Макияж. Уход за волосами. Уход за кожей

Макияж. Уход за волосами. Уход за кожей

» » Как определяются металлы в почве. Тяжелые металлы в почве, пдк, одк

Как определяются металлы в почве. Тяжелые металлы в почве, пдк, одк

Химический состав почв различных территорий неоднороден и распространение содержащихся в почвах химических элементов по территории неравномерное. Так, например, находясь преимущественно в рассеянном состоянии, тяжелые металлы способны образовывать локальные связи, где их концентрации во многие сотни и тысячи раз превышают кларковые уровни.

Ряд химических элементов необходим для нормального функционирования организма. Их недостаток, избыток или дисбаланс может вызывать болезни, называемые микроэлементозами 1 , или биогеохимическими эндемиями, которые могут быть как природными так и техногенными. В их распротранении важная роль принадлежит воде, а также пищевым продуктам, в которые химические элементы попадают из почвы по пищевым цепочкам.

Опытным путем установлено, что на процентное содержание ТМ в растениях влияет процентное содержание ТМ в почве, атмосфере, воде (в случае водорослей). Также было замечено, что на почвах с одним и тем же содержанием тяжелых металлов одна и таже культура дает разный урожай, хотя и климатические условия тоже совпадали. Тогда была обнаружена зависимость урожайности от кислотности почв.

Наиболее изученными представляются загрязнения почв кадмием, ртутью, свинцом, мышьяком, медью, цинком и марганцем. Рассмотрим загрязнение почв этими металлами отдельно для каждого. 2

    Кадмий (Cd)

    Содержание кадмия в земной коре составляет примерно 0.15 мг/кг. Кадмий концентрируется в вулканических (в кол-ве от 0.001 до 1.8 мг/кг), метаморфических (в кол-ве от 0.04 до 1.0 мг/кг) и осадочных породах (в кол-ве от 0.1 до 11.0 мг/кг). