Макияж. Уход за волосами. Уход за кожей

Макияж. Уход за волосами. Уход за кожей

» » «Теория систем и системный анализ. Урок "пересечение и объединение множеств"

«Теория систем и системный анализ. Урок "пересечение и объединение множеств"

Математическим анализом называется раздел математики, занимающийся исследованием функций на основе идеи бесконечно малой функции.

Основными понятиями математического анализа являются величина, множество, функция, бесконечно малая функция, предел, производная, интеграл.

Величиной называется все что может быть измерено и выражено числом.

Множеством называется совокупность некоторых элементов, объединенных каким-либо общим признаком. Элементами множества могут быть числа, фигуры, предметы, понятия и т.п.

Множества обозначаются прописными буквами, а элементы множество строчными буквами. Элементы множеств заключаются в фигурные скобки.

Если элемент x принадлежит множеству X , то записывают x Х ( — принадлежит).
Если множество А является частью множества В, то записывают А ⊂ В ( — содержится).

Множество может быть задано одним из двух способов: перечислением и с помощью определяющего свойства.

Например, перечислением заданы следующие множества:
  • А={1,2,3,5,7} — множество чисел
  • Х={x 1 ,x 2 ,...,x n } — множество некоторых элементов x 1 ,x 2 ,...,x n
  • N={1,2,...,n} — множество натуральных чисел
  • Z={0,±1,±2,...,±n} — множество целых чисел

Множество (-∞;+∞) называется числовой прямой , а любое число — точкой этой прямой. Пусть a — произвольная точка числовой прямой иδ — положительное число. Интервал (a-δ; a+δ) называется δ-окрестностью точки а .

Множество Х ограничено сверху (снизу), если существует такое число c, что для любого x ∈ X выполняется неравенство x≤с (x≥c). Число с в этом случае называется верхней(нижней) гранью множества Х. Множество, ограниченное и сверху и снизу, называется ограниченным . Наименьшая (наибольшая) из верхних (нижних) граней множества называется точной верхней (нижней) гранью этого множества.

Основные числовые множества

N {1,2,3,...,n} Множество всех
Z {0, ±1, ±2, ±3,...} Множество целых чисел. Множество целых чисел включает в себя множество натуральных.
Q

Множество рациональных чисел .

Кроме целых чисел имеются ещё и дроби. Дробь — это выражение вида , где p — целое число, q — натуральное. Десятичные дроби также можно записать в виде . Например: 0,25 = 25/100 = 1/4. Целые числа также можно записать в виде . Например, в виде дроби со знаменателем "один": 2 = 2/1.

Таким образом любое рациональное число можно записать десятичной дробью — конечно или бесконечной периодической.

R

Множество всех вещественных чисел .

Иррациональные числа — это бесконечные непериодические дроби. К ним относятся:

Вместе два множества (рациональных и иррациональных чисел) — образуют множество действительных (или вещественных) чисел.

Если множество не содержит ни одного элемента, то оно называется пустым множеством и записывается Ø .

Элементы логической символики

Запись ∀x: |x|<2 → x 2 < 4 означает: для каждого x такого, что |x|<2, выполняется неравенство x 2 < 4.

Квантор

При записи математических выражений часто используются кванторы.

Квантором называется логический символ, который характеризует следующие за ним элементы в количественном отношении.

  • ∀- квантор общности , используется вместо слов "для всех", "для любого".
  • ∃- квантор существования , используется вместо слов "существует", "имеется". Используется также сочетание символов ∃!, которое читается как существует единственный.

Операции над множествами

Два множества А и В равны (А=В), если они состоят из одних и тех же элементов.
Например, если А={1,2,3,4}, B={3,1,4,2} то А=В.

Объединением (суммой) множеств А и В называется множество А ∪ В, элементы которого принадлежат хотя бы одному из этих множеств.
Например, если А={1,2,4}, B={3,4,5,6}, то А ∪ B = {1,2,3,4,5,6}

Пересечением (произведением) множеств А и В называется множество А ∩ В, элементы которого принадлежат как множеству А, так и множеству В.
Например, если А={1,2,4}, B={3,4,5,2}, то А ∩ В = {2,4}

Разностью множеств А и В называется множество АВ, элементы которого принадлежат множесву А, но не принадлежат множеству В.
Например, если А={1,2,3,4}, B={3,4,5}, то АВ = {1,2}

Симметричной разностью множеств А и В называется множество А Δ В, являющееся объединением разностей множеств АВ и ВА, то есть А Δ В = (АВ) ∪ (ВА).
Например, если А={1,2,3,4}, B={3,4,5,6}, то А Δ В = {1,2} ∪ {5,6} = {1,2,5,6}

Свойства операций над множествами

Свойства перестановочности

A ∪ B = B ∪ A
A ∩ B = B ∩ A

Сочетательное свойство

(A ∪ B) ∪ C = A ∪ (B ∪ C)
(A ∩ B) ∩ C = A ∩ (B ∩ C)

Счетные и несчетные множества

Для того, чтобы сравнить два каких-либо множества А и В, между их элементами устанавливают соответствие.

