Макияж. Уход за волосами. Уход за кожей

Макияж. Уход за волосами. Уход за кожей

Виды митохондрий. Митохондрии

Митохондрии, что же это такое и какую они выполняют функцию. Кончено не каждый человек понимает, зачем ему нужна эта информация. Но, если вы внимательно прочтете эту статью, то ваше мнение поменяется.

Внутреннюю организацию клеток, как животных, так и растений, можно сравнить с коммуной. Как это понимать?

Это означает, что все клетки равны, и они в свою очередь выполняют одну специфическую роль. Основная роль клеток заключается в создании сбалансированного ансамбля.

Что касается митохондрий, то это отдельная структура. Включает в себя множество внутриклеточных функций.

Содержание статьи:
1. Общая информация

Общая информация

Структуру открыли еще в середине XIX века. Стоит отметить, что в течение целых 150 лет, все ученые считали, что митохондрии способны выполнять только единственную функцию, а именно быть энергетической машиной клетки.

Для того чтобы было немного понятно: организм получает питательные компоненты, после чего происходит процесс деградации, который доходит до митохондрии. Затем наблюдается окислительная деградация всех питательных компонентов, которые поступили в организм.

Где же живут митохондрии?

Митохондрии находятся в цитоплазме, а именно в тех районах, где появляется необходимость в АТФ.

Если более внимательно посмотреть с точки зрения биологии, то митохондрий много в мышечной ткани сердца. В сперматозоидах также расположены митохондрии, а их основная цель это создать защитную маскировку. В сперматозоидах митохондрии вырабатывают значительно меньше энергии, чем в мышечной ткани сердца.

Основное строение митохондрий

Митохондрий имеет достаточно сложную структуру. Состоит из двух мембран, а именно из внешней и внутренней. Помимо этого имеется межмембранное пространство.

Внутри самого митохондрия располагается матрикса, иными словами это внутреннее содержимое. Под микроскопом на матриксе можно заметить небольшие выросты, это крист.

Синтез собственного белка происходит за счет ДНК, РНК и конечно же рибосом.

Что касается внешней и внутренней мембраны, то они выполняют разнообразные функции. Именно по этой причины ученые разделили функциональные способности на химический состав.

Мембрана не превышает более чем 10 нм. Внешняя мембрана немного похожа на плазмалемму, поэтому она выполняет барьерную функцию.

Внутренняя мембрана митохондрий состоит из крист, за счет этого она образует мультиферментативную систему.

Функции митохондрий

Самая основная функция митохондрий – синтез АТФ (форма химической энергии). Если внимательно изучить биологию, то можно заметить, что молекула способна образовываться двумя путями.

Первый путь образования осуществляется исключительно в результате субстратного фосфорилирования. Второй путь образования происходит в процессе переноса остатка именно фосфорной кислоты.

Важно! Митохондрии для синтезирования АТФ используют два пути. Почему? Дело в том, что первый путь образования характерен для начального процесса окисления, который в свою очередь осуществляется в матриксе. Второй путь — уже завершающий процесс энергообразования. В этом случае осуществляется связывания митохондрий с кристами.

Процесс энергообразования можно условно разделить на определенные, поэтапные стадии. Первые две стадии протекают исключительно в матриксе, что касается оставшихся стадий, то они протекают в кристах митохондрий.

  1. Из цитоплазмы в митохондрии начинают поступать не только жирные кислоты, но и соли пировиноградной кислоты. Именно в митохондрии происходит превращение кислот в ацетил-коэнзим.
  2. На второй стадии происходит окисление –конэнзим, в медицинской практике также называют ацетил-СоА. Процесс окисления осуществляется в цикле Кребса. На завершающем этапе второго процесс образуется НАДН+ и две молекулы кислорода.
  3. На третьем этапе по дыхательной цепи производится перенос электролитов, непосредственно с НАДН на кислород. После чего образуется вода.
  4. Образование АТФ.

Как вы видите, что процесс образования энергии в организме человека достаточно серьезный.

Зачем же нужны митохондрии?

Теперь вы знаете, что митохондрии это клеточные органеллы, которые являются основным источником энергии. Для производства энергии, органеллам нужен не только кислород, но и глюкоза.

С глюкозой все более просто, пополнить ее запасы можно с пищей, но, а как же быть с кислородом?

Каждый человек воспринимает за дыхание вдох и выдох, это естественное внешнее дыхание. Процесс самого дыхания необходимо рассмотреть с иной точки зрения.

Итак, когда человек вдыхание, кислород начинает поступать в альвеолы, после чего проникает в кровь, затем разноситься дальше по клеткам и тканям организма.

Кислород состоит из клеток, которые в свою очередь могут окислять питательные компоненты и тем самым выделятся энергия. Зафиксируем ваше внимание: конечный результат процесса – и есть выработка в митохондриях энергии. В медицинской практике данный процесс называют клеточным дыханием.

Теперь можно сделать небольшой вывод: чем больше будет митохондрий, тем больше наш организм получит питательных веществ.

Можно ли повысить количество митохондрий самостоятельно?

Да, повысить количество органелл в организме можно, главное знать как. Самый простой способ это заняться аэробным бегом. В момент аэробного бега, человек дышит свободно, тем самым поступает достаточно большое количество кислорода.

Теперь рассмотрим, как же повысить проникновение кислорода в клетку. Итак, для того чтобы увеличить парциальное давление, непосредственно углекислого газа, необходимо ежедневно делать упражнения на носовое дыхание. Например: вдох и выдох через нос. Выдыхать носом очень тяжело для человека, но при этом есть возможность накопить много углекислого газа. Второй способ – проводить дыхательную гимнастику по методу Бутейко.

