Макияж. Уход за волосами. Уход за кожей

Макияж. Уход за волосами. Уход за кожей

» » Понятие биотехнологии. Современная биотехнология

Понятие биотехнологии. Современная биотехнология

История взаимоотношений человека и природы — это извечная история попыток человека изменить геном растений и животных в нужную ему сторону. Даже тогда, когда человек не имел ни малейшего понятия о существовании наследственных факторов, интуитивно путём гибридизации и селекции организмов с нужными свойства-ми он изменял наследственность домашних животных и культурных растений.

Все сорта фруктовых деревьев и ягодных культур, овощей, злаков имеют изменённый геном, то есть у них уже не тот генотип, кото-рый имели их дикие предки. Практически все растения, которые люди используют в пищу — полиплоиды. Уже несколько столетий люди используют в хозяйстве межвидовые гибриды, например мулов.

До начала XX ст. селекционерам просто приходилось ждать момента, когда случайная комбинация генов даст организмы с полезными свойствами, отбирать такие организмы и закреп-лять эти комбинации генов в потомстве. В середине XX ст. появились методы, благодаря которым стало возможно искус-ственно получать большое количество случайных мутаций, например с помощью радиоактивного облучения или действия химических мутагенов, чтобы затем отбирать среди них организмы с ценными свойствами. Современные генетические технологии пошли ещё дальше. Они позволяют добиться желаемого результата гораздо быстрее и при этом избежать получения множества промежуточных и побочных лишних форм, так как современная наука и биотехнология способны менять геном целенаправленно. Это удаётся благодаря генно-инженерным методам (рис. 78), с помощью которых можно взять определённые структурные гены из генома одного вида и ввести их в генетический аппарат другого вида, вызвав таким образом в новом организме синтез нужного белка.

Биотехнология — дисциплина, которая изучает возмож-ности использования живых организмов для решения техно-логических задач. Она использует методы и знания генетики, молекулярной биологии, биохимии, эмбриологии и клеточной биологии, а также прикладных дисциплин — химической, физической и информационной технологий, робототехники.

Термин биотехнология в 1917 г. предложил венгерский инженер К. Ереки, когда описал процесс производства свини-ны, используя в качестве корма для свиней сахарную свёклу.

Биотехнология — это методология использования биологических объектов для решения технологических задач. Материал с сайта

Современная биотехно-логия позволяет вмешиваться в генетический аппарат и конструиро-вать новые комбинации генов. Так получают генно-модифицированные и трансгенные организмы.

Генетические модификации создают для того, чтобы прибавить организмам полезных свойств.

Трансгенные организмы используют в фармакологии, сельском хозяйстве, промышленности.

Одним из методов генной инженерии является генная терапия , которая позволяет лечить патологии генетического аппарата путём подсадки более здоровых генов.

Биотехнология как наука и сфера производства. Предмет, цели и задачи биотехнологии, связь с фундаментальными дисциплинами.

Биотехнология - это технологические процессы с использованием биотехнологических систем - живых организмов и компонентов живой клетки. Системы могут быть разными - от микробов и бактерий до ферментов и генов. Биотехнология - это производство, основанное на достижениях современной науки: генетической инженерии, физико-химии ферментов, молекулярной диагностики и молекулярной биологии, селекционной генетики, микробиологии, биохимии, химии антибиотиков.

В сфере производства лекарственных средств биотехнология вытесняет традиционные технологии, открывает принципиально новые возможности. Биотехнологическим способом производят генно-инженерные белки (интерфероны, интерлейкины, инсулин, вакцины против гепатита и т.п.), ферменты, диагностические средства (тест-системы на наркотики, лекарственные вещества, гормоны и т.п.), витамины, антибиотики, биодеградируемые пластмассы, биосовместимые материалы.

Иммунная биотехнология, с помощью которой распознают и выделяют из смесей одиночные клетки, может применяться не только непосредственно в медицине для диагностики и лечения, но и в научных исследованиях, в фармакологической, пищевой и других отраслях промышленности, а также использоваться для получения препаратов, синтезируемых клетками защитной системы организма.

В настоящее время достижения биотехнологии перспективны в следующих отраслях:

В промышленности (пищевая, фармацевтическая, химическая, нефтегазовая) - использование биосинтеза и биотрансформации новых веществ на основе сконструированных методами генной инженерии штаммов бактерий и дрожжей с заданными свойствами на основе микробиологического синтеза;

В экологии - повышение эффективности экологизированной защиты растений, разработка экологически безопасных технологий очистки сточных вод, утилизация отходов агропромышленного комплекса, конструирование экосистем;

В энергетике - применение новых источников биоэнергии, полученных на основе микробиологического синтеза и моделированных фотосинтетических процессов, биоконверсии биомассы в биогаз;

В сельском хозяйстве - разработка в области растениеводства трансгенных агрокультур, биологических средств защиты растений, бактериальных удобрений, микробиологических методов, рекультивации почв; в области животноводства - создание эффективных кормовых препаратов из растительной, микробной биомассы и отходов сельского хозяйства, репродукция животных на основе эмбриогенетических методов;

В медицине - разработка медицинских биопрепаратов, мо-ноклональных антител, диагностикумов, вакцин, развитие иммунобиотехнологии в направлении повышения чувствительности и специфичности иммуноанализа заболеваний инфекционной и неинфекционной природы.

По сравнению с химической технологией биотехнология имеет следующие основные преимущества:

Возможность получения специфичных и уникальных природных веществ, часть из которых (например, белки, ДНК) еще не удается получать путем химического синтеза;

Проведение биотехнологических процессов при относительно невысоких температурах и давлениях;

Микроорганизмы имеют значительно более высокие скорости роста и накопления клеточной массы, чем другие организмы. Например, с помощью микроорганизмов в ферментере объемом 300 м 3 за сутки можно выработать 1 т белка (365 т/год). Чтобы такое же количество белка в год выработать с помощью крупного рогатого скота, нужно иметь стадо 30 000 голов. Если же использовать для получения такой скорости производства белка бобовые растения, например горох, то потребуется иметь поле гороха площадью 5400 га;

В качестве сырья в процессах биотехнологии можно использовать дешевые отходы сельского хозяйства и промышленности;

Биотехнологические процессы по сравнению с химическими обычно более экологичны, имеют меньше вредных отходов, близки к протекающим в природе естественным процессам;

Как правило, технология и аппаратура в биотехнологических производствах более просты и дешевы.

В качестве первоочередной задачи перед биотехнологией стоит создание и освоение производства лекарственных препаратов для медицины: интерферонов, инсулинов, гормонов, антибиотиков, вакцин, моноклональных антител и других, позволяющих осуществлять раннюю диагностику и лечение сердчено-сосудистых, злокачественных, наследственных, инфекционных, в том числе вирусных заболеваний.

Понятие "биотехнология" собирательное и охватывает такие области, как ферментационная технология, применение биофакторов с использованием иммобилизованных микроорганизмов или энзимов, генная инженерия, иммунная и белковая технологии, технология с использованием клеточных культур как животного, так и растительного происхождения.

Биотехнология - это совокупность технологических методов, в том числе и генной инженерии, использующих живые организмы и биологические процессы для производства лекарственных средств, или наука о разработке и применении живых систем, а также неживых систем биологического происхождения в рамках технологических процессов и индустриального производства.

Современная биотехнология - это химия, где изменение и превращение веществ происходит с помощью биологических процессов. В острой конкуренции успешно развиваются две химии: синтетическая и биологическая.

1. Биообъекты как средство производства лечебных, реабилитационных, профилактических и диагностических средств. Классификация и общая характеристика биообъектов.

Объектами биотехнологии являются вирусы, бактерии, грибы - микромицеты и макромицеты, протозойные организмы, клетки (ткани) растений, животных и человека, некоторые биогенные и функционалъно сходные с ними вещества (например, ферменты, простагландины, пектины, нуклеиновые кислоты и др.). Следовательно, объекты биотехнологии могут быть представлены организованными частицами (вирусы), клетками (тканями) или их метаболитами (первичными, вторичными). Даже при использовании биомолекулы как объекта биотехнологии исходный биосинтез ее осуществляется в большинстве случаев соответствующими клетками. В этой связи можно сказать, что объекты биотехнологии относятся либо к микробам, либо к растительным и животным организмам. В свою очередь организм можно образно характеризовать как систему экономного, сложнейшего, компактного, саморегулируемого и, следовательно, целенаправленного биохимического производства, устойчиво и активно протекающего при оптимальном поддержании всех необходимых параметров. Из такого определения следует, что вирусы не являются организмами, но по содержанию молекул наследственности, приспособляемости, изменчивости и некоторым другим свойствам они относятся к представителям живой природы.



Как видно из приводимой схемы, объекты биотехнологии исключительно разнообразны, диапазон их распространяется от организованных частиц (вирусов) до человека.

В настоящее время большинство объектов биотехнологии составляют микробы, относящиеся к трем надцарствам (безъядерные, предъядерные, ядерные) и пяти царствам (вирусы, бактерии, грибы, растения и животные). Причем первые два надцарства состоят исключительно из микробов.

Микробами среди растений являются микроскопические водоросли (Аlgае), а среди животных.- микроскопические простейшие (Рrotozoa). Из эукариот к микробам относятся грибы и, при определенных оговорках, лишайники, которые являются природными симбиотическими ассоциациями микроскопических грибов и микроводорослей или грибов и цианобактерий.

Аcaryotа - безъядерные, Рrосаrуоtа - предъядерные и Еuсаrуоtа - ядерные (от греч. а - нет, рrо - до, еu - хорошо, полностью, саrуоn - ядро). К первому относятея организованные частицы - вирусы и вироиды, ко второму - бактерии, к третьему - все другие организмы (грибы, водоросли, растения, животные).

Микроорганизмы образуют огромное количество вторичных метаболитов, многие из которых также нашли применение, например, антибиотики и другие корректоры гомеостаза клеток млекопитающих.

Пробиотики - препараты на основе биомассы отдельных видов микроорганизмов используются при дисбактериозах для нормализации микрофлоры желудочнокишечного тракта. Микроорганизмы необходимы также при производстве вакцин. Наконец, микробные клетки методами генной инженерии могут быть превращены в продуценты видоспецифических для человека белковых гормонов, белковых факторов неспецифического иммунитета и т.д.

Высшие растения являются традиционным и к настоящему времени все еще наиболее обширным иеточником получения лекарственных средств. При использовании растений в качестве биообъектов основное внимание сосредоточено на вопросах культивирования растительных тканей на искусственных средах (каллусные и суспензионные культуры) и открывающихся при этом новых перспективах.

2. Макробиообъекты животного происхождения. Человек как донор и объект иммунизации. Млекопитающие, птицы, рептилии и др.

В последние годы в связи с развитием технологии рекомбинантной ДНК стремительно возрастает важность такого биообъекта как человек, хотя на первый взгляд это кажется парадоксальным.

Однако биообъектом с позиций биотехнологии (при использовании биореакторов) человек стал лишь после реализации возможности клонирования его ДНК (точнее ее экзонов) в клетках микроорганизмов. За счет такого подхода был ликвидирован дефицит сырья для получения видоспецифических белков человека.

Важное значение в биотехнологии имеют макрообъекты, к которым относятся различные животные и птицы. В случае производства иммунной плазмы человек выступает, кроме того, в качестве объекта иммунизации.

Для получения различных вакцин в качестве объектов для размножения вирусов используют органы и ткани, в том числе эмбриональные, различных животных и птиц: Необходимо отметить, что термином «донор» в данном случае обозначен биообъект, поставляющий материал для процесса производства лекарственного средства без ущерба для собственной жизнедеятельности, а термином «донатор» - биообъект, у которого забор материала для производства лекарственного средства оказывается несовместимым с продолжением жизнедеятельности.

Из эмбриональных тканей наиболее широко используемыми являются эмбриональные ткани цыпленка. Особенной выгодой отличаются куриные эмбрионы (по доступности) десяти-двенадцатисуточного возраста, используемые преимущественно для репродукции вирусов и последующего изготовления вирусных вакцин. Куриные эмбрионы введены в вирусологическую практику в 1931 г. Г. М. Вудруфом и Е. У. Гудпасчером. Такие эмбрионы рекомендуют также для выявления, идентификации и определения инфицирующей дозы вирусов, для получения антигенных препаратов, применяемых в серологических реакциях.

Инкубированные при 38°С куриные яйца овоскопируют (просвечивают), отбраковывают, "прозрачные" неоплодотворенные экземпляры и сохраняют оплодотворенные, в которых хорошо видны наполненные кровеносные сосуды хорионаллантоисной оболочки и движения эмбрионов.

Заражение эмбрионов можно проводить вручную и автоматизированно. Последний способ применяют в крупномасштабном производстве, например, противогриппозных вакцин. Материал, содержащий вирусы, вводят с помощью шприца (батареи шприцов) в различные части эмбриона (эмбрионов).

Все этапы работы с куриными эмбрионами после овоскопии проводят в асептичных условиях. Материалом для заражения могут быть суспензия растертой мозговой ткани (применительно к вирусу бешенства), печени, селезенки, почек (применительно к хламидиям орнитоза) и т. д. В целях деконтаминации вирусного материала от бактерий или в целях предотвращения его бактериального загрязнения можно использовать соответствующие антибиотики, например, пенициллин с каким-либо ами-ногликозидом порядка 150 МЕ каждого на 1 мл суспензии виру-сосодержащего материала. Для борьбы с грибковым заражением эмбрионов целесообразно воспользоваться некоторыми антибио-тиками-полиенами (нистатин, амфотерицин В) или отдельными производными бензимидазола (например дактарин и др.).

Чаще всего суспензию вирусного материала вводят в аллантоисную полость или, реже, на хорионаллантоисную оболочку в количестве 0,05-0,1 мл, прокалывая продезинфицированную скорлупу (например, иодированным этанолом) на расчетную глубину. После этого отверстие закрывают расплавленным парафином и эмбрионы помещают в термостат, в котором поддерживается оптимальная температура для репродукции вируса, например 36-37,5°С. Продолжительность инкубации зависит от типа и активности вируса. Обычно через 2-4 суток можно наблюдать изменение оболочек с последующей гибелью эмбрионов. Зараженные эмбрионы контролируют ежедневно 1-2 раза (овоскопируют, поворачивают другой стороной). Погибшие эмбрионы затем передают в отделение сбора вирусного материала. Там их дезинфицируют, аллантоисную жидкость с вирусом отсасывают и переносят в стерильные емкости. Инактивацию вирусов при определенной температуре проводят обычно с помощью формалина, фенола или других веществ. Применяя высокоскоростное центрифугирование или афинную хроматографию (см.), удается получать высокоочищенные вирусные частицы.

Собранный вирусный материал, прошедший соответствующий контроль, подвергают лиофильной сушке. Контролю подлежат следующие показатели: стерильность, безвредность и специфическая активность. Применительно к стерильности имеют в виду отсутствие: живого гомологичного вируса в убитой вакцине, бактерий и грибов. Безвредность и специфическую активность оценивают на животных и только после этого вакцину разрешают испытывать на волонтерах или добровольцах; после успешного проведения клинической апробации вакцину разрешают применять в широкой медицинской практике.

На куриных эмбрионах получают, например, живую противогриппозную вакцину. Она предназначается для интраназального введения (лицам старше 16 лет и детям от 3 до 15 лет). Вакцина представляет собой высушенную аллантоисную жидкость, взятую от зараженных вирусом куриных эмбрионов. Тип вируса подбирают согласно эпидемиологической ситуации и прогнозам. Поэтому препараты могут выпускаться в виде моновакцины или дивакцины (напрмер, включающая вирусы А2 и В) в ампулах с 20 и 8 прививочными дозами для соответствующих групп населения. Высушенная масса в ампулах обычно имеет светло-желтый цвет, который сохраняется и после растворения содержимого ампулы в прокипяченой остуженной воде.

Живые противогриппозные вакцины для взрослых и детей готовят и для приема через рот. Такие вакцины представляют собой специальные вакцинные штаммы, репродукция которых происходила в течение 5-15 пассажей (не менее и не более) на культуре почечной ткани куриных эмбрионов. Их выпускают в сухом виде во флаконах. При растворении в воде цвет из светло-желтого переходит в красноватый.

Из других вирусных вакцин, получаемых на куриных эмбрионах, можно назвать противопаротитную, против желтой лихорадки.

Из прочих эмбриональных тканей используют эмбрионы мышей или других млекопитающих животных, а также абортированные плоды человека.

Эмбриональные перевиваемые ткани доступны после обработки трипсином, поскольку в таких тканях еще не формируется большого количества межклеточных веществ (в том числе небелковой природы). Клетки разделяются и после необходимых обработок их культивируют в специальных средах в монослое или в суспендированном состоянии.

Ткани, изолируемые от животных после рождения, относятся к разряду зрелых. Чем их возраст больше, тем с большим трудом они культивируются. Однако после успешного выращивания они затем "выравниваются" и мало чем отличаются от эмбриональных клеток.

Кроме полиомиелита специфическую профилактику живыми вакцинами проводят при кори. Противокоревую живую сухую вакцину изготавливают из вакцинного штамма, репродукция которого осуществлялась на клеточных культурах почек морских свинок или фибробластах японских перепелок.

3. Биообъекты растительного происхождения. Дикорастущие растения и культуры растительных клеток.

Для растений характерны: способность к фотосинтезу, наличие целлюлозы, биосинтез крахмала.

Водоросли - важный источник различных полисахаридов и других биологичоски активных веществ. Размножаются оии вегетативио, бесполым и половым путями. Как биообъекты используются недостаточно, хотя, например, ламинария под названием морской капусты производится промышленностью разлнчных стран. Хоро-шо известны агар-агар и альгинаты, получаемые из водорослей.

Клетки высших растеиий. Высшие растения (порядка 300 000 видов) - зто дифференцированные многоклеточные, преимущественно наземные организмы. Из всех тканей лишь меристематические способны к делению и за их счет образуются все другие ткани. Это важно для получения клеток, которые затем должны быть включены в биотехнологический процесс.

Клетки меристемы, задерживающиеся на эмбриоиальной стадии развития в течение всей жизни растения, называготся инициальными, другие постепенно дифференцируются и превращаются в клетки различных постоянных тканей - конечные клетки.

В зависимости от топологии в растении меристемы подразделяют на верхушечные, или апикальные (отлат. арех - верхушка), боковые, или латеральные (от лат. lateralis - боковой) и промежуточные, или интеркалярные (от лат. Intercalaris - промежугочный, вставной.

Тотипотентность - это свойство соматических клеток растений полностью реализовать свой потенциал развития вплоть до образования целого растения.

Любой вид растения может дать в соответствующих условиях неорганизованную массу делящихся клеток - каллус (отлат. callus - мозоль), особенно при индуцирующем влиянии растительных гормонов. Массовое производство каллусов с дальнейшей регенерацией побегов пригодно для крупномасштабного производства растений. Вообще каллус представляет собой основной тип культивируемой на питательной среде растительной клетки. Каллусная ткань из любого расгения может длительно рекультивироваться. При этом первоначальные растения (в том числе и меристематические), дифференцируются и деспециализируются, но индуцируются к делению, формируя первичный каллус.

Кроме выращивания каллусов удается культивировать клетки некоторых растений в суспензионных культурах. Важными биообъектами представляются также и протопласты растительных клеток. Методы их получения принципиально сходны с методами получения бактериальных и грибных протопласгов. Последующие клеточно-иижснерныс эксперименты с ними заманчивы по возможным ценным результатам.

4. Биообъекты - микроорганизмы. Основные группы получаемых биологически активных веществ.

Объектами биотехнологии являются вирусы, бактерии, грибы - микромицсты и макромицеты, протозойные организмы, клетки (ткани) растений, животных и человека, некоторые биогенные и функционалъно сходные с ними вещества (например, ферменты, простагландины, лектины, нуклеиновые кислоты и др.). Следовательно, объекты биотехнологии могут быть представлены организованными частицами (вирусы), клетками (тканями) или их метаболитами (первичными, вторичными). Даже при использовании биомолекулы как объекта биотехнологии исходный биосинтез ее осуществляется в большинстве случаев соответствующими клетками. В этой связи можно сказать, что объекты биотехнологии относятся либо к микробам, либо к растительным и животным организмам. В свою очередь организм можно образно характеризовать как систему экономного, сложнейшего, компактного, само-регулируемого и, следовательно, целенаправленного биохимиче-ского производства, устойчиво и активно протекающего при оптимальном поддержании всех необходимых параметров. Из такого определения следует, что вирусы не являются организмами, но по содержанию молекул наследственности, приспособляемости, изменчивости и некоторым другим свойствам они относятся к представителям живой природы.

В настоящее время большинство объектов биотехнологии составляют микробы, относящиеся к трем надцарствам (безъядерные, предъядерные, ядерные) и пяти царствам (вирусы, бактерии, грибы, растения и животные). Причем первые два надцарства состоят исключительно из микробов,.

Клетки грибов, водорослей, растений и животных имеют настоящее, отграниченное от цитоплазмы, ядро и поэтому их относят к эукариотам.