Если это соответствие взаимооднозначное, то множества называются эквивалентными или равномощными, А В или В А.

Пример 1

Множество точек катета ВС и гипотенузы АС треугольника АВС являются равномощными.

- (сумма множеств) понятие теории множеств; объединение множеств множество, состоящее из всех тех элементов, каждый из которых принадлежит хотя бы одному из данных множеств. Объединение множеств А и В обозначают АUВ или А+В …

- (сумма множеств), понятие теории множеств; объединение множеств множество, состоящее из тех элементов, каждый из которых принадлежит хотя бы одному из данных множеств. Объединение множеств А и В обозначают А + В. * * * ОБЪЕДИНЕНИЕ МНОЖЕСТВ… … Энциклопедический словарь

- (сумма множеств), понятие теории множеств; О. м. множество, состоящее из тех элементов, каждый из к рых принадлежит хотя бы одному из данных множеств. О. м. А и В обозначают A UB или А + В … Естествознание. Энциклопедический словарь

Объединение A и B Объединение множеств (тж. сумма или соединение) в теории множеств это множество, содержащее в себе все элементы исходных множеств. Объединение двух множеств A и B обычно обозначается, но иногда можно встретить запись в виде… … Википедия

Раздел математики, в котором изучаются общие свойства множеств, преимущественно бесконечных. понятие множества простейшее математическое понятие, оно не определяется, а лишь поясняется при помощи примеров: множество книг на полке, множество точек … Большой Энциклопедический словарь

Раздел математики, в котором изучаются общие свойства множеств, преимущественно бесконечных. Понятие множества простейшее математическое понятие, оно не определяется, а лишь поясняется при помощи примеров: множество книг на полке, множество… … Энциклопедический словарь

Математическая теория, изучающая точными средствами проблему бесконечности. Предмет М. л. свойства множеств (совокупностей, классов, ансамблей), гл. обр. бесконечных. Множество A есть любое собрание определенных и различимых между собой объектов … Словарь терминов логики

Объединение: В Викисловаре есть статья «объединение» Объединение разновидность организации … Википедия

Теория множеств раздел математики, в котором изучаются общие свойства множеств. Теория множеств лежит в основе большинства математических дисциплин; она оказала глубокое влияние на понимание предмета самой математики. Содержание 1 Теория… … Википедия

Объединение многозначный термин, входит в состав сложных терминов. В Викисловаре есть статья «объединение» Объединение разновидность организаций. Объединение общее название крупных воинских формирований … Википедия

Книги

  • Считаю до 20. Рабочая тетрадь для детей 6 - 7 лет. ФГОС ДО , Шевелев Константин Валерьевич. Рабочая тетрадь предназначена для работы с детьми 6 7 лет. Способствует достижению целей блока Познание путем формирования элементарных математических представлений. Даны методические…

1 ВОПРОС: Множеством называется совокупность некоторых элементов, объединенных каким-либо общим признаком. Элементами множества могут быть числа, фигуры, предметы, понятия и т.п.

Множества обозначаются прописными буквами, а элементы множество строчными буквами. Элементы множеств заключаются в фигурные скобки.

Если элемент x принадлежит множеству X , то записывают x Х ( - принадлежит). Если множество А является частью множества В, то записывают А В ( - содержится).

Определение 1 (определение равенства множеств). Множества А и B равны, если они состоят из одних и тех же элементов, то есть, если из x  A следует x  B и обратно, из x  B следует x  A.

Формально равенство двух множеств записывается следующим образом:

(А=В ):= x ((x A )  (x B )),

это означает, что для любого объекта x соотношения x A и x B равносильны.

Здесь  – квантор всеобщности ( x читается как "для каждого x ").

Подмножество

Определение: Множество Х является подмножеством Y, если любой элемент множества Х принадлежит множеству Y. Это еще называется нестрогим включением .Некоторые свойства подмножества:

1. ХХ - рефлективность

2. X  Y & YZ  X  Z - транзитивность

3.   X т.е. пустое множество является подмножеством любого множества.Универсальное множествоОпределение: Универсальное множество - это такое множество, которое состоит из всех элементов, а так же подмножеств множества объектов исследуемой области, т.е.

1. Если М I , то М I

2. Если М I , то Ώ(М) I , где под Ώ(М) - понимаются все возможные подмножества М, или Булеан М.

Универсальное множество обычно обозначается I .

Универсальное множество может выбираться самостоятельно, в зависимости от рассматриваемого множества, и решаемых задач.

Способы задания множеств:

1. путем перечисления его элементов. Обычно перечислением задают конечные множества.

2. путем описания свойств, общих для всех элементов этого множества, и только этого множества. Это свойство называетсяхарактеристическим свойством , а такой способ задания множества описанием . Таким образом, можно задавать как конечные, так и бесконечные множества. Если мы задаем множество каким-либо свойством, потом может оказаться, что этим свойством обладает всего лишь один объект или вообще такого объекта нет. Данный факт может быть совсем не очевиден.

Тема 2.3 Операции над множествами.

Теперь определим операции над множествами.

1. Пересечение множеств.

Определение: Пересечением множеств Х и У называется множество, состоящее из всех тех, и только тех элементов, которые принадлежат и множеству Х и множеству У.

Например: Х={1,2,3,4} У={2,4,6} пересечением {2,4}

Определение: Множества называются непересекающимися, если не имеют общих элементов, т.е. их пересечение равно пустому множеству.

Например : непересекающимися множествами являются множества отличников группы и неуспевающих.

Данную операцию можно распространить и на большее чем два число множеств. В этом случае это будет множество элементов, принадлежащих одновременно всем множествам.

Свойства пересечения:

1. X∩Y = Y∩X - коммутативности

2. (X∩Y) ∩Z =X∩ (Y∩Z)=X∩Y∩Z - ассоциативности

3. X∩ = 

4. X∩I = Х

2. Объединение множеств

Определение: Объединением двух множеств называется множество, состоящее из всех и только тех элементов, которые принадлежат хотя бы одному из множеств Х или У.

Например: Х={1,2,3,4} У={2,4,6} объединением {1,2,3,4,6}

Данную операцию можно распространить и на большее чем два число множеств. В этом случае это будет множество элементов, принадлежащих хотя бы одному из этих множеств.

Свойства объединения:

1. XUY= YUY- коммутативности

2. (X UY)UZ =XU (YUZ)=XUYUZ - ассоциативности

4. XUI = I

Из свойств операций пересечения и объединения видно, что пустое множество аналогично нулю в алгебре чисел.

3. Разность множеств

Определение: Данная операция, в отличие от операций пересечения и объединения определена только для двух множеств. Разностью множеств Х и У называется множество, состоящее их всех тех и только тех элементов, которые принадлежат Х и не принадлежат У.

Например: Х={1,2,3,4} У={2,4,6} разность {1,3}

Как мы уже видели, роль нуля в алгебре множеств играет пустое множество. Определим множество, которое будет играть роль единицы в алгебре множеств

4. Дополнение множества

Дополнением множества Х называется разность I и Х.

Свойства дополнения:

1. Множество Х и его дополнение не имеют общих элементов

2.Любой элемент I принадлежит или множеству Х или его дополнению.

2 ВОПРОС Множества чисел

Натуральные числа − числа, используемые при счете (перечислении) предметов: N={1,2,3,…}

Натуральные числа с включенным нулем − числа, используемые для обозначения количества предметов: N0={0,1,2,3,…}

Целые числа − включают в себя натуральные числа, числа противоположные натуральным(т.е. с отрицательным знаком) и ноль. Целые положительные числа : Z+=N={1,2,3,…} Целые отрицательные числа : Z−={…,−3,−2,−1} Z=Z−∪{0}∪Z+={…,−3,−2,−1,0,1,2,3,…}

Рациональные числа − числа, представляемые в виде обыкновенной дроби a/b, где a и b − целые числа и b≠0. Q={x∣x=a/b,a∈Z,b∈Z,b≠0} При переводе в десятичную дробь рациональное число представляется конечной или бесконечной периодической дробью.

Иррациональные числа − числа, которые представляются в виде бесконечной непериодической десятичной дроби.

Действительные (вещественные) числа − объединение рациональных и иррациональных чисел: R

Комплексные числа C={x+iy∣x∈Rиy∈R}, где i − мнимая единица.

Модуль действительного числа и свойства

Модуль действительного числа - это абсолютная величина этого числа.

Попросту говоря, при взятии модуля нужно отбросить от числа его знак.

Модуль числа a обозначается |a| . Обратите внимание: модуль числа всегда неотрицателен: |a|≥ 0 .

|6| = 6, |-3| = 3, |-10,45| = 10,45

Операция над множествами - это правило, в результате выполнения которого из данных множеств однозначно получается некоторое новое множество.