Самый простой вариант, это конечно же, использовать специальные маски или аппараты.

Помимо упражнений и аппаратов, необходимо придерживаться правильного питания. В рацион включить как можно больше продуктов, которые богаты на полезные витамины и макро и микроэлементы.

Например:

  1. Мясо.
  2. Рыбу.
  3. Фрукты и овощи.

Для того чтобы повысить уровень глюкозы в организме, которая также активно участвует синтезе АТФ, включить в рацион питания сухофрукты, мед (при условии, что нет аллергической реакции на продукт).

Некоторые врачи советуют использовать витамины и добавки в драже или капсулах. Купить витаминный комплекс в состав которого входит магний, витамины из группы В и С, D-рибоза.

Строение и функции митохондрии видео

Важную роль в жизнедеятельности каждой клетки играют особые структуры - митохондрии. Строение митохондрий позволяет работать органелле в полуавтономном режиме.

Общая характеристика

Митохондрии были обнаружены в 1850 году. Однако понять строение и функциональное назначение митохондрий стало возможно только в 1948 году.

За счёт своих довольно крупных размеров органеллы хорошо различимы в световом микроскопе. Максимальная длина - 10 мкм, диаметр не превышает 1 мкм.

Митохондрии присутствуют во всех эукариотических клетках. Это двумембранные органоиды обычно бобовидной формы. Также встречаются митохондрии сферической, нитевидной, спиралевидной формы.

Количество митохондрий может значительно варьировать. Например, в клетках печени их насчитывается около тысячи, а в ооцитах - 300 тысяч. Растительные клетки содержат меньше митохондрий, чем животные.

ТОП-4 статьи которые читают вместе с этой

Рис. 1. Нахождение митохондрий в клетке.

Митохондрии пластичны. Они меняют форму и перемещаются в активные центры клетки. Обычно митохондрий больше в тех клетках и частях цитоплазмы, где выше потребность в АТФ.

Строение

Каждая митохондрия отделена от цитоплазмы двумя мембранами. Наружная мембрана гладкая. Строение внутренней мембраны более сложное. Она образует многочисленные складки - кристы, которые увеличивают функциональную поверхность. Между двумя мембранами находится пространство в 10-20 нм, заполненное ферментами. Внутри органеллы располагается матрикс - гелеобразное вещество.

Рис. 2. Внутреннее строение митохондрий.

В таблице “Строение и функции митохондрии” подробно описаны компоненты органеллы.

Состав

Описание

Функции

Внешняя мембрана

Состоит из липидов. Содержит большое количество белка порина, который образует гидрофильные канальцы. Вся наружная мембрана пронизана порами, через которые в митохондрию попадают молекулы веществ. Также содержит ферменты, участвующие в синтезе липидов

Защищает органеллу, способствует транспорту веществ

Располагаются перпендикулярно оси митохондрии. Могут иметь вид пластинок или трубочек. Количество крист варьирует в зависимости от типа клеток. В клетках сердца их в три раза больше, чем в клетках печени. Содержат фосфолипиды и белки трёх типов:

Катализирующие - участвуют в окислительных процессах;

Ферментативные - участвуют в образовании АТФ;

Транспортные - переносят молекулы из матрикса наружу и обратно

Осуществляет вторую стадию дыхания с помощью дыхательной цепи. Происходит окисление водорода, образование 36 молекул АТФ и воды

Состоит из смеси ферментов, жирных кислот, белков, РНК, митохондриальных рибосом. Здесь находится собственная ДНК митохондрий

Осуществляет первую стадию дыхания - цикл Кребса, в результате которого образуется 2 молекулы АТФ

Главная функция митохондрии - генерация энергии клетки в виде молекул АТФ за счёт реакции окислительного фосфорилирования - клеточного дыхания.

Помимо митохондрий в клетках растений присутствуют дополнительные полуавтономные органеллы - пластиды.
В зависимости от функционального назначения различают три вида пластид:

  • хромопласты - накапливают и хранят пигменты (каротины) разных оттенков, придающих окраску цветков растений;
  • лейкопласты - запасают питательные вещества, например, крахмал, в виде зерён и гранул;
  • хлоропласты - наиболее важные органеллы, содержащие зелёный пигмент (хлорофилл), придающий окраску растениям, и осуществляющие фотосинтез.

Рис. 3. Пластиды.

Что мы узнали?

Рассмотрели особенности строения митохондрий - двумембранных органелл, осуществляющих клеточное дыхание. Наружная мембрана состоит из белков и липидов и производит транспорт веществ. Внутренняя мембрана образует складки - кристы, на которых происходит окисление водорода. Кристы окружает матрикс - гелеобразное вещество, в котором протекает часть реакций клеточного дыхания. В матриксе находятся митохондриальные ДНК и РНК.

Тест по теме

Оценка доклада

Средняя оценка: 4.4 . Всего получено оценок: 82.

Что такое митохондрии? Если ответ на этот вопрос вызывает у вас затруднения, то наша статья как раз для вас. Мы рассмотрим особенности строения этих органелл во взаимосвязи с выполняемыми функциями.

Что такое органеллы

Но для начала давайте вспомним, что такое органеллы. Так называют постоянные клеточные структуры. Митохондрии, рибосомы, пластиды, лизосомы... Все это органеллы. Подобно самой клетке, каждая подобная структура имеет общий план строения. Органеллы состоят из поверхностного аппарата и внутреннего содержимого - матрикса. Каждую из них можно сравнить с органами живых существ. Органеллы также имеют свои характерные черты, обусловливающие их биологическую роль.

Классификация клеточных структур

Органеллы объединяют в группы по признаку строения их поверхностного аппарата. Различают одно-, дву- и немембранные постоянные клеточные структуры. К первой группе относятся лизосомы, комплекс Гольджи, эндоплазматический ретикулум, пероксисомы и различные виды вакуолей. Ядро, митохондрия и пластиды - двумембранные. А рибосомы, клеточный центр и органеллы движения полностью лишены поверхностного аппарата.

Теория симбиогенеза

Что такое митохондрии? Для эволюционного учения это не просто структуры клетки. Согласно симбиотической теории, митохондрии и хлоропласты являются результатом метаморфоз прокариот. Вполне возможно, что митохондрии произошли от аэробных бактерий, а пластиды - от фотосинтезирующих. Доказательством этой теории является тот факт, что данные структуры имеют собственный генетический аппарат, представленный кольцевой молекулой ДНК, двойную мембрану и рибосомы. Существует также предположение, что в дальнейшем от митохондрий произошли животные эукариотические клетки, а от хлоропластов - растительные.

Расположение в клетках

Митохондрии являются составляющей частью клеток преобладающей части растений, животных и грибов. Отсутствуют они только у анаэробных одноклеточных эукариот, обитающих в бескислородной среде.

Строение и биологическая роль митохондрий долгое время оставались загадкой. Впервые при помощи микроскопа их удалось увидеть Рудольфу Келликеру в 1850 году. В мышечных клетках ученый обнаружил многочисленные гранулы, которые на свету были похожи на пух. Понять, какова роль этих удивительных структур, стало возможно благодаря изобретению профессора Пенсильванского университета Бриттона Ченса. Он сконструировал прибор, который позволял видеть сквозь органеллы. Так была определена структура и доказана роль митохондрий в обеспечении энергией клеток и организма в целом.

Форма и размер митохондрий

Общий план строения

Рассмотрим, что такое митохондрии с точки зрения особенностей их строения. Это двумембранные органеллы. Причем наружная - гладкая, а внутренняя имеет выросты. Матрикс митохондрий представлен различными ферментами, рибосомами, мономерами органических веществ, ионами и скоплениями кольцевых молекул ДНК. Такой состав делает возможным протекание важнейших химических реакций: цикла трикарбоновых кислот, мочевины, окислительного фосфорилирования.

Значение кинетопласта

Мембрана митохондрии

Мембраны митохондрий не одинаковы по своему строению. Замкнутая наружная является гладкой. Она образована бислоем липидов с фрагментами белковых молекул. Его общая толщина составляет 7 нм. Данная структура выполняет функции отграничения от цитоплазмы, а также взаимосвязи органеллы с окружающей средой. Последняя возможна благодаря наличию белка порина, который формирует каналы. По ним посредством активного и пассивного транспорта передвигаются молекулы.

Химическую основу внутренней мембраны составляют белки. Она образует внутри органоида многочисленные складки - кристы. Эти структуры в значительной степени увеличивают активную поверхность органеллы. Главной особенностью строения внутренней мембраны является полная непроницаемость для протонов. В ней не образуются каналы для проникновения ионов извне. В отдельных местах наружная и внутренняя соприкасаются. Здесь расположен особый рецепторный белок. Это своеобразный проводник. С его помощью митохондриальные белки, которые закодированы в ядре, проникают внутрь органеллы. Между мембранами находится пространство, толщиной до 20 нм. В нем расположены различные виды белков, которые являются обязательными компонентами дыхательной цепи.

Функции митохондрий

Строение митохондрии напрямую взаимосвязано с выполняемыми функциями. Основная из них заключается в осуществлении синтеза аденозинтрифосфата (АТФ). Это макромолекула, которая случит основным переносчиком энергии в клетке. В ее состав входит азотистое основание аденин, моносахарид рибоза и три остатка фосфорной кислоты. Именно между последними элементами заключено основное количество энергии. При разрыве одной из них максимально ее может выделиться до 60 кДж. В целом прокариотическая клетка содержит 1 млрд молекул АТФ. Эти структуры постоянно находятся в работе: существование каждой из них в неизменном виде не продолжается больше одной минуты. Молекулы АТФ постоянно синтезируются и расщепляются, обеспечивая организм энергией в тот момент, когда это необходимо.

По этой причине митохондрии называют "энергетическими станциями". Именно в них происходит окисление органических веществ под действием ферментов. Энергия, которая при этом образуется, запасается и хранится в виде АТФ. К примеру, при окислении 1 г углеводов образуется 36 макромолекул этого вещества.

Строение митохондрии позволяет им выполнять еще одну функцию. Благодаря своей полуавтономности они являются дополнительным носителем наследственной информации. Ученые установили, что ДНК самих органелл не могут функционировать самостоятельно. Дело в том, что они не содержат всех необходимых для своей работы белков, поэтому заимствуют их в наследственном материале ядерного аппарата.

Итак, в нашей статье мы рассмотрели, что такое митохондрии. Это двумембранные клеточные структуры, в матриксе которых осуществляется ряд сложных химических процессов. Результатом работы митохондрий является синтез АТФ - соединение, которое обеспечивает организм необходимым количеством энергии.