5. Биообъекты - макромолекулы с ферментативной активностью. Использование в биотехнологических процессах.

В последнее время группа ферментных препаратов получила новое направление применения - это инженерная энзимология, которая является разделом биотехнологии, где биообъектом выступает фермент.

Органотерапия, т.е. лечение органами и препаратами из органов, тканей и выделений животных, долгое время покоилась на глубоком эмпиризме и противоречивых представлениях, занимая видное место в медицине всех времен и народов. Лишь во второй половине XIX столетия в результате успехов, достигнутых биологической и органической химией, и развития экспериментальной физиологии органотерапия становится на научную основу. Это связано с именем французского физиолога Броун-Секара. Особое внимание привлекали работы Броун-Секара связанные с введением в организм человека вытяжек из семенников быка, оказавших положительное влияние на работоспособность и самочувствие.

Первыми официнальными препаратами (ГФ VII) были адреналин, инсулин, питуитрин, пепсин и панкреатин. В дальнейшем в результате обширных исследований, проведенных советскими эндокринологами и фармакологами, оказалось возможным последовательно расширить круг официнальных и неофицинальных органопрепаратов.

Тем не менее, некоторые аминокислоты получают химическим синтезом, например глицин, а также D-, L-метионин, D-изомер которого малотоксичен, поэтому медицинский препарат на основе метионина содержит D- и L-формы, хотя за рубежом в медицине используется препарат, содержащий только L-форму метионина. Там рацемическую смесь метионина разделяют биоконверсией D-формы в L-форму под влиянием специальных ферментов живых клеток микроорганизмов.

Иммобилизованные ферментные препараты обладают рядом существенных преимуществ при использовании их в прикладных целях по сравнению с нативными предшественниками. Во-первых, гетерогенный катализатор легко отделить от реакционной среды, что дает возможность: а) остановить в нужный момент реакцию; б) использовать катализатор повторно; в) получать продукт, не загрязненный ферментом. Последнее особенно важно в ряде пищевых и фармацевтических производств.

Во-вторых, использование гетерогенных катализаторов позволяет проводить ферментативный процесс непрерывно, например в проточных колоннах, и регулировать скорость катализируемой реакции, а также выход продукта путем изменения скорости потока.

В-третьих, иммобилизация или модификация фермента способствует целенаправленному изменению свойств катализатора, в том числе его специфичности (особенно в отношении к макромолекулярным субстратам), зависимости каталитической активности от рН, ионного состава и других параметров среды и, что очень важно, его стабильности по отношению к различного рода денатурирующим воздействиям. Отметим, что крупный вклад в разработку общих принципов стабилизации ферментов был сделан советскими исследователями.

В-четвертых, иммобилизация ферментов дает возможность регулировать их каталитическую активность путем изменения свойств носителя под действием некоторых физических факторов, таких, как свет или звук. На этой основе создаются механо- и звукочувствительные датчики, усилители слабых сигналов и бессеребряные фотографические процессы.

В результате внедрения нового класса биоорганических катализаторов - иммобилизованных ферментов, перед прикладной энзимологией открылись новые, ранее недоступные пути развития. Одно лишь перечисление областей, в которых находят применение иммобилизованные ферменты, могло бы занять немало места.

6. Направления совершенствования биообъектов методами селекции и мутагенеза. Мутагены. Классификация. Характеристика. Механизм их действия.

Что мутации - это первоисточник изменчивости организмов, создающий основу для эволюции. Однако во второй половине XIX в. для микроорганизмов был открыт еще один источник изменчивости - перенос чужеродных генов - своего рода «генная инженерия природы».

Долгое время понятие мутации относили только к хромосомам у прокариот и хромосомам (ядру) у эукариот. В настоящее время кроме хромосомных мутаций появилось также понятие мутаций цитоплазматических (плазмидных - у прокариот, митохондриальных и плазмидных - у эукариот).

Мутации могут быть обусловлены как перестройкой репликона (изменением в нем числа и порядка расположения генов), так и изменениями внутри индивидуального гена.

Применительно к любым биообъектам, но особенно часто в случае микроорганизмов, выявляются так называемые спонтанные мутации, обнаруживаемые в популяции клеток без специального воздействия на нее.

По выраженности почти любого признака клетки в микробной популяции составляют вариационный ряд. Большинство клеток имеют среднюю выраженность признака. Отклонения «+» и «–» от среднего значения встречаются в популяции тем реже, чем больше величина отклонения в любую сторону (рис. I). Первоначальный, самый простой подход к совершенствованию биообъекта заключался в отборе отклонений «+» (предполагая, что именно эти отклонения соответствуют интересам производства). В новом клоне (генетически однородное потомство одной клетки; на твердой среде - колония), полученном из клетки с отклонением «+» вновь проводился отбор по тому же принципу. Однако такая процедура при ее неоднократном повторении довольно быстро теряет эффективность, т. е. отклонения «+» становятся в новых клонах все меньше по величине.

Мутагенез осуществляется при обработке биообъекта физическими или химическими мутагенами. В первом случае, как правило, это ультрафиолетовые, гамма, рентгеновские лучи; во втором - нитрозометилмочевина, нитрозогуанидин, акридиновые красители, некоторые природные вещества (например, из ДНК–тропных антибиотиков вследствие их токсичности не применяемых в клинике инфекционных заболеваний). Механизм активности как физических, так и химических мутагенов связан с их непосредственным действием на ДНК (прежде всего на азотистые основания ДНК, что выражается в сшивках, димеризации, алкилировании последних, интеркаляции между ними).

Подразумевается, естественно, что повреждения не приводят к летальному исходу. Таким образом, после обработки биообъекта мутагенами (физическими или химическими) их воздействие на ДНК приводит к частому наследственному изменению уже на уровне фенотипа (тех или иных его свойств). Последующей задачей является отбор и оценка именно нужных биотехнологу мутаций. Для их выявления обработанную культуру высеивают на твердые питательные среды разных составов, предварительно разведя ее с таким расчетом, чтобы на твердой среде не было сплошнбго роста, а формировались отдельные колонии, образуемые при размножении именно отдельных клеток. Затем каждую колонию пересеивают и полученную культуру (клон) проверяют по тем или иным признакам в сравнении с исходной. Эта селекционная часть работы в целом весьма трудоемка, хотя приемы, позволяющие повысить ее эффективность, постоянно совершенствуются.

Так, изменяя состав твердых питательных сред, на которых вырастают колонии, можно сразу получить первоначальные сведения о свойствах клеток этой колонии в сравнении с клетками исходной культуры. Для высеивания клонов с разными особенностями метаболизма используют так называемый «метод отпечатков», разработанный Дж. Ледербергом и Э.Ледерберг. Популяцию микробных клеток разводят так, чтобы на чашке Петри с питательной средой вырастало около ста колоний и они были бы четко разделены. На металлический цилиндр диаметром, близким к диаметру чашки Петри, надевают бархат; затем все стерилизуют, создавая, таким образом, «стерильное бархатное дно» цилиндра. Далее прикладывают это дно к поверхности среды в чашке с выросшими на ней колониями. При этом колонии как бы «отпечатываются» на бархате. Затем этот бархат прикладывают к поверхности сред разного состава. Таким образом можно установить: какая из колоний в исходной чашке (на бархате расположение колоний отражает их расположение на поверхности твердой среды в исходной чашке) соответствует, например, мутанту, нуждающемуся в конкретном витамине, или конкретной аминокислоте; или какая колония соетоит из мутантных клеток, способных к образованию фермента, окисляюшего определенный субстрат; или какая колония состоит из клеток, получивших резистентность к тому или иному антибиотику и т.п.

В первую очередь биотехнолога интересуют мутантные культуры, обладающие повышенной способностью к образованию целевого продукта. Продуцент целевого вещества, наиболее перспективный в практическом отношении, может многократно обрабатываться разными мутагенами. Новые мутантные штаммы, получаемые в научных лабораториях разных стран мира, служат предметом обмена при творческом сотрудничестве, лицензионной продажи и т.п.

Потенциальные возможности мутагенеза (с последующей селекцией) обусловлены зависимостью биосинтеза целевого продукта от многих метаболических процессов в организме продуцента. Например, повышенную активность организма, образующего целевой продукт, можно ожидать, если мутация привела к дупликации (удвоению) или амплификации (умножению) структурных генов, включенных в систему синтеза целевого продукта. Далее активность можно повысить, если за счет разных типов мутаций будут подавлены функции репрессорных генов, регулирующих синтез целевого продукта. Весьма эффективный путь увеличения образования целевого продукта - нарушение системы ретроингибирования. Повысить активность продуцента можно также, изменив (за счет мутаций) систему транспорта предшественников целевого продукта в клетку. Наконец, иногда целевой продукт при резком увеличении его образования отрицательно влияет на жизнеспособность собственного продуцента (так называемый суицидный эффект). Повышение резистентности продуцента к образуемому им же веществу часто необходимо для получения, например, суперпродуцентов антибиотиков.

Помимо дупликации и амплификации структурных генов мутации могут носить характер делеции - «стирания», т.е. «выпадения» части генетического материала. Мутации могут быть обусловлены транспозицией (вставкой участка хромосомы в новое место) или инверсией (изменением порядка расположения генов в хромосоме). При этом геном мутантного организма претерпевает изменения, ведущие в одних случаях к потере мутантом определенного признака, а в других - к возникновению у него нового признака. Гены на новых местах оказываются под контролем иных регуляторных систем. Кроме того, в клетках мутанта могут появиться несвойственные исходному организму гибридные белки за счет того, что под контролем одного промотора оказываются полинуклеотидные цепи двух (или более) структурных генов, ранее отдаленных один от другого.

Немалое значение для биотехнологического производства могут иметь и так называемые «точечные» мутации. В этом случае изменения происходят впределах только одного гена. Например, выпадение или вставка одного или нескольких оснований, К «точечным» мутациям относятся трансверсия (когда происходит замена пурина на пиримидин) и транзиция (замена одного пурина на другой пурин или одного пиримидина на другой пиримидин). Замены в одной паре нуклеотидов (минимальные замены) при передаче генетического кода на стадии трансляции ведут к появлению в кодируемом белке вместо одной аминокислоты другой. Это может резко изменить конформацию данного белка и, соответственно, его функциональную активность, особенно в случае замены аминокислотного остатка в активном или аллостерическом центре.