Обозначим произвольную операцию знаком *. Множество, получаемое из данных множеств А и В, записывают в виде А*В. Полученное множество и саму операцию принято называть одним термином.

Замечание. Для основных числовых операций используют два термина: один обозначает саму операцию как действие, другой - число, получаемое после выполнения действия. Например, операция, обозначаемая +, называется сложением, а число, полученное в результате сложения, - суммой чисел. Аналогично - знак операции умножения, а результат а b - произведение чисел а и Ь. Тем нс менее часто эту разницу нс учитывают и говорят «Рассмотрим сумму чисел», имея в виду не конкретный результат, а саму операцию.

Операция пересечения. Пересечением множеств А и В АглВ , состоящее из всех объектов, каждый из которых принадлежит обоим множествам А и В одновременно.

Другими словами, АсВ - это множество всех.г, таких, что хеА и хеВ:

Операция объединения. Объединением множеств А и В называется множество, обозначаемое А"иВ, состоящее из всех объектов, каждый из которых принадлежит хотя бы одному множеству А или В.

Операцию объединения иногда обозначают знаком + и называют сложением множеств.

Операции разности. Разностью множеств А и В называется множество, обозначаемое АВ , состоящее из всех объектов, каждый из которых лежит в А, но не лежит В.

Выражение АпВ читают «А в пересечении с В », AkjB- «А в объединении с В», АВ - «А без В».

Пример 7.1.1. Пусть А = {1, 3,4, 5, 8,9}, В = {2,4, 6, 8}.

Тогда AkjB= {1,2, 3,4, 5, 6, 8, 9}, AcB={ 4,8}, АВ = {1,3, 5, 9}, ЯЛ = {2,6}.»

На основе указанных операций можно определить еще две важные операции.

Операция дополнения. Пусть AqS. Тогда разность SA называется дополнением множества А до S и обозначается A s .

Пусть любое рассматриваемое множество является подмножеством некоторого множества U. Дополнение до такого фиксированного (в контексте решения той или иной задачи) множества U обозначают просто А . Также используются обозначения СА, с А, А".

Пример 7.1.2. Дополнение множества {1, 3,4, 5, 8, 9} до множества всех десятичных цифр равно {0, 2, 6, 7}.

Дополнение множества Q до множества R есть множество 1.

Дополнение множества квадратов до множества прямоугольников есть множество всех прямоугольников, имеющих неравные смежные стороны.

Мы видим, что операции объединения, пересечения и дополнения множеств соответствуют логическим операциям дизъюнкции, конъюнкции и отрицания.

Операция симметрической разности. Симметрической разностью множеств А и В называется множество, обозначаемое А®В , состоящее из всех объектов, каждый из которых принадлежит в точности одному из множеств А и В:

Нетрудно видеть, что симметрическая разность есть объединение двух множеств АВ и ВА. Это же самое множество можно получить, если вначале объединить множества А и В, а затем убрать из множества общие элементы.

Пример 7.1.3. Пусть даны действительные числа а Тогда для соответствующих числовых промежутков имеем:


Заметим, что так как отрезок [а; Ь] содержит число с> а интервал (с; d) точку с не содержит, го число с лежит в разности [а; Ь] без [с; cf. А вот разность, например, (2;5), число 3 не содержит, так как оно лежит в отрезке . Имеем (2;5)=(2;3).

Пусть даны непересекающиеся множества А и В. Поскольку п - знак операции пересечения, то запись А(ЬВ некорректна. Неправильно также говорить, что у множеств нет пересечения. Пересечение есть всегда, оно определено для любых множеств. То, что множества не пересекаются, означает, что их пересечение пусто (то есть, выполнив указанную операцию, мы получаем пустое множество). Если же множества пересекаются, значит, их пересечение не пусто. Делаем вывод:

Обобщим операции объединения пересечения на случай, когда множеств более двух.

Пусть дана система К множеств. Пересечением множеств данной системы называется множество всех элементов, каждый из которых лежит во всех множествах их К.

Объединением множеств данной системы называется множество всех элементов, каждый из которых лежит хотя бы в одном множестве их К.

Пусть множества системы К занумерованы элементами какого-то семейства индексов /. Тогда любое множество из К можно обозначить А,-, где iel. Если совокупность конечная, то в качестве / используют множество первых натуральных чисел {1,2,...,и}. В общем случае / может быть бесконечным.

Тогда в общем случае объединение множеств А для всех iel обозначают (J А { , а пересечение - f]A i .

Пусть совокупность К конечная, тогда К= В этом случае

пишут AyjA 2 v...KjA„ и АГ4 2 (^---Г4п-

Пример 7.1.4. Рассмотрим промежутки числовой прямой Л| = [-оо;2], Л 2 =Н°; 3], Л 3 =}