона, внутренняя часть обита листом чистого свинца. Свинец и бетон отражают лучи или задерживают их в своей структуре, не позволяя распространиться и нанести вред живому окружению.

Виды источников радиации


Мнение, что радиация возникает только в результате жизнедеятельности человека, ошибочно. Слабый радиационный фон есть почти у всех живых объектов и у самой планеты соответственно. Поэтому избежать ионизирующего излучения очень сложно.

На основе природы возникновения все источники делятся на природные и антропогенные. Наиболее опасны антропогенные, такие, как выброс отходов в атмосферу и водоемы, аварийная ситуация или действие электроприбора.

Опасность последнего источника спорна: считается, что небольшие излучающие устройства не создают серьезной угрозы для человека.

Действие индивидуально: кто-то может почувствовать ухудшение самочувствия на фоне слабого излучения, другой же индивид окажется абсолютно не подвержен естественному фону.

Природные источники радиации


Основную опасность для человека представляют минеральные породы. В их полостях скапливается наибольшее количество незаметного для человеческих рецепторов радиоактивного газа – радона.

Он естественным образом выделяется из земной коры и плохо регистрируется проверочными приборами. При поставке строительных материалов возможен контакт с радиоактивными породами, и как результат – процесс ионизации организма.

Опасаться следует:

  1. гранита;
  2. пемзы;
  3. мрамора;
  4. фосфогипса;
  5. глинозема.

Это наиболее пористые материалы, которые лучше всего задерживают в себе радон. Данный газ выделяется из строительных материалов или грунта.

Он легче воздуха, поэтому поднимается на большую высоту. Если вместо открытого неба над землей обнаружено препятствие (навес, крыша помещения), газ будет скапливаться.

Большая насыщенность воздуха его элементами приводит к облучению людей, компенсировать которое можно только выведением радона из жилых зон.

Чтобы избавиться от радона, требуется начать простое проветривание. Нужно стараться не вдыхать воздух в том помещении, где произошло заражение.

Регистрация возникновения скопившегося радона осуществляется только при помощи специализированных симптомов. Без них сделать вывод о скоплении радона можно только на основе не специфичных реакций человеческого организма (головная боль, тошнота, рвота, головокружение, потемнение в глазах, слабость и жжение).

При обнаружении радона вызывается бригада МЧС, которая устраняет радиацию и проверяет эффективность проведенных процедур.

Источники антропогенного происхождения


Другое название созданных человеком источников – техногенные. Основной очаг излучения – АЭС, расположенные по всему миру. Нахождение в зонах станций без защитной одежды влечет за собой начало серьезных заболеваний и летальный исход.

На расстоянии нескольких километров от АЭС риск сводится к нулю. При правильной изоляции все ионизирующие излучения остаются внутри станции, и можно находиться в непосредственной близости от рабочей зоны, при этом не получая никакой дозы облучения.

Во всех сферах жизнедеятельности можно столкнуться с источником излучения, даже не проживая в городе близ АЭС.

Искусственная ионизирующая радиация повсеместно используется в различных отраслях:

  • медицине;
  • промышленности;
  • сельском хозяйстве;
  • наукоемких отраслях.

Однако получить облучение от аппаратов, которые изготавливаются для данных отраслей, невозможно.

Единственное, что допустимо – минимальное проникновение ионных волн, которое не наносит вреда при малой продолжительности воздействия.

Радиоактивные осадки


Серьезная проблема современности, связанная с недавними трагедиями на АЭС – распространение радиоактивных дождей. Выбросы в атмосферу радиации заканчиваются накоплением изотопов в атмосферной жидкости – облаках. При переизбытке жидкости начинаются осадки, которые представляют серьезную угрозу для сельскохозяйственных культур и человека.

Жидкость впитывается в земли сельскохозяйственных угодий, где произрастает рис, чай, кукуруза, тростник. Данные культуры характерны для восточной части планеты, где наиболее актуальна проблема радиоактивных дождей.