Одним из самых блестящих примеров эффективности мутагенеза с последующей селекцией по признаку увеличения образования целевого продукта является история создания современных суперпродуцентов пенициллина. Работа с исходными биообъектами - штаммами (штамм - клоновая культура, однородность которой по определенным признакам поддерживается отбором) гриба Penicillium chrysogenum, выделенными из природных источников, велась с 1940х гг. в течение нескольких десгятилетий во многих лабораториях. Вначале некоторый успех был достигнут при отборе мутантов, появившихся в результате спонтанных мутаций. Затем перешли к индуцированию мутаций физическими и химическими мутагенами. В результате ряда удачных мутаций и ступенчатого отбора все более продуктивных мутантов активность штаммов Penicillium chrysogenum, используемых в промышленности стран, где производят пенициллин, сейчас в 100 тыс. раз выше, чем у обнаруженного А.Флемингом исходного штамма, с которого и началась история открытия пенициллина.

Производственные штаммы (применительно к биотехнологическому производству) с такой высокой продуктивностью (это относится не только к пенициллину, но и к другим целевым продуктам) крайне нестабильны вследствие того, что многочисленные искусственные изменения в геноме клеток штамма сами по себе для жизнеспособности этих клеток положительного значения не имеют. Поэтому мутантные штаммы требуют постоянного контроля при хранении: популяцию клеток высеивают на твердую среду и полученные из отдельных колоний культуры проверяют на продуктивность. При этом ревертанты - культуры с пониженной активностью отбрасывают. Реверсия объясняется обратными спонтанными мутациями, ведущими к возвращению участка генома (конкретного фрагмента ДНК) в его первоначальное состояние. Специальные ферментные системы репарации участвуют в реверсии к норме - в эволюционном механизме поддержания постоянства вида.

Совершенствование биообъектов применительно к производству не исчерпывается только повышением их продуктивности. Хотя это направление, несомненно, является главным, но оно не может быть единственным: успешная работа биотехнологического производства определяется многими факторами. С экономической точки зрения весьма важно получение мутантов, способных использовать более дешевые и менее дефицитные питательные среды. Если для работы в исследовательской лаборатории дорогие среды не создают особых финансовых проблем, то при крупнотоннажном производстве понижение их стоимости (хотя и без увеличения уровня активности продуцента) крайне важно.

Другой пример: в случае некоторых биообъектов культуральная жидкость после окончания ферментации имеет неблагоприятные в технологическом отношении реологические свойства. Поэтому в цехе выделения и очистки целевого продукта, работая с культуральной жидкостью повышенной вязкости, сталкиваются с трудностями при использовании сепараторов, фильтрпрессов и т.д. Мутации, соответствующим образом меняющие метаболизм биообъекта, в значительной мере снимают эти трудности.

Большое значение в отношении гарантии надежности производства приобретает получение фагоустойчивых биообъектов. Соблюдение асептических условий при проведении ферментации прежде всего касается предотвращения попадания в посевной материал (а также в ферментационный аппарат) клеток и спор посторонних бактерий и фибов (в более редких случаях водорослей и простейших). Предотвратить проникновение в ферментер фагов вместе с технологическим воздухом, стерилизуемым путем фильтрации, крайне трудно. Не случайно вирусы в первые годы после их открытия именовали «фильтрующимися». Поэтому основной путь борьбы с бактериофагами, актинофагами и фагами, поражающими грибы, - получение устойчивых к ним мутантных форм биообъектов.

Не касаясь специальных случаев работы с биообъектами–патогенами, следует подчеркнуть, что иногда задача совершенствования биообъектов исходит из требований промышленной гигиены. Например, выделенный из природного источника продуцент одного из важных беталактамных антибиотиков в значительном количестве образовывал летучие вешества с неприятным запахом гниющих овощей.

Мутации, ведущие к удалению генов, кодирующих ферменты, участвующие в синтезе этих летучих веществ, приобрели в данном случае практическое значение для производства.

Из всего изложенного следует, что современный биообъект, используемый в биотехнологической промышленности, - это суперпродуцент, отличающийся от исходного природного штамма не по одному, а, как правило, по нескольким показателям. Хранение таких штаммов–суперпродуцентов представляет серьезную самостоятельную проблему. При всех способах хранения их необходимо периодическй пересеивать и проверять как на продуктивность, так и на другие важные для производства свойства.

В случае применения высших растений и животных в качестве биообъектов для получения лекарственных средств возможности использования мутагенеза и селекции для их совершенствования ограничены. Однако в принципе мутагенез и селекция здесь не исключены. Особенно это относится к растениям, образующим вторичные метаболиты, которые используются как лекарственные вещества.

7. Направления создания новых биообъектов методами генетической инженерии. Основные уровни генетической инженерии. Характеристика.

С помощью методов генетической инженерии можно конструировать по определенному плану новые формы микроорганизмов, способных синтезировать самые различные продукты, в том числе продукты животного и растительного происхождения, При этом следует учитывать высокие скорости роста и продуктивность микроорганизмов, их способность к утилизации разнообразных видов сырья. Широкие перспективы перед биотехнологией открывает возможность микробиологического синтеза белков человека: таким способом получены соматостатин, интерфероны, инсулин, гормон роста.

Основные проблемы на пути конструирования новых микроорганизмов-продуцентов сводятся к следующему.

1. Продукты генов растительного, животного и человеческого происхождения попадают в чуждую для них внутриклеточную среду, где они подвергаются разрушению микробными протеаза-ми. Особенно быстро, за несколько минут, гидролизуются короткие пептиды типа соматостатина. Стратегия защиты генноинженерных белков в микробной клетке сводится к: а) использованию ингибиторов протеаз; так, выход человеческого интерферона возрастал в 4 раза при введении в плазмиду, несущую интерфе-роновый ген, фрагмента ДНК фага Т4 с геном pin, отвечающим за синтез ингибитора протеаз; б) получению интересующего пептида в составе гибридной белковой молекулы, для этого ген пептида сшивают с природным геном организма-реципиента; чаще всего используют ген белка А Staphylococcus aureus\ в) амплификации (увеличению числа копий) генов; многократное повторение гена человеческого проинсулина в составе плазмиды привело к синтезу в клетке Е. coli мультимера этого белка, который оказался значительно стабильнее к действию внутриклеточных протеаз, чем мономерный проинсулин. Проблема стабилизации чужеродных белков в клетках исследована еще недостаточно (В. И. Таняшин, 1985).

2. В большинстве случаев продукт трансплантированного гена не высвобождается в культуральную среду и накапливается внутри клетки, что существенно затрудняет его выделение. Так, принятый метод получения инсулина с помощью Е. coli предполагает разрушение клеток и последующую очистку инсулина. В связи с этим большое значение придается трансплантации генов, отвечающих за экскрецию белков из клеток. Имеются сведения о новом способе генноинженерного синтеза инсулина, который выделяется в культуральную среду (М. Sun, 1983).

Оправдана также переориентация биотехнологов с излюбленного объекта генетической инженерии Е. coli на другие биообъекты. Е. coli экскретирует сравнительно мало белков. Кроме того, клеточная стенка этой бактерии содержит токсическое вещество эндокотин, которое необходимо тщательно отделять от продуктов, используемых в фармакологических целях. Как объекты генетической инженерии перспективны поэтому грамположительные бактерии (представители родов Bacillus, Staphylococcus, Streptomyces). В частности Bas. subtilis выделяет более 50 различных белков в культуральную среду (С. Vard, 1984). В их число входят ферменты, инсектициды, а также антибиотики. Перспективны также эукариотические организмы. Они обладают рядом преимуществ, в частности, дрожжевой интерферон синтезируется в гликолизированной форме, как и нативный человеческий белок (в отличие от интерферона, синтезируемого в клетках Е. coti).

3. Большинство наследственных признаков кодируется несколькими генами, и генноинженерная разработка должна включать стадии последовательной трансплантации каждого из генов. Примером реализованного многогенного проекта является создание штамма Pseudomonas sp., способного утилизировать сырую нефть. С помощью плазмид штамм последовательно обогащался генами ферментов, расщепляющих октан, камфору, ксилол, нафталин (В. Г. Дебабов, 1982). В некоторых случаях возможна не последовательная, а одновременная трансплантация целых блоков генов с помощью одной плазмиды. В составе одной плазмиды может быть перенесен в клетку-реципиент nif-оперон Klebsiella pneumonia, отвечающий за фиксацию азота. Способность организма к фиксации азота определяется наличием по меньшей мере 17 различных генов, отвечающих как за структурные компоненты нитрогеназного комплекса, так и за регуляцию их синтеза.

Генетическая инженерия растений осуществляется на орга-низменном, тканевом и клеточном уровнях. Показанная, пусть для немногих видов (для томатов, табака, люцерны), возможность регенерации целого организма из одиночной клетки резко повысила интерес к генетической инженерии растений. Однако здесь, помимо чисто технических, предстоит решить проблемы, связанные с нарушениями структуры генома (изменения плоид-ности, хромосомные перестройки) культивируемых клеток растений. Примером реализованного генноинженерного проекта является синтез фазеолина, запасного белка фасоли, в регенерированных растениях табака. Трансплантация гена, отвечающего за синтез фазеолина, была проведена с использованием Ti-плазмиды в качестве вектора. С помощью Ti-плазмиды трансплантирован также ген устойчивости к антибиотику неомицину в растения табака, а с помощью CMV-вируса - ген устойчивости к ингибитору дигидрофолатредуктазы метотрексату в растения репы.

Генетическая инженерия растений включает манипуляции не только с ядерным геномом клеток, но также с геномом хлоро-пластов и митохондрий. Именно в хлоропластный геном наиболее целесообразно вводить ген азотфиксации для устранения потребности растений в азотных удобрениях. В митохондриях кукурузы найдены две плазмиды (S-1 и S-2), обусловливающие цитоплаз-матическую мужскую стерильность. Если селекционерам необходимо «запретить» самоопыление кукурузы и допустить лишь перекрестное опыление, они могут не заботиться об удалении тычинок вручную, если берут для оплодотворения растения с цитоплазматической мужской стерильностью. Такие растения могут быть выведены путем длительной селекции, однако генетическая инженерия предлагает более быстрый и целенаправленный метод - прямое введение плазмид в митохондрии клеток кукурузы. К разработкам в области генетической инженерии растений следует отнести также генетическую модификацию симбионтов растений - клубеньковых бактерий рода Rhizobium. В клетки этих бактерий с помощью плазмид предполагается вводить hup (hydrogen uptake)-ген, в природе существующий лишь у некоторых штаммов R. japonicum и R. leguminosarum. Нир-ген обусловливает поглощение и утилизацию газообразного водорода, высвобождаемого при функционировании азотфиксирующего ферментного комплекса клубеньковых бактерий. Рециклизаиия водорода позволяет избежать потерь восстановительных эквивалентов при симбиотической азотфиксации в клубеньках бобовых растений и значительно повысить продуктивность этих растений.

Отдаленной задачей пока остается применение методов генетической инженерии для улучшения пород сельскохозяйственных животных. Речь идет об увеличении эффективности использования кормов, повышении плодовитости, выхода молока и яиц, устойчивости животных к заболеваниям, ускорении их роста, улучшении качества мяса. Однако до сих пор не выяснена генетика всех этих признаков сельскохозяйственных животных, что препятствует попыткам генетических манипуляций в этой области.

8. Клеточная инженерия и ее использование в создании микроорганизмов и клеток растений. Метод слияния протопластов.

Клеточная инженерия - одно из наиболее важных направлений в биотехнологии. Она основана на использовании принципиально нового объекта - изолированной культуры клеток или тканей эукариотических организмов, а также на тотипотентности - уникальном свойстве растительных клеток. Применение этого объекта раскрыло большие возможности в решении глобальных теоретических и практических задач. В области фундаментальных наук стало осуществимым исследование таких сложных проблем, как взаимодействие клеток в тканях, клеточная дифференцировка, морфогенез, реализация тотипотентности клеток, механизмы появления раковых клеток и др. При решении практических задач основное внимание уделяется вопросам селекции, получения зна чительных количеств биологически ценных метаболитов растительного происхождения, в частности более дешевых лекарств, а также выращивания оздоровленных безвирусных растений, их клонального размножения и др.

В 1955 г. после открытия Ф. Скугом и С. Миллером нового класса фитогормонов - цитокининов - оказалось, что при совместном их действии с другим классом фитогормонов - ауксинами - появилась возможность стимулировать деление клеток, поддерживать рост каллусной ткани, индуцировать морфогенез в контролируемых условиях.

В 1959 г. был предложен метод выращивания больших масс клеточных суспензий. Важным событием стала разработка Е. Коккингом (Ноттингемский университет, Великобритания) в 1960 г. метода получения изолированных протопластов. Это послужило толчком к получению соматических гибридов, введению в протопласты вирусных РНК, клеточных органелл, клеток прокариот. В это же время Дж. Морелом и Р. Г. Бутенко был предложен метод клонального микроразмножения, который сразу же нашел широкое практическое применение. Весьма важным достижением в развитии технологий культивирования изолированных тканей и клеток стало культивирование одиночной клетки с помощью ткани«няньки». Этот мстод был разработан в России в 1969 г. в Институте физиологии растений им. К. А. Тимирязева РАН под руководством Р. Г. Бутенко. В последние десятилетия продолжается быстрый прогресс технологий клеточной инженерии, позволяющих значительно облегчить селекционную работу. Большие успехи достигнуты в развитии методов получения трансгенных растений, технологий использования изолированных тканей и клеток травянистых растений, начато культивирование тканей древесных растений.

Впервые термин «изолированные протопласты» был предложен Д. Ханстейном в 1880 г. Протопласт в целой клетке можно наблю-дать во время плазмолиза. Изолированный протопласт - это содержимое растительной клетки, окруженное плазмалеммой. Целлюлозная стенка у данного образования отсутствует. Изолированные протопласты - одни из наиболее ценных объектов в биотехнологии. Они позволяют исследовать различные свойства мембран, а также транспорт веществ через плазмалемму. Главное их преиму-щество состоит в том, что в изолированные протопласты достаточно легко вводить генетическую информацию из органелл и клеток других растений, прокариотических организмов и из клеток животных. Е. Коккинг установил, что изолированный протопласт благодаря механизму пиноцитоза способен поглощать из окружающей среды не только низкомолекулярные вещества, но и крупные моле-кулы, частицы (вирусы) и даже изолированные органеллы.

Большое значение в создании новых форм растений для изуче-ния взаимодействия ядерного генома и геномов органелл имеет способность изолированных протопластов сливаться, образуя гибридные клетки. Таким способом можно добиться получения гибридов от растений с разной степенью таксономической удален-ности, но обладающих ценными хозяйственными качествами.

Впервые протопласты были выделены Дж. Клернером в 1892 г. при изучении плазмолиза в клетках листа телореза {Stratiotes aloides) во время механического повреждения ткани. Поэтому этот метод назван механическим. Он позволяет выделить лишь небольшое количество протопластов (вьщеление возможно не из всех видов тканей); сам метод длительный и трудоемкий. Современный метод выделения протопластов заключается в удалении клеточной стенки с помощью поэтапного использования ферментов для ее разрушения: целлюлазы, гемицеллюлазы, пектиназы. Этот метод получил название ферментативного.

Первое успешное выделение протопластов из клеток высших растений данным методом сделано Е. Коккингом в 1960 г. По сравнению с механическим ферментативный метод имеет ряд преимуществ. Он позволяет сравнительно легко и быстро выделять большое количество протопластов, причем они не испытывают сильного осмотического шока. После действия ферментов смесь протопластов пропускают через фильтр и центрифугируют для удаления неразрушенных клеток и их осколков.

Выделить протопласты можно из клеток растительных тканей, культуры каллусов и суспензионной культуры. Оптимальные условия для изоляции протопластов для разных объектов индивидуальны, что требует кропотливой предварительной работы по подбору концентраций ферментов, их соотношения, времени обработки. Очень важным фактором, позволяющим выделять целые жизнеспособные протопласты, является подбор осмотического стабилизатора. В качестве стабилизаторов обычно используют различные сахара, иногда ионные осмотики (растворы солей СаС1 2 , Na 2 HP0 4 , КСІ). Концентрация осмотиков должна быть немного гипертонична, чтобы протопласты находились в состоянии слабого плазмолиза. В этом случае тормозятся метаболизм и регенерация клеточной стенки.

Изолированные протопласты можно культивировать. Обычно для этого используют те же среды, на которых растут изолированные клетки и ткани. Сразу же после удаления ферментов у протопластов в культуре начинается образование клеточной стенки. Протопласт, регенерировавший стенку, ведет себя как изолированная клетка, способен делиться и формировать клон клеток. Регенерация целых растений из изолированных протопластов сопряжена с рядом трудностей. Получить регенерацию через эмбриогенез удалось пока только у растений моркови. Стимуляцией последовательного образования корней и побегов (органогенез) добились регенерации растений табака, петунии и некоторых других растений. Следует отметить, что протопласты, изолированные из генетически стабильной клеточной культуры, чаще регенерируют растения и с большим успехом используются при исследованиях генетической модификации протопластов.

9. Методы клеточной инженерии применительно к животным клеткам. Гибридомная технология и ее использование в биотехнологических процессах.

В 1975 г. Г. Келер и К. Мильштейн сумели впервые выделить клоны клеток, способные секретировать только один тип молекул антител и в то же время расти в культуре. Эти клоны клеток были получены слиянием антителообразующих и опухолевых клеток - клеток–химер, названных гибридомами, так как, с одной стороны, они наследовали способность к практически неограниченному росту в культуре, а с другой стороны, способность к продукции антител определенной специфичности (моноклональных антител).

Весьма существенно для биотехнолога то, что отобранные клоны могут длительно храниться в замороженном состоянии, поэтому в случае необходимости можно взять определенную дозу такого клона и ввести животному, у которого будет развиваться опухоль, продуцирующая моноклональные антитела заданной специфичности. Вскоре в сыворотке животного будут обнаружены антитела в очень высокой концентрации от 10 до 30 мг/мл. Клетки такого клона можно также выращивать in vitro, а секретируемые ими антитела получатъ из культуральной жидкости.

Создание гибридом, которые можно хранить в замороженном состоянии (криоконсервирование), позволило организовать целые гибридомные банки, что в свою очередь открыло большие перспективы по применению моноклональных антител. Сфера их применения помимо количественного определения разных веществ включает самую разнообразную диагностику, например идентификацию определенного гормона, вирусных или бактериальных антигенов, антигенов группы крови и тканевых антигенов.

Этапы получения гибридных клеток. Слиянию клеток предшествует установление тесного контакта между плазматическими мембранами. Этому препятствует наличие поверхностного заряда на природных мембранах, обусловленного отрицательно заряженными группами белков и липидов. Деполяризация мембран переменным электрическим или магнитным полем, нейтрализация отрицательного заряда мембран с помощью катионов способствует слиянию клеток. На практике широко используются ионами Са2+, хлорпромазином. Эффективным «сливающим» (фузогенным) агентом служит полиэтиленгликоль.

По отношению к животным клеткам применяют также вирус Сендай, действие которого как сливающего агента, по-видимому, связано с частичным гидролизом белков цитоплазматической мембраны. Участок субъединицы FI вируса обладает протеолитической активностью (С. Nicolau et al., 1984). Растительные, грибные и бактериальные клетки перед слиянием освобождают от клеточной стенки, при этом получаются протопласты. Клеточную стенку подвергают ферментативному гидролизу, применяя лизоцим (для бактериальных клеток), зимолиазу улитки (для клеток грибов), комплекс циллюлаз, гемицеллюлаз и пектиназ, продуцируемый грибами (для клеток растений). Набухание и последующее разрушение протопластов предотвращается созданием повышенной осмолярности среды. Подбор гидролитических ферментов и концентрации солей в среде с целью обеспечения максимального выхода протопластов представляет собой сложную задачу, решаемую в каждом случае отдельно.

Для скрининга полученных гибридных клеток используют различные подходы: 1) учет фенотипических признаков; 2) создание селективных условий, в которых выживают лишь гибриды, объединившие геномы родительских клеток.

Возможности метода слияния клеток. Метод слияния соматических клеток открывает перед биотехнологией значительные перспективы.

1. Возможность скрещивания филогенетически отдаленных форм живого. Путем слияния клеток растений получены плодовитые, фенотипически нормальные межвидовые гибриды табака, картофеля, капусты с турнепсом (эквивалентные природному рапсу), петунии. Имеются стерильные межродовые гибриды картофеля и томата, стерильные межтрибные гибриды арабидопсиса и турнепса, табака и картофеля, табака и беладонны, которые образуют морфологически ненормальные стебли и растения. Получены клеточные гибриды между представителями различных семейств, существующие, однако, лишь как неорганизованно растущие клетки (табака и гороха, табака и сои, табака и конских бобов). Получены межвидовые (Saccharomyces uvarum и S. diastalicus) и межродовые (Kluyveromyces lactis и S. cerevisiae) гибриды дрожжей. Имеются данные о слиянии клеток различных видов грибов и бактерий.

Несколько курьезными представляются опыты по слиянию клеток организмов, относящихся к различным царствам, например клеток лягушек Xenopus taevis и протопластов моркови. Гибридная растительно-животная клетка постепенно одевается клеточной стенкой и растет на средах, на которых культивируют растительные клетки. Ядро животной клетки, по-видимому, достаточно быстро теряет свою активность (Е. С. Cocking, 1984).