  • Микроскопический анализ постоянного микропрепарата «Клетки эпителия кожи лягушки»
  • Микроскопический анализ постоянного микропрепарата «Клетки крови лягушки»
  • Микроскопический анализ постоянного микропрепарата «Клетки крови человека»
  • Практическое занятие №2
  • 3. Вопросы для самоподготовки к освоению данной темы:
  • 7. Содержания занятия:
  • Практическое занятие №3
  • 3. Вопросы для самоподготовки по данной теме:
  • 7. Содержание занятия:
  • Эндоплазматическая сеть (эпс)
  • Рибосомы
  • Пластинчатый комплекс Гольджи
  • Микротрубочки
  • 2. Органоиды с защитной и пищеварительной функцией Лизосомы
  • Пероксисомы (микротельца)
  • 3. Органоиды, участвующие в энергообеспечении клетки
  • Митохондрии
  • 4. Органоиды, участвующие в делении и движении клеток
  • Клеточный центр
  • 7.4. Самостоятельная работа студентов под контролем преподавателя. Практическая работа №1
  • Микроскопический анализ постоянного препарата «Комплекс Гольджи в клетках спинального ганглия»
  • Микроскопический анализ постоянного препарата «Клеточный центр в делящихся клетках лошадиной аскариды»
  • 3. Микроскопический анализ постоянного препарата «Митохондрии в клетках печени»
  • 4. Микроскопический анализ постоянного препарата «Лизосомы»
  • Практическая работа №1 Работа с электронными микрофотографиями:
  • 1. Рибосомы
  • 2. Гранулярная эндоплазматическая сеть
  • Цитоплазматические микротрубочки
  • Практическое занятие № 4
  • 7. Содержания занятия:
  • 7.1. Разбор с преподавателем узловых вопросов, необходимых для освоения темы занятия. Митотическая активность в тканях и клетках
  • 7.3. Самостоятельная работа студентов под контролем преподавателя. Практическая работа
  • 1. Митоз (непрямое деление) в клетках корешка лука
  • 2. Амитоз (прямое деление) в клетках печени мыши
  • Практическое занятие №5
  • 3. Вопросы для самоподготовки к освоению данной темы:
  • 7. Содержания занятия:
  • Решение задач
  • 3. Вопросы для самоподготовки к освоению данной темы:
  • 7. Содержания занятия:
  • 7. Содержания занятия
  • 3.Вопросы для самоподготовки к освоению данной темы:
  • 7. Содержания занятия:
  • 3.Вопросы для самоподготовки к освоению данной темы:
  • 7. Содержания занятия:
  • 3. Вопросы для самоподготовки к освоению данной темы:
  • 7. Содержания занятия:
  • 7.1. Контроль исходного уровня знаний и умений.
  • 7.2. Разбор с преподавателем узловых вопросов, необходимых для освоения темы занятия.
  • 7.4. Самостоятельная работа студентов под контролем преподавателя.
  • Решение типовых и ситуационных задач
  • 8. Задание для самостоятельной работы студентов.
  • Практическое занятие № 12
  • 3. Вопросы для самоподготовки к освоению данной темы:
  • 7. Содержания занятия:
  • 7.1. Контроль исходного уровня знаний и умений.
  • 7.2. Разбор с преподавателем узловых вопросов, необходимых для освоения темы занятия.
  • 1. Анализ родословных
  • 2. Близнецовый метод исследования генетики человека
  • 7.4. Самостоятельная работа студентов под контролем преподавателя.
  • 3. Вопросы для самоподготовки к освоению данной темы:
  • 7. Содержания занятия:
  • 7.1. Контроль исходного уровня знаний и умений.
  • 7.2. Разбор с преподавателем узловых вопросов, необходимых для освоения темы занятия.
  • 1. Дерматоглифический метод исследования генетики человека
  • 2. Цитогенетический метод в исследовании генетики человека
  • Изучение хромосомного набора
  • Экспресс-метод определения полового хроматина
  • 3. Проведение дактилоскопического анализа
  • Выводы: ___________________________________________________________
  • 4.Цитогенетический анализ кариотипа (по микрофотографиям метафазных пластинок).
  • 5.Экспресс-метод исследования х-полового хроматина в ядрах эпителия слизистой оболочки полости рта
  • 8. Задание для самостоятельной работы студентов.
  • Практическое занятие № 14
  • 2. Учебные цели:
  • 3. Вопросы для самоподготовки к освоению данной темы:
  • 7. Содержания занятия:
  • 7.1. Контроль исходного уровня знаний и умений.
  • 7.2. Разбор с преподавателем узловых вопросов, необходимых для освоения темы занятия.
  • Популяционно-статистический метод
  • 2. Биохимический метод
  • 3. Молекулярно-генетический метод
  • Полимеразная цепная реакция синтеза днк
  • 7.4. Самостоятельная работа студентов под контролем преподавателя. Практическая работа
  • 1. Применение закона Харди-Вайнберга для расчета частот генотипов, аллелей и характеристики генетической структуры популяции (группы), используя тест на праворукость и леворукость
  • Наблюдаемые частоты генотипов и аллелей
  • Наблюдаемые частоты генотипов и аллелей
  • Наблюдаемые и ожидаемые частоты генотипов и аллелей
  • Наблюдаемые частоты генотипов и аллелей
  • Молекулярно-генетический метод: моделирование пцр-анализа делеции f508 гена cftr при диагностике муковисцидоза
  • 5’ Act gcg agc t 3’
  • 3’A ccc gct cta 5’
  • 8. Задание для самостоятельной работы студентов.
  • 7. Содержания занятия:
  • 3.5.2. Дополнительная литература2
  • Митохондрии

    Митохондрии - это структуры палочковидной или овальной формы (греч. mitos - нить, chondros - гранула). Они обнаружены во всех животных клетках (исключая зрелые эритроциты): у высших растений, у водорослей и простейших. Отсутствуют они только у прокариот бактерий.

    Эти органеллы впервые были обнаружены и описаны в конце прошлого столетия Альтманом. Несколько позже эти структуры были названы митохондриями. В 1948 г. Хогебум указал на значение митохондрий как центра клеточного дыхания, а в 1949 г. Кеннеди и Ленинджер установили, что в митохондриях протекает цикл окислительного фосфорилирования. Так было доказано, что митохондрии служат местом генерирования энергии.