Ионное излучение оказывает меньшее воздействие на другие части света, потому что осадки не доходят до Европы и островных государств в области Великобритании. Однако в США и Австралии дожди иногда проявляются радиационные свойства, поэтому при покупке овощей и фруктов оттуда нужно проявлять осторожность.

Радиоактивные осадки могут выпадать над водоемами, и тогда жидкость по каналам водоочистки и водопроводным системам может попасть в жилые дома. Очистные сооружения не обладают достаточной для снижения радиации аппаратурой. Всегда есть риск, что принимаемая вода – ионная.

Как обезопасить себя от радиации

Прибор, который измеряет, есть ли в фоне продукта ионные излучения, находится в свободном доступе. Его можно приобрести за небольшие деньги и использовать для проверки покупок. Название проверочного устройства – дозиметр.

Вряд ли домохозяйка будет проверять покупки прямо в магазине. Обычно мешает стеснение перед посторонними. Но хотя бы дома те продукты, что поступили из подверженных радиоактивным дождям зон, нужно проверять. Достаточно поднести счетчик к предмету, и он покажет уровень испускания опасных волн.

Влияние ионизирующего излучения на человеческий организм


Научно доказано, что радиация оказывает на человека отрицательное действие. Это было выяснено и на реальном опыте: к сожалению, аварии на Чернобыльской АЭС, в Хиросиме и т.д. доказали биологическую и излучения.

Влияние радиации основано на полученной «дозе» — количестве переданной энергии. Радионуклид (испускающий волны элементы) может оказывать влияние как изнутри, так и снаружи организма.

Полученная доза измеряется в условных единицах – Греях. Нужно учитывать, что доза может быть равной, а вот влияние радиации – разным. Это связано с тем, что различные излучения вызывают разные по силе реакции (самая выраженная у альфа-частиц).

Также на силу воздействия влияет и то, на какую часть организма пришлось попадание волн. Наиболее подвержены структурным изменениям половые органы и легкие, меньше – щитовидная железа.

Результат биохимического воздействия


Радиация влияет на структуру клеток организма, вызывая биохимические изменения: нарушения в циркуляции химических веществ и в функциях организма. Влияние волн проявляется постепенно, а не сразу после облучения.

Если человек попал под допустимую дозу (150 бэр), то отрицательные эффекты не будут выражены. При большем облучении ионизационный эффект увеличивается.

Естественное излучение равно примерно в 44 бэр в год, максимум – 175. Максимальное число лишь немного выходит за рамки нормы и не вызывает отрицательных изменений в организме, кроме головных болей или слабой тошноты у гиперчувствительных людей.

Естественное излучение складывается на основе радиационного фона Земли, употребления зараженных продуктов, использования техники.

Если доля превышена, развиваются следующие заболевания:

  1. генетические изменения организма;
  2. нарушения половой функции;
  3. раковые образования мозга;
  4. дисфункции щитовидной железы;
  5. рак легких и дыхательной системы;
  6. лучевая болезнь.

Лучевая болезнь является крайней стадией всех связанных с радионуклидами заболеваний и проявляется лишь у тех, кто попал в зону аварии.

В организме человека радиация вызывает цепочку обратимых и необратимых изменений. Пусковым механизмом воздействия являют­ся процессы ионизации и возбуждения молекул и атомов в тканях. Важную роль в формировании биологических эффектов играют сво­бодные радикалы Н + и ОН-, образующиеся в процессе радиолиза воды (в организме содержится до 70% воды). Обладая высокой химической активностью, они вступают в химические реакции с молекулами бел­ка, ферментов и других элементов биологической ткани, вовлекая в реакции сотни и тысячи молекул, не затронутых излучением, что приводит к нарушению биохимических процессов в организме.

Под воздействием радиации нарушаются обменные процессы, замедляется и прекращается рост тканей, возникают новые химиче­ские соединения, не свойственные организму (токсины). Нарушаются функции кроветворных органов (красного костного мозга), увеличи­вается проницаемость и хрупкость сосудов, происходит расстройство

желудочно-кишечного тракта, ослабевает иммунная система человека, происходит его истощение, перерождение нормальных клеток в зло­качественные (раковые) и др.