2. Получение асимметричных гибридов, несущих полный набор генов одного из родителей и частичный набор другого родителя. Такие гибриды часто возникают при слиянии клеток организмов, филогенетически удаленных друг от друга. В этом случае вследствие неправильных делений клеток, обусловленных некоординированным поведением двух разнородных наборов хромосом, в ряду поколений теряются частично или полностью хромосомы одного из родителей.

Асимметричные гибриды бывают устойчивее, плодовитее и жизнеспособнее, чем симметричные, несущие полные наборы генов родительских клеток. В целях асимметричной гибридизации возможна избирательная обработка клеток одного из родителей для разрушения части его хромосом. Возможен прицельный перенос из клетки в клетку нужной хромосомы. Представляет также интерес получение клеток, у которых гибридной является только цитоплазма. Цитоплазматические гибриды образуются, когда после слияния клеток ядра сохраняют свою автономию и при последующем делении гибридной клетки оказываются в разных дочерних клетках. Скрининг таких клеток проводится по генам-маркерам ядерного и цитоплазматических (митохондриального и хлоропластного) геномов.

Клетки со слившейся цитоплазмой (но не ядрами) содержат ядерный геном одного из родителей и в то же время совмещают Цитоплазматические гены слившихся клеток. Есть указания на рекомбинацию ДНК митохондрий и хлоропластов в гибридных клетках.

Получение гибридов путем слияния трех и более родительских клеток. Из таких гибридных клеток могут быть выращены растения (грибы)-регенеранты.

Гибридизация клеток, несущих различные программы развития, - слияние клеток различных тканей или органов, слияние нормальных клеток с клетками, программа развития которых изменена в результате злокачественного перерождения. В этом случае получаются так называемые гибридомные клетки, или гибридомы, наследующие от нормальной родительской клетки способность к синтезу того или иного полезного соединения, а от злокачественной - способность к быстрому и неограниченному росту.

Гибридомная технология. Получение гибридом на сегодняшний день - наиболее перспективное направление клеточной инженерии. Основная цель - «обессмертить» клетку, продуцирующую ценные вещества путем слияния с раковой клеткой и клонирования полученной гибридомной клеточной линии. Гибридомы получены на основе клеток - представителей различных царств живого. Слияние клеток растений, растущих в культуре обычно медленно, с клетками растительных опухолей позволяет получить клоны быстрорастущих клеток - продуцентов нужных соединений. Многообразны применения гибридомной технологии к животным клеткам, где с ее помощью планируется получение неограниченно размножающихся продуцентов гормонов и белковых факторов крови, Наибольшее практическое значение имеют гибридомы - продукты слияния клеток злокачественных опухолей иммунной системы (миелом) с нормальными клетками той же системы-лимфоцитами.

При попадании в организм животного или человека чужеродного агента - бактерий, вирусов, «чужих» клеток или просто сложных органических соединений - лимфоциты мобилизуются для обезвреживания введенного агента. Имеется несколько популяций лимфоцитов, функции которых различаются. Существуют так называемые Т-лимфоциты, среди которых выделяются Т-киллеры («убийцы»), непосредственно атакующие чужеродный агент с целью его инактивации, и В-лимфоциты, основная функция которых состоит в продукции иммунных белков (иммуноглобулинов), обезвреживающих чужеродный агент путем связывания с его поверхностными участками (антигенными детерминантами), иными словами, В-лимфоциты вырабатывают иммунные белки, представляющие собой антитела к чужеродному агенту - антигену.

Слияние Т-лимфоцита-киллера с опухолевой клеткой дает клон неограниченно размножающихся клеток, выслеживающих определенный антиген - тот, к которому был специфичен взятый Т-лимфоцит. Подобные Т-киллерные гибридомные клоны пытаются использовать для борьбы с раковыми клетками непосредственно в организме больного (Б. Фукс и др., 1981; 1983),

При слиянии В-лимфоцита с миеломной клеткой получаются В-гибридомные клоны, широко применяемые как продуценты антител, нацеленных на тот же антиген, что и антитела, синтезируемые породившим клон В-лимфоцитом, т. е. моноклопальных антител. Моноклональные антитела однородны по своим свойствам, они обладают одинаковым сродством к антигену и связываются с. одной единственной антигенной детерминантой. В этом состоит важное преимущество моноклональных антител - продуктов В-гибридом, по сравнению с антителами, получаемыми без применения клеточной инженерии, путем иммунизации лабораторного животного избранным антигеном с последующим выделением антител из сыворотки его крови или в результате непосредственного взаимодействия антигена с популяцией лимфоцитов в культуре ткани. Подобные традиционные методы дают смесь антител, различных по специфичности и сродству к антигену, что объясняется участием в выработке антител многих различных клонов В-лимфоцитов и наличием у антигена нескольких детерминант, каждая из которых соответствует особому типу антител. Таким образом, моноклональные антитела избирательно связываются лишь с одним антигеном, инактивируя его, что имеет большое практическое значение для распознавания и лечения заболеваний, вызываемых чужеродными агентами - бактериями, грибками, вирусами, токсинами, аллергенами и трансформированными собственными клетками (раковые опухоли), Моноклональные антитела успешно применяют в аналитических целях для изучения клеточных органелл, их структуры или отдельных биомолекул.

До недавнего времени для гибридизации использовали исключительно миеломные клетки и В-лимфоциты мыши и крысы. Продуцируемые ими моноклональные антитела имеют ограниченное терапевтическое применение, так как они сами представляют чужеродный белок для человеческого организма. Освоение технологии получения гибридом на основе иммунных клеток человека связано со значительными трудностями: человеческие гиб-ридомы растут медленно, сравнительно мало стабильны. Однако уже получены гибридомы человека - продуценты моноклональ-ных антител. Оказалось, что и человеческие моноклональные антитела в некоторых случаях вызывают иммунные реакции, и их клиническая эффективность зависит от правильного подбора класса антител, гибридомных линий, подходящих для данного больного. К достоинствам человеческих моноклональных антител относится способность распознавать тонкие различия в структуре антигена, которые не распознаются моноклональными антителами мыши или крысы. Предприняты попытки получения химерных гибридом, сочетающих мышиные миеломные клетки и человеческие В-лимфоциты; такие гибридомы находят пока лишь ограниченное применение tK- Haron, 1984).

Наряду с несомненными преимуществами моноклональные антитела имеют и недостатки, порождающие проблемы при их практическом использовании. Они не стабильны при хранении в высушенном состоянии, в то же время в смеси обычных (поли-клональных) антител всегда присутствует группа антител, устойчивая при избранных условиях хранения. Таким образом, неоднородность обычных антител дает им дополнительный резерв стабильности при изменении внешних условий, что соответствует одному из основных принципов повышения надежности систем. Моноклональные антитела нередко имеют слишком низкое сродство к антигену и чрезмерно узкую специфичность, что препятствует их применению против изменчивых антигенов, характерных для инфекционных агентов и опухолевых клеток. Необходимо отметить также очень высокую стоимость моноклональных антител на международном рынке.

Общая схема получения гибридом на основе миеломных клеток и иммунных лимфоцитов включает следующие этапы.

1. Получение мутантных опухолевых клеток, погибающих при последующей селекции гибридомных клеток. Стандартным подходом является выведение линий миеломных клеток, не способных к синтезу ферментов запасных путей биосинтеза пуринов и пиримидинов из гипоксантина и тимидина соответственно (рис 6). Отбор таких мутантов опухолевых клеток проводят с применением токсических аналогов гипоксантина и тимидина. В среде, содержащей эти аналоги, выживают только мутантные клетки, которые лишены ферментов гипоксантингуанинфосфори-бозилтрансферазы и тимидинкиназы, необходимых для запасных путей биосинтеза нуклеотидов.

Биологические технологии (биотехнологии) обеспечивают управляемое получение полезных продуктов для различных сфер человеческой деятельности, базируясь на использовании каталитического потенциала биологических агентов и систем различной степени организации и сложности - микроорганизмов, вирусов, растительных и животных клеток и тканей, а также внеклеточных веществ и компонентов клеток.

Развитие и преобразование биотехнологии обусловлено глубокими переменами, происшедшими в биологии в течение последних 25-30 лет. Основу этих событий составили новые представления в области молекулярной биологии и молекулярной генетики. В то же время нельзя не отметить, что развитие и достижения биотехнологии теснейшим образом связаны с комплексом знаний не только наук биологического профиля, но также и многих других.

Расширение практической сферы биотехнологии обусловлено также социально-экономическими потребностями общества. Такие актуальные проблемы, стоящие перед человечеством на пороге ХХ1 в., как дефицит чистой воды и пищевых веществ (особенно белковых), загрязнение окружающей среды, недостаток сырьевых и энергетических ресурсов, необходимость получения новых, экологически чистых материалов, развития новых средств диагностики и лечения, не могут быть решены традиционными методами. Поэтому для жизнеобеспечения человека, повышения качества жизни и ее продолжительности становится все более необходимым освоение принципиально новых методов и технологий.

Развитие научно-технического прогресса, сопровождающееся повышением темпов материальных и энергетических ресурсов, к сожалению, приводит к нарушению баланса в биосферных процессах. Загрязняются водные и воздушные бассейны городов, сокращается воспроизводительная функция биосферы, вследствие накопления тупиковых продуктов техносферы нарушаются глобальные круговоротные циклы биосферы.

Стремительность темпов современного научно-технического прогресса человечества образно описал швейцарский инженер и философ Эйхельберг: «Полагают, что возраст человечества равен 600 000 лет. Представим себе движение человечества в виде марафонского бега на 60 км, который где-то начинаясь, идет по направлению к центру одного из наших городов, как к финишу... Большая часть дистанции пролегает по весьма трудному пути -через девственные леса, и мы об этом ничего не знаем, ибо только в самом конце, на 58-59 км бега, мы находим, наряду с первобытным орудием, пещерные рисунки, как первые признаки культуры, и только на последнем километре появляются признаки земледелия.

За 200 м до финиша дорога, покрытая каменными плитами, ведет мимо римских укреплений. За 100 м бегунов обступают средневековые городские строения. До финиша остается 50 м, где стоит человек, умными и понимающими глазами следящий за бегунами, -это Леонардо да Винчи. Осталось 10 м. Они начинаются при свете факелов и скудном освещении масляных ламп. Но при броске на последних 5 м происходит ошеломляющее чудо: свет заливает ночную дорогу, повозки без тяглового скота мчатся мимо, машины шумят в воздухе, и пораженный бегун ослеплен светом прожекторов фото- и телекамер...», т.е. за 1 м человеческий гений совершает ошеломляющий рывок в области научно-технического прогресса. Продолжая этот образ, можно добавить, что в момент приближения бегуна к финишной ленточке оказывается прирученным термоядерный синтез, стартуют космические корабли, расшифрован генетически код.