    Митохондрии видны в обычном световом микроскопе при специальных методах окраски. В фазово - контрастном микроскопе и в «темном поле» их можно наблюдать в живых клетках.

    Строение, размеры, форма митохондрий очень вариабельны. Это зависит в первую очередь от функционального состояния клеток. Например, установлено, что в мотонейронах мух, летающих непрерывно 2 часа, проявляется огромное количество шаровидных митохондрий, а у мух со склеенными крыльями число митохондрий значительно меньше и они имеют палочковидную форму (Л. Б. Левинсон). По форме они могут быть нитевидными, палочковидными, округлыми и гантелеобразными даже в пределах одной клетки.

    Митохондрии локализованы в клетке, как правило, либо в тех участках, где расходуется энергия, либо около скоплений субстрата (например, липидных капель), если таковые имеются.

    Строгая ориентация митохондрий обнаруживается вдоль жгутиков сперматозоидов, в поперечно-полосатой мышечной ткани, где они располагаются вдоль миофибрилл, в эпителии почечных канальцев локализуются во впячиваниях базальной мембраны и т.д.

    Количество митохондрий в клетках имеет органные особенности, например, в клетках печени крыс содержится от 100 до 2500 митохондрий, а в клетках собирательных канальцев почки - 300, в сперматозоидах различных видов животных от 20 до 72, у гигантской амебы Chaos chaos их число достигает 500 000. Размеры митохондрий колеблются от 1 до 10 мкм.

    Ультрамикроскопическое строение митохондрий однотипно, независимо от их формы и размера. Они покрыты двумя липопротеидными мембранами: наружной и внутренней. Между ними располагается межмембранное пространство.

    Впячивания внутренней мембраны, которые вдаются в тело митохондрий, называются кристами . Расположение крист в митохондриях может быть поперечным и продольным. По форме кристы могут быть простыми и разветвленными. Иногда они образует сложную сеть. В некоторых клетках, например, в клетках клубочковой зоны надпочечника кристы имеют вид трубочек. Количество крист прямо пропорционально интенсивности окислительных процессов, протекающих в митохондриях. Например, в митохондриях кардиомиоцитов их в несколько раз больше, чем в митохондриях гепацитов. Пространство, ограниченное внутренней мембраной, составляет внутреннюю камеру митохондрий. В нем между кристами находится митохондриальный матрикс - относительно электронно плотное вещество.

    Белки внутренней мембраны синтезируются миторибосомами, а белки внешней мембраны - циторибосомами.

    "Наружная мембрана митохондрий по многим показателям сходна с мембранами ЭПС. Она бедна окислительными ферментами. Немного их и в мембранном пространстве. Зато внутренняя мембрана и митохондриальный матрикс буквально насыщены ими. Так, в матриксе митохондрий сосредоточены ферменты цикла Кребса и окисления жирных кислот. Во внутренней мембране локализована цепь переноса электронов, ферменты фосфорилирования (образования АТФ из АДФ), многочисленные транспортные системы.

    Кроме белка и липидов, в состав мембран митохондрий входит РНК, ДНК, последняя обладает генетической специфичностью, и по своим физико-химическим свойствам отличается от ядерной ДНК.

    При электронно-микроскопических исследованиях обнаружено, что поверхность наружной мембраны покрыта мелкими шаровидными элементарными частицами. Внутренняя мембрана и кристы содержат подобные элементарные частицы на «ножках», так называемые грибовидные тельца. Они -состоят из трех частей: головки сферической формы (диаметр 90-100 А°), ножки цилиндрической формы, длиной 5 нм и шириной 3-4 нм, основания, имеющего размеры 4 на 11 нм. Головки грибовидных телец связаны с фосфорилированием, затем обнаружено, что головки содержат фермент, обладающий АТФ-идной активностью.

    В межмембранном пространстве находится вещество, обладающее более низкой электронной плотностью, чем матрикс. Оно обеспечивает сообщение между мембранами и поставляет для ферментов, находящихся в обеих мембранах, вспомогательные катализаторы-коферменты.

    В настоящее время известно, что наружная мембрана митохондрий хорошо проницаема для веществ, имеющих низкий молекулярный вес, в частности, белковых соединений. Внутренняя мембрана митохондрий обладает избирательной проницаемостью. Она практически непроницаема для анионов (Cl -1 , Br -1 , SO 4 -2 , HCO 3 -1 , катионов Sn +2 , Mg +2 , ряда cахаров и большинства аминокислот, тогда как Са 2+ , Мп 2+ , фосфат, многокарбоновые кислоты легко проникают через нее. Имеются данные о наличии во внутренней мембране нескольких переносчиков, специфических к отдельным группам проникающих анионов и катионов. Активный транспорт веществ через мембраны осуществляется благодаря использованию энергии АТФ-азной системы или электрического потенциала, генерируемого на мембране в результате работы дыхательной цепи. Даже АТФ, синтезированная в митохондриях, может выйти с помощью переносчика (сопряженный транспорт).

    Матрикс митохондрий представлен мелкозернистым электронно-плотным веществом. В нем располагаются миторибосомы, фибриллярные структуры, состоящие из молекул ДНК и гранул, имеющих диаметр более 200А ◦ образованные солями: Ca 3 (PO 4) , Ba 3 (PO 4) 2 , Mg 3 (PO 4) . Полагают, что гранулы служат резервуаром ионов Са +2 и Мg +2 . Их количество увеличивается при изменении проницаемости митохондриальных мембран.