Ионизирующее излучение вызывает поломку хромосом, после чего происходит соединение разорванных концов в новые сочетания. Это приводит к изменению генного аппарата человека. Стойкие изме­нения хромосом приводят к мутациям, которые отрицательно влияют на потомство.

Для защиты от ионизирующих излучений применяют следующие методы и средства:

Снижение активности (количества) радиоизотопа, с которым работает человек;

Увеличение расстояния от источника излучения;

Экранирование излучения с помощью экранов и биологиче­ских защит;

Применение средств индивидуальной защиты.

В инженерной практике для выбора типа и материала экрана, его толщины используют уже известные расчетно-экспериментальные данные по кратности ослабления излучений различных радионукли­дов и энергий, представленные в виде таблиц или графических зави­симостей. Выбор материала защитного экрана определяется видом и энергией излучения.

Для защиты от альфа-излучения достаточно 10 см слоя воздуха. При близком расположении от альфа-источника применяют экраны из органического стекла.

Для защиты от бета-излучения рекомендуется использовать материалы с малой атомной массой (алюминий, плексиглас, карболит). Для комплексной защиты от бета- и тормозного гамма-излучения применяют комбинированные двух- и многослойные экраны, у кото­рых со стороны источника излучения устанавливают экран из мате­риала с малой атомной массой, а за ним - с большой атомной массой (свинец, сталь и т.д.).

Для защиты от гамма- и рентгеновского излучения, обладаю­щих очень высокой проникающей способностью, применяют материа­лы с большой атомной массой и плотностью (свинец, вольфрам и др.), а также сталь, железо, бетон, чугун, кирпич. Однако чем меньше атомная масса вещества экрана и чем меньше плотность защитного материала, тем для требуемой кратности ослабления требуется боль­шая толщина экрана.


Для защиты от нейтронного излучения применяют водородо-содержащие вещества: воду, парафин, полиэтилен. Кроме того, нейт­ронное излучение хорошо поглощается бором, бериллием, кадмием, графитом. Поскольку нейтронные излучения сопровождаются гамма-излучениями, необходимо применять многослойные экраны из раз­личных материалов: свинец-полиэтилен, сталь-вода и водные рас­творы гидроокисей тяжелых металлов.

Средства индивидуальной защиты. Для защиты человека от внутреннего облучения при попадании радиоизотопов внутрь организ­ма с вдыхаемым воздухом применяют респираторы (для защиты от ра­диоактивной пыли), противогазы (для защиты от радиоактивных газов).

При работе с радиоактивными изотопами применяют халаты, комбинезоны, полукомбинезоны из неокрашенной хлопчатобумажной ткани, а также хлопчатобумажные шапочки. При опасности значи-тельного загрязнения помещения радиоактивными изотопами поверх хлопчатобумажной одежды надевают пленочную (нарукавники, брю­ки, фартук, халат, костюм), покрывающую все тело или места воз­можного наибольшего загрязнения. В качестве материалов для пле­ночной одежды применяют пластики, резину и другие материалы, которые легко очищаются от радиоактивных загрязнений. При ис­пользовании пленочной одежды в ее конструкции предусматривается принудительная подача воздуха под костюм и нарукавники.

При работе с радиоактивными изотопами высокой активности используют перчатки из просвинцованной резины.

При высоких уровнях радиоактивного загрязнения применяют пневмокостюмы из пластических материалов с принудительной пода­чей чистого воздуха под костюм. Для защиты глаз применяют очки закрытого типа со стеклами, содержащими фосфат вольфрама или свинец. При работе с альфа- и бета-препаратами для защиты лица и глаз используют защитные щитки из оргстекла.

На ноги надевают пленочные туфли или бахилы и чехлы, сни­маемые при выходе из загрязненной зоны.