Биотехнология - основа научно-технического прогресса и повышения качества жизни человека

Биотехнология как область знаний и динамически развиваемая промышленная отрасль призвана решить многие ключевые проблемы современности, обеспечивая при этом сохранение баланса в системе взаимоотношений «человек - природа - общество», ибо биологические технологии (биотехнологии), базирующиеся на использовании потенциала живого по определению нацелены на дружественность и гармонию человека с окружающим его миром. В настоящее время биотехнология подразделяется на несколько наиболее значимых сегментов: это «белая», «зеленая», «красная», «серая» и «синяя» биотехнология.

К «белой» биотехнологии относят промышленную биотехнологию, ориентированную на производство продуктов, ранее производимых химической промышленностью, - спирта, витаминов, аминокислот и др. (с учетом требований сохранения ресурсов и охраны окружающей среды).

Зеленая биотехнология охватывает область, значимую для сельского хозяйства. Это исследования и технологии, направленные на создание биотехнологических методов и препаратов для борьбы с вредителями и возбудителями болезней культурных растений и домашних животных, создание биоудобрений, повышение продуктивности растений, в том числе с использованием методов генетической инженерии.

Красная (медицинская) биотехнология - наиболее значимая область современной биотехнологии. Это производство биотехнологическими методами диагностикумов и лекарственных препаратов с использованием технологий клеточной и генетической инженерии (зеленые вакцины, генные диагностикумы, моноклональные антитела, конструкции и продукты тканевой инженерии и др.).

Серая биотехнология занимается разработкой технологий и препаратов для защиты окружающей среды; это рекультивация почв, очистка стоков и газовоздушных выбросов, утилизация промышленных отходов и деградация токсикантов с использованием биологических агентов и биологических процессов.

Синяя биотехнология в основном ориентирована на эффективное использование ресурсов Мирового океана. Прежде всего, это использование морской биоты для получения пищевых, технических, биологически активных и лекарственных веществ.

Современная биотехнология - это одно из приоритетных направлений национальной экономики всех развитых стран. Путь повышения конкурентности биотехнологических продуктов на рынках сбыта является одним из основных в общей стратегии развития биотехнологии промышленно развитых стран. Стимулирующим фактором выступают специально принимаемые правительственные программы по ускоренному развитию новых направлений биотехнологии.

Госпрограммы предусматривают выдачу инвесторам безвозмездных ссуд, долгосрочных кредитов, освобождение от уплаты налогов. В связи с тем что проведение фундаментальных и ориентированных работ становится все более дорогостоящим, многие страны стремятся вывести значительную часть исследований за пределы национальных границ.

Как известно, вероятность успеха осуществления проектов НИОКР в целом не превышает 12-20 %, около 60 % проектов достигают стадии технического завершения, 30 % - коммерческого освоения и только 12 % оказываются прибыльными.

Особенности развития исследований и коммерциализации биологических технологий в США, Японии, странах ЕС и России

США. Лидирующее положение в биотехнологии по промышленному производству биотехнологических продуктов, объемам продаж, внешнеторговому обороту, ассигнованиям и масштабам НИОКР занимают США, где уделяется огромное внимание развитию данного направления. В этом секторе к 2003 г. было занято свыше 198 300 чел.

Ассигнования в этот сектор науки и экономики в США значительны и составляют свыше 20 млрд дол. США ежегодно. Доходы биотехнологической индустрии США выросли с 8 млрд дол. в 1992 г. до 39 млрд дол. в 2003 г.

Эта отрасль находится под пристальным вниманием государства. Так, в период становления новейшей биотехнологии и возникновения ее направлений, связанных с манипулированием генетическим материалом, в середине 70-х гг. прошлого столетия конгресс США уделял большое внимание вопросам безопасности генетических исследований. Только в 1977 г. состоялось 25 специальных слушаний и было принято 16 законопроектов.

В начале 90-х гг. акцент сместился на разработку мер по поощрению практического использования биотехнологии для производства новых продуктов. С развитием биотехнологии в США связывают решение многих ключевых проблем: энергетической, сырьевой, продовольственной и экологической.

Среди биотехнологических направлений, близких к практической реализации или находящихся на стадии промышленного освоения, следующие:
- биоконверсия солнечной энергии;
- применение микроорганизмов для повышения выхода нефти и выщелачивания цветных и редких металлов;
- конструирование штаммов, способных заменить дорогостоящие неорганические катализаторы и изменить условия синтеза для получения принципиально новых соединений;
- применение бактериальных стимуляторов роста растений, изменение генотипа злаковых и их приспособление к созреванию в экстремальных условиях (без вспашки, полива и удобрений);
- направленный биосинтез эффективного получения целевых продуктов (аминокислот, ферментов, витаминов, антибиотиков, пищевых добавок, фармакологических препаратов;
- получение новых диагностических и лечебных препаратов на основе методов клеточной и генетической инженерии.

Роль лидера США обусловлена высокими ассигнованиями государства и частного капитала на фундаментальные и прикладные исследования. В финансировании биотехнологии ключевую роль играют Национальный научный фонд (ННФ), министерства здравоохранения и социального обеспечения, сельского хозяйства, энергетики, химической и пищевой промышленности, обороны, Национальное управление по аэронавтике и исследованию космического пространства (НАСА), внутренних дел. Ассигнования выделяются по программно-целевому принципу, т.е. субсидируются и заключаются контракты на исследовательские проекты.

При этом крупные промышленные компании устанавливают деловые отношения с университетами и научными центрами. Это способствует формированию комплексов в той или иной сфере, начиная от фундаментальных исследований до серийного выпуска продукта и поставки на рынок. Такая «система участия» предусматривает формирование специализированных фондов с соответствующими экспертными советами и привлечение наиболее квалифицированных кадров.

При выборе проектов с высокой коммерческой результативностью стало выгодным использовать так называемый «анализ с учетом заданных ограничений». Это позволяет существенно сократить сроки реализации проекта (в среднем с 7-10 до 2-4 лет) и повысить вероятность успеха до 80 %. Понятие «заданные ограничения» включают потенциальную возможность успешной продажи продукта и получения прибыли, увеличения годового производства, конкурентоспособность продукта, потенциальный риск с позиций сбыта, возможности перестройки производства с учетом новых достижений и т.д.

Ежегодные общие государственные расходы США на генно-инженерные и биотехнологические исследования составляют миллиарды долларов. Инвестиции частных компаний существенно превосходят эти показатели. Только на создание диагностических и противоопухолевых препаратов ежегодно выделяется несколько миллиардов долларов. В основном это следующие направления: методы рекомбинации ДНК, получение гибридов, получение и применение моноклональных антител, культуры тканей и клеток.

В США стало обычным, когда компании, не связанные ранее с биотехнологией, начинают приобретать пакеты акций действующих компаний и строить собственные биотехнологические предприятия (табл. 1.1). Это, например, практика таких химических гигантов, как Philips Petrolium, Monsanto, Dow Chemical. Около 250 химических компаний имеют в настоящее время интересы в области биотехнологии. Так, у гиганта химической индустрии США - компании De Pont есть несколько биотехнологических комплексов стоимостью 85-150 тыс. дол. со штатом 700-1 000 чел.

Подобные комплексы созданы в структуре Monsanto, более того, в настоящее время до 75 % бюджета (свыше 750 млн дол.) направляется в сферу биотехнологии. В сфере внимания этих компаний - производство генно-инженерного гормона роста, а также ряда генно-инженерных препаратов для ветеринарии и фармакологии. Кроме этого, фирмы совместно с университетскими исследовательскими центрами подписывают контракты на проведение совместных НИОКР.

Таблица 1.1. Крупнейшие концерны и фармацевтические фирмы США, производящие медицинские биотехнологические препараты


Существует мнение, что все необходимые условия для становления и развития биотехнологии в США подготовил венчурный бизнес. Для крупных фирм и компаний венчурный бизнес является хорошо отработанным приемом, позволяющим за более короткий срок получить новые разработки, привлекая для этого мелкие фирмы и небольшие коллективы, нежели заниматься этим собственными силами.

Например, в 80-е гг. General Electric с помощью мелких фирм стал осваивать производство биологически активных соединений, только в 1981 г. его рисковые ассигнования в биотехнологии составили 3 млн дол. Риск с участием мелких фирм обеспечивает крупным компаниям и корпорациям механизм отбора экономически оправданных нововведений с большими коммерческими перспективами.

Н.А. Воинов, Т.Г. Волова

Биотехноло́гия - дисциплина, изучающая возможности использования живых организмов, их систем или продуктов их жизнедеятельности для решения технологических задач, а также возможности создания живых организмов с необходимыми свойствами методом генной инженерии.

Биотехнологией часто называют применение генной инженерии в XX-XXI веках, но термин относится и к более широкому комплексу процессов модификации биологических организмов для обеспечения потребностей человека, начиная с модификации растений и одомашненных животных путем искусственного отбора и гибридизации. С помощью современных методов традиционные биотехнологические производства получили возможность улучшить качество пищевых продуктов и увеличить продуктивность живых организмов.

Биотехнология основана на генетике, молекулярной биологии, биохимии, эмбриологии и клеточной биологии, а также прикладных дисциплинах - химической и информационной технологиях и робототехнике.

История биотехнологии.

Корни биотехнологии уходят в далёкое прошлое и связаны с хлебопечением, виноделием и другими способами приготовления пищи, известными человеку еще в древности. Например, такой биотехнологический процесс, как брожение с участием микроорганизмов, был известен и широко применялся еще в древнем Вавилоне, о чем свидетельствует описание приготовления пива, дошедшее до нас виде записи на дощечке, обнаруженной в 1981 г. при раскопках Вавилона. Наукой биотехнология стала благодаря исследованиям и работам французского ученого, основоположника современной микробиологии и иммунологии Луи Пастера (1822-1895). Впервые термин «биотехнология» применил венгерский инженер Карл Эреки в 1917 году.

В ХХ веке происходило бурное развитие молекулярной биологии и генетики с применением достижений химии и физики. Важнейшим направлением исследований явилась разработка методов культивирования клеток растений и животных. И если еще совсем недавно для промышленных целей выращивали только бактерии и грибы, то сейчас появилась возможность не только выращивать любые клетки для производства биомассы, но и управлять их развитием, особенно у растений. Таким образом, новые научно-технологические подходы воплотились в разработку биотехнологических методов, позволяющих манипулировать непосредственно генами, создавать новые продукты, организмы и изменять свойства уже существующих. Главная цель применения этих методов – более полное использование потенциала живых организмов в интересах хозяйственной деятельности человека.
В 70-е годы появились и активно развивались такие важнейшие области биотехнологии, как генетическая (или генная) и клеточная инженерия, положившие начало «новой» биотехнологии, в отличие от «старой» биотехнологии, основанной на традиционных микробиологических процессах. Так, обычное производство спирта в процессе брожения – это “старая” биотехнология, но использование в этом процессе дрожжей, улучшенных методами генной инженерии с целью увеличения выхода спирта, – “новая” биотехнология.