    Присутствие в митохондриях ДНК обеспечивает участие митохондрий в синтезе РНК и специфических белков, а также указывает на существование цитоплазматической наследственности. Каждая митохондрия содержит в зависимости от размера одну или несколько молекул ДНК (от 2 до 10). Молекулярный вес митохондриальной ДНК около (30-40)*10 6 у простейших, дрожжей, грибов. У высших животных около (9–10) *10 6.

    Длина ее у дрожжей примерно равна 5 мкм, у растений - 30 мкм. Объем генетической информации, заключенный в митохондриальной ДНК, невелик: он состоит из 15-75 тыс. пар оснований, которые могут кодировать в среднем 25-125 белковых цепей с молекулярным весом около 40000.

    Митохондриальная ДНК отличается от ядерной ДНК рядом особенностей: более высокой скоростью синтеза (в 5-7 раз), она более устойчива к действию ДНК-азы, представляет собой двухкольцевую молекулу, содержит больше гуанина и цитозина, денатурируется при более высокой температуре и легче восстанавливается. Однако не все митохондриальные белки синтезируются митохондриальной системой. Так, синтез цитохрома С и других ферментов обеспечивается информацией, содержащейся в ядре. В матриксе митохондрий локализованы, витамины А, В 2 , В 12 , К, Е, а также гликоген.

    Функция митохондрий заключается в образовании энергии, необходимой для жизнедеятельности клеток. Источником энергии в клетке могут служить различные соединения: белки, жиры, углеводы. Однако единственным субстратом, который немедленно включается в энергетические процессы, является глюкоза.

    Биологические процессы, в результате которых в митохондриях образуется энергия, можно подразделить на 3 группы: I группа - окислительные реакции, включающие две фазы: анаэробную (гликолиз) и аэробную. II группа - дефосфорилирование, расщепление АТФ и высвобождение энергии. III группа - фосфорилирование, сопряженное с процессом окисления.

    Процесс окисления глюкозы вначале происходит без участия кислорода (анаэробным или гликолитическим путем) до пировиноградной или молочной кислоты.

    Однако при этом энергии выделяется лишь небольшое количество. В дальнейшем эти кислоты вовлекаются в процессы окисления, которые протекают с участием кислорода, т. е. являются аэробными. В результате процесса окисления пировиноградной и молочной кислоты, названной циклом Кребса, образуется углекислый газ, вода и большое количество энергии.

    Образующаяся энергия не выделяется в виде тепла, что привело бы к перегреванию клеток и гибели всего организма, а аккумулируется в удобной для хранения и транспорта форме в виде аденозинтрифосфорной кислоты (АТФ). Синтез АТФ происходит из АДФ и фосфорной кислоты и вследствие этого называется фосфорилированием .

    В здоровых клетках фосфорилирование сопряжено с окислением. При заболеваниях сопряженность может разобщаться, поэтому субстрат окисляется, а фосфорилирование не происходит, и окисление переходит в тепло, а содержание АТФ в клетках снижается. В результате повышается температура и падает функциональная активность клеток.

    Итак, основная функция митохондрий заключается в выработке практически всей энергии клетки и происходит синтез компонентов, необходимых для деятельности самого органоида, ферментов «дыхательного ансамбля», фосфолипидов и белков.

    Еще одной стороной деятельности митохондрий является их участие в специфических синтезах, например, в синтезе стероидных гормонов и отдельных липидов. В ооцитах разных животных образуются скопления желтка в митохондриях, при этом они утрачивают свою основную систему. Отработавшие митохондрии могут накапливать также продукты экскреции.

    В некоторых случаях (печень, почки) митохондрии способны аккумулировать вредные вещества и яды, попадающие в клетку, изолируя их от основной цитоплазмы и частично блокируя вредное действие этих веществ. Таким образом, митохондрии способны брать на себя функции других органоидов клетки, когда это требуется для полноценного обеспечения того или иного процесса в норме или в экстремальных условиях.

    Биогенез митохондрий. Митохондрии представляют собой обновляющиеся структуры с довольно кратким жизненным циклом (в клетках печени крысы, например, период полужизни митохондрий охватывает около 10 дней). Митохондрии образуются в результате роста и деления предшествующих митохондрий. Деление их может происходить тремя способами: перетяжкой, отпочковыванием небольших участков и возникновением дочерних митохондрий внутри материнской. Делению (репродукции) митохондрий предшествует репродукция собственной генетической системы - митохондриальной ДНК.

    Итак, согласно взглядам большинства исследователей, образование митохондрий происходит преимущественно путем саморепродукции их de novo.

    Митохондрия - это спиральная, округлая, вытянутая или разветвленная органелла.

    Впервые понятие митохондрия было предложено Бенда в 1897 г. Митохондрии можно обнаружить в живых клетках с помощью фазово-контрастной и интерференционной микроскопии в виде зерен, гранул или нитей. Это довольно подвижные структуры, которые могут перемещаться, сливаться друг с другом, делиться. При окраске специальными методами в погибших клетках при световой микроскопии митохондрии имеют вид мелких зерен (гранул), диффузно распределенных в цитоплазме или концентрирующихся в каких-то определенных ее зонах.

    В результате разрушения глюкозы и жиров в присутствии кислорода в митохондриях образуется энергия, а органические вещества превращаются в воду и диоксид углерода. Именно таким образом получают основную энергию, необходимую для жизнедеятельности, животные организмы. Энергия накапливается в аденозинтрифосфате (АТФ), а точнее, в его макроэргических связях. Функция митохондрий тесно связана с окислением органических соединений и использованием освобождающейся при их распаде энергии для синтеза молекул АТФ. Поэтому митохондрии часто называют энергетическими станциями клетки, или органеллами клеточного дыхания. АТФ выполняет функцию поставщика энергии, перенося одну из своих богатых энергией концевых фосфатных групп на другую молекулу, и превращается при этом в АДФ.

    Предполагают, что в эволюции митохондрии были прокариотическими микроорганизмами, которые стали симбиотами в организме древней клетки. В последующем они стали жизненно необходимы, что было связано с увеличением содержания кислорода в атмосфере Земли. С одной стороны, митохондрии удаляли избыток токсичного для клетки кислорода, а с другой - обеспечивали энергией.

    Без митохондрий клетка практически не в состоянии использовать кислород как вещество, обеспечивающее поставку энергии, и может восполнять свои энергетические потребности лишь путем анаэробных процессов. Таким образом, кислород - это яд, но яд жизненно важный для клетки, причем избыток кислорода так же вреден, как и его недостаток.

    Митохондрии могут изменять свою форму и перемещаться в те области клетки, где потребность в них наиболее высока. Так, в кардиомиоцитах митохондрии находятся вблизи миофибрилл, в клетках почечных канальцев вблизи базальных впячиваний и т. д. В клетке содержится до тысячи митохондрий, и их количество зависит от активности клетки.

    Митохондрии имеют средние поперечные размеры 0,5…3 мкм. В зависимости от размеров выделяют мелкие, средние, крупные и гигантские митохондрии (формируют разветвленную сеть - митохондриальный ретикулум). Размеры и число митохондрий тесно связаны с активностью клетки и ее энергопотреблением. Они крайне изменчивы и в зависимости от активности клетки, содержания кислорода, гормональных влияний могут набухать, изменять число и структуру крист, варьировать в числе, форме и размерах, а также ферментативной активности.

    Объемная плотность митохондрий, степень развития их внутренней поверхности и другие показатели зависят от энергетических потребностей клетки. В лимфоцитах имеется всего по несколько митохондрий, а в печеночных клетках их 2…3 тыс.

    Митохондрии состоят из матрикса, внутренней мембраны, перимитохондриального пространства и наружной мембраны. Наружная митохондриальная мембрана отделяет органеллу от гиалоплазмы. Обычно она имеет ровные контуры и замкнута так, что представляет собой мембранный мешок.

    Внешнюю мембрану от внутренней отделяет перимитохондриальное пространство шириной около 10…20 нм. Внутренняя митохондриальная мембрана ограничивает собственно внутреннее содержимое митохондрии - матрикс. Внутренняя мембрана образует многочисленные выпячивания внутрь митохондрий, которые имеют вид плоских гребней, или крист.

    По форме кристы могут иметь вид пластинок (трабекулярные) и трубочек (мультивезикулярные на срезе), а направлены они продольно или поперечно по отношению к митохондрии.

    Каждая митохондрия заполнена матриксом, который на электронных микрофотографиях выглядит плотнее, чем окружающая цитоплазма. Матрикс митохондрии однородный (гомогенный), иногда мелкозернистый, различной электронной плотности. В нем выявляют тонкие нити толщиной около 2…3 нм и гранулы размером около 15…20 нм. Нити матрикса представляют собой молекулы ДНК, а мелкие гранулы - митохондриальные рибосомы. В матриксе содержатся ферменты, одна одноцепочечная, циклическая ДНК, митохондриальные рибосомы, много ионов Са 2+ .

    Автономная система белкового синтеза митохондрий представлена молекулами ДНК, свободными от гистонов. ДНК короткая, имеет форму кольца (циклическая) и содержит 37 генов. В отличие от ядерной ДНК в ней практически нет некодирующих последовательностей нуклеотидов. Особенности строения и организации сближают ДНК митохондрий с ДНК бактериальных клеток. На ДНК митохондрий происходит синтез молекул РНК разных типов: информационных, трансфертных (транспортных) и рибосомальных. Информационная РНК митохондрий не подвергается сплайсингу (вырезанию участков, не несущих информационной нагрузки). Малые размеры молекул митохондриальных ДНК не могут определить синтез всех белков митохондрий. Большинство белков митохондрий находится под генетическим контролем клеточного ядра и синтезируется в цитоплазме, так как ДНК митохондрий слабо выражена и может обеспечить образование лишь части ферментов цепи окислительного фосфорилирования. Митохондриальная ДНК кодирует не более десяти белков, которые локализованы в мембранах и представляют собой структурные белки, ответственные за правильную интеграцию отдельных функциональных белковых комплексов митохондриальных мембран. Синтезируются также белки, осуществляющие транспортные функции. Такая система белкового синтеза не обеспечивает всех функций митохондрии, поэтому автономия митохондрий ограниченная и относительная.

    У млекопитающих митохондрии при оплодотворении передаются лишь через яйцеклетку, а спермий привносит в новый организм ДНК ядра.

    В матриксе митохондрий образуются рибосомы, отличающиеся от рибосом цитоплазмы. Они участвуют в синтезе ряда митохондриальных белков, не кодируемых ядром. Митохондриальные рибосомы имеют число седиментации 60 (в отличие от цитоплазматических с числом седиментации 80). Число седиментации - это скорость осаждения при центрифугировании и ультрацентрифугировании. По строению митохондриальные рибосомы близки к рибосомам прокариотических организмов, но меньшего размера и отличаются чувствительностью к определенным антибиотикам (левомицетину, тетрациклину и др.).

    Внутренняя мембрана митохондрии обладает высокой степенью избирательности при транспорте веществ. К ее внутренней поверхности прикрепляются тесно прилежащие друг к другу ферменты цепи окислительного фосфорилирования, белки-переносчики электронов, транспортные системы АТФ, АДФ, пируват и др. В результате тесного расположения ферментов на внутренней мембране обеспечивается высокая сопряженность (взаимосвязанность) биохимических процессов, повышающая скорость и эффективность каталитических процессов.

    При электронной микроскопии выявляют грибовидные частицы, выступающие в просвет матрикса. Они обладают АТФ-синтетичной (образует АТФ из АДФ) активностью. Транспорт электронов идет по дыхательной цепи, локализованной во внутренней мембране, которая содержит четыре крупных ферментных комплекса (цитохромы). При прохождении электронов по дыхательной цепи ионы водорода откачиваются из матрикса в перимитохондриальное пространство, что обеспечивает формирование протонного градиента (помпы). Энергия этого градиента (различия в концентрации веществ и формирование мембранного потенциала) используется для синтеза АТФ и транспорта метаболитов и неорганических ионов. Содержащиеся на внутренней мембране белки-переносчики транспортируют через нее органические фосфаты, АТФ, АДФ, аминокислоты, жирные кислоты, три — и дикарбоновые кислоты.

    Наружная мембрана митохондрии более проницаема для низкомолекулярных веществ, так как в ней много гидрофильных белковых каналов. На наружной мембране располагаются специфические рецепторные комплексы, через которые белки из матрикса транспортируются в перимитохондриальное пространство.

    По своему химическому составу и свойствам наружная мембрана близка к другим внутриклеточным мембранам и плазмолемме. В ней содержатся ферменты, метаболизирующие жиры, активирующие (катализирующие) превращения аминов, аминооксидаза. Если ферменты наружной мембраны сохраняют активность, то это показатель функциональной сохранности митохондрий.

    В митохондриях имеются два автономных субкомпартмента. Вели перимитохондриальное пространство, или наружная камера митохондрии (внешний субкомпартмент), формируется за счет проникновения белковых комплексов гиалоплазмы, то внутренний субкомпартмент (матрикс митохондрии) частично образован за счет синтетической активности митохондриальной ДНК. Во внутреннем субкомпартменте (матриксе) содержатся ДНК, РНК и рибосомы. Он отличается высоким уровнем ионов Са 2+ в сравнении с гиалоплазмой. Во внешнем субкомпартменте накапливаются ионы водорода. Ферментативная активность внешнего и внутреннего субкомпартментов, состав белков сильно различаются. Внутренний субкомпартмент имеет более высокую электронную плотность, чем внешний.

    Специфические маркеры митохондрий - ферменты цитохром-оксидаза и сукцинатдегидрогеназа, выявление которых позволяет количественно охарактеризовать энергетические процессы в митохондриях.

    Основная функция митохондрий - синтез АТФ. Вначале в гиалоплазме разрушаются сахара (глюкоза) до молочной и пировиноградной кислот (пирувата) с одновременным синтезом небольшого количества АТФ. В результате гликолиза одной молекулы глюкозы используется две молекулы АТФ, а образуется четыре. Таким образом, положительный баланс составляют всего две молекулы АТФ. Эти процессы совершаются без кислорода (анаэробный гликолиз).

    Все последующие этапы выработки энергии происходят в процессе аэробного окисления, который обеспечивает синтез большого количества АТФ. При этом органические вещества разрушаются до СO 2 и воды. Окисление сопровождается переносом протонов на их акцепторы. Эти реакции осуществляются с помощью ряда ферментов цикла трикарбоновых кислот, которые находятся в матриксе митохондрии.

    В мембраны крист встроены системы переноса электронов и сопряженного с ним фосфорилирования АДФ (окислительное фосфорилирование). При этом происходит перенос электронов от одного белка-акцептора электронов к другому и, наконец, связывание их с кислородом, вследствие чего образуется вода. Одновременно с этим часть энергии, выделяемой при таком окислении в цепи переноса электронов, запасается в виде макроэргической связи при фосфорилировании АДФ, что приводит к образованию большого числа молекул АТФ - основного внутриклеточного энергетического эквивалента. На мембранах крист митохондрий происходит процесс окислительного фосфорилирования с помощью расположенных здесь белков цепи окисления и фермента фосфорилирования АДФ АТФ-синтетазы. В результате окислительного фосфорилирования из одной молекулы глюкозы образуется 36 молекул АТФ.

    К некоторым гормонам и веществам на митохондриях имеются специализированные (аффинные) рецепторы. Трийодтиронин в норме ускоряет синтетическую активность митохондрий. Интерлейкин-1 и высокие концентрации трийодтиронина разобщают цепи окислительного фосфорилирования, вызывают набухание митохондрий, что сопровождается увеличением образования тепловой энергии.

    Новые митохондрии образуются путем деления, перетяжкой или почкованием. В последнем случае образуется протомитохондрия, постепенно увеличивающаяся в размерах.

    Протомитохондрия - мелкая органелла с наружной и внутренней мембранами. Внутренняя мембрана не имеет или содержит слаборазвитые кристы. Органелла характеризуется низким уровнем аэробного фосфорилирования. При образовании перетяжки содержимое митохондрии распределяется между двумя новыми довольно крупными органеллами. При любом способе размножения в каждой из вновь образующихся митохондрий имеется собственный геном.

    Старые митохондрии разрушаются путем аутолиза (самопереваривания клеткой с помощью лизосом) с образованием аутолизосом. Из аутолизосомы образуется остаточное тельце. При полном переваривании содержимое остаточного тельца, состоящее из низкомолекулярных органических веществ, выводится путем экзоцитоза. При неполном переваривании остатки митохондрий могут накапливаться в клетке в виде слоистых телец или гранул с нипофусцином. В части митохондрий накапливаются нерастворимые соли кальция с образованием кристаллов - кальцинатов. Накопление продуктов дегенерации митохондрий может привести к дистрофии клетки.