Так, в 1814 году петербургский академик К. С. Кирхгоф (биография) открыл явление биологического катализа и пытался биокаталитическим путём получить сахар из доступного отечественного сырья (до середины XIX века сахар получали только из сахарного тростника). В 1891 году в США японский биохимик Дз. Такамине получил первый патент на использование ферментных препаратов в промышленных целях: учёный предложил применить диастазу для осахаривания растительных отходов.

В начале XX века активно развивалась бродильная и микробиологическая промышленность. В эти же годы были предприняты первые попытки наладить производство антибиотиков, пищевых концентратов, полученных из дрожжей, осуществить контроль ферментации продуктов растительного и животного происхождения.

Первый антибиотик - пенициллин - удалось выделить и очистить до приемлемого уровня в 1940 году, что дало новые задачи: поиск и налаживание промышленного производства лекарственных веществ, продуцируемых микроорганизмами, работа над удешевлением и повышением уровня биобезопасности новых лекарственных препаратов.

Помимо широкого применения в сельском хозяйстве, на основе генной инженерии возникла целая отрасль фармацевтической промышленности, называемая “индустрией ДНК” и представляющая собой одну из современных ветвей биотехнологии. Более четверти всех лекарств, используемых сейчас в мире, содержат ингредиенты из растений. Генно-модифицированные растения являются дешевым и безопасным источником для получения полностью функциональных лекарственных белков (антител, вакцин, ферментов и др.) как для человека, так и для животных. Примерами применения генной инженерии в медицине являются также производство человеческого инсулина путем использования генно-модифицированных бактерий, производство эритропоэтина (гормона, стимулирующего образование эритроцитов в костном мозге. Физиологическая роль данного гормона состоит в регуляции продукции эритроцитов в зависимости от потребности организма в кислороде) в культуре клеток (т.е. вне организма человека) или новых пород экспериментальных мышей для научных исследований.

В XX веке в большинстве стран мира основные усилия медицины были направлены на борьбу с инфекционными заболеваниями, снижение младенческой смертности и увеличение средней продолжительности жизни. Страны с более развитой системой здравоохранения настолько преуспели на этом пути, что сочли возможным сместить акцент на лечение хронических заболеваний, болезней сердечно-сосудистой системы и онкологических заболеваний, поскольку именно эти группы болезней давали наибольший процент прироста смертности.

В настоящее время уже появились практические возможности значительно снизить или скорректировать негативное воздействие наследственных факторов. Медицинская генетика объяснила, что причиной многих генных мутаций является взаимодействие с неблагоприятными условиями среды, а, следовательно, решая экологические проблемы можно добиться снижения заболеваемости раком, аллергией, сердечно-сосудистыми заболеваниями, сахарным диабетом, психическими болезнями и даже некоторыми инфекционными заболеваниями. Вместе с тем, ученым удалось выявить гены, ответственные за проявление различных патологий и способствующие увеличению продолжительности жизни. При использовании методов медицинской генетики хорошие результаты получены при лечении 15% болезней, в отношении почти 50% заболеваний наблюдается существенное улучшение.

Таким образом, значительные достижения генетики позволили не только выйти на молекулярный уровень изучения генетических структур организма, но и вскрыть сущность многих серьезных болезней человека, вплотную подойти к генной терапии.

Клонирование – это один из методов, применяемых в биотехнологии для получения идентичных потомков при помощи бесполого размножения. Иначе клонирование можно определить как процесс изготовления генетически идентичных копий отдельной клетки или организма. То есть полученные в результате клонирования организмы похожи не только внешне, но и генетическая информация, заложенная в них, абсолютно одинакова.

Первым искусственно клонированным многоклеточным организмом стала в 1997 г. овца Долли. В 2007 году одного из создателей клонированной овцы Елизавета II наградила за это научное достижение рыцарским званием.

Достижения биотехнологии.

Уже получены трансгенные мыши, кролики, свиньи, овцы, в геноме которых работают чужеродные гены различного происхождения, в том числе гены бактерий, дрожжей, млекопитающих, человека, а также трансгенные растения с генами других, неродственных видов. Например, в последние годы получено новое поколение трансгенных растений, для которых характерны такие ценные признаки, как устойчивость к гербицидам, к насекомым и др.

На сегодняшний день методы генной инженерии позволили осуществить синтез в промышленных количествах таких гормонов, как инсулин, интерферон и соматотропин (гормон роста), которые необходимы для лечения ряда генетических болезней человека - сахарного диабета, некоторых видов злокачественных образований, карликовости,

С помощью генетических методов были получены также штаммы микроогранизмов (Ashbya gossypii, Pseudomonas denitrificans и др.), которые производят в десятки тысяч раз больше витаминов (С, В 3 , В 13 , и др.), чем исходные формы.

Очень важное направление клеточной инженерии связано с ранними стадиями эмбриогенеза. Например, оплодотворение яйцеклеток в пробирке уже сейчас позволяет преодолевать некоторые распространенные формы бесплодия у человека.

Культуру растительных клеток выгодно использовать для быстрого размножения медленно растущих растений - женьшеня, маслинной пальмы, малины, персиков и др.

Уже многие годы для решения проблемы загрязнения окружающей среды используются биологические методы, разработанные биотехнологами. Так, бактерии родов Rhodococcus и Nocardia с успехом применяют для эмульгирования и сорбции углеводородов нефти из водной среды. Они способны разделять водную и нефтяную фазы, концентрировать нефть, очищать сточные воды от примесей нефти.

Список литературы.

1) Н.А. Лемеза, Л.В.Камлюк Н.Д. Лисов “Пособие по биологии для поступающих в ВУЗы”

Возможные способы применения массовой культуры водорослей

Структура транспортной РНК

Биотехноло́гия - дисциплина, изучающая возможности использования живых организмов , их систем или продуктов их жизнедеятельности для решения технологических задач, а также возможности создания живых организмов с необходимыми свойствами методом генной инженерии .

Биотехнологией часто называют применение генной инженерии в -XXI век , но термин относится и к более широкому комплексу процессов модификации биологических организмов для обеспечения потребностей человека, начиная с модификации растений и животных путём искусственного отбора и гибридизации . С помощью современных методов традиционные биотехнологические производства получили возможность улучшить качество пищевых продуктов и увеличить продуктивность живых организмов.

До 1971 года термин «биотехнология» использовался, большей частью, в пищевой промышленности и сельском хозяйстве. С 1970 года учёные используют термин в применении к лабораторным методам, таким, как использование рекомбинантной ДНК и культур клеток , выращиваемых in vitro .

Биотехнология основана на генетике, молекулярной биологии, биохимии, эмбриологии и клеточной биологии, а также прикладных дисциплинах - химической и информационной технологиях и робототехнике.

История биотехнологии

Впервые термин «биотехнология» применил венгерский инженер Карл Эреки в 1917 году .

Использование в промышленном производстве микроорганизмов или их ферментов , обеспечивающих технологический процесс, известно издревле, однако систематизированные научные исследования позволили существенно расширить арсенал методов и средств биотехнологии.

Наномедицина

Компьютерное изображение инсулина

Слежение, исправление, конструирование и контроль над биологическими системами человека на молекулярном уровне, используя наноустройства и наноструктуры . В мире уже созданы ряд технологий для наномедицинской отрасли. К ним относятся адресная доставка лекарств к больным клеткам , лаборатории на чипе, новые бактерицидные средства.

Биофармакология

Бионика

Искусственный отбор

Образовательная биотехнология

Оранжевая биотехнология или образовательная биотехнология применяется для распространения биотехнологий и подготовки кадров в этой области. Она разрабатывает междисциплинарные материалы и образовательные стратегии, связанные с биотехнологиями (например, производство рекомбинантного белка) доступными для всего общества, в том числе для людей с особыми потребностями, например нарушениями слуха и / или ухудшением зрения.

Гибридизация

Процесс образования или получения гибридов , в основе которого лежит объединение генетического материала разных клеток в одной клетке. Может осуществляться в пределах одного вида (внутривидовая гибридизация) и между разными систематическими группами (отдалённая гибридизация, при которой происходит объединение разных геномов). Для первого поколения гибридов часто характерен гетерозис , выражающийся в лучшей приспособляемости, большей плодовитости и жизнеспособности организмов. При отдалённой гибридизации гибриды часто стерильны .

Генная инженерия

Субстраты для получения белка одноклеточных для разных классов микроорганизмов

Зелёные светящиеся свиньи - трансгенные свиньи, выведенные группой исследователей из Национального университета Тайваня путём введения в ДНК эмбриона гена зелёного флуоресцентного белка , позаимствованного у флуоресцирующей медузы Aequorea victoria . Затем эмбрион был имплантирован в матку самки свиньи. Поросята светятся зелёным цветом в темноте и имеют зеленоватый оттенок кожи и глаз при дневном свете. Основная цель выведения таких свиней, по заявлениям исследователей, - возможность визуального наблюдения за развитием тканей при пересадке стволовых клеток.

Моральный аспект

Многие современные религиозные деятели и некоторые учёные предостерегают научное сообщество от излишнего увлечения такими биотехнологиями (в частности, биомедицинскими технологиями) как генная инженерия , клонирование , и различные методы искусственного размножения (такие, как ЭКО).

Человек перед лицом новейших биомедицинских технологий , статья старшего научного сотрудника В. Н. Филяновой:

Проблема биотехнологий - лишь часть проблемы научных технологий, которая коренится в ориентации европейского человека на преобразование мира, покорение природы, начавшееся в эпоху Нового времени. Биотехнологии, стремительно развивающиеся в последние десятилетия, на первый взгляд приближают человека к реализации давней мечты о преодолении болезней, устранению физических проблем, достижению земного бессмертия посредством человеческого опыта. Но с другой стороны они порождают совершенно новые и неожиданные проблемы, которые не сводятся только к последствиям долговременного употребления генетически изменённых продуктов, ухудшению человеческого генофонда в связи с появлением на свет массы людей, рождённых лишь благодаря вмешательству врачей и новейших технологий. В перспективе встаёт проблема трансформации социальных структур, воскресает призрак «медицинского фашизма» и евгеники, осуждённых на Нюрнбергском процессе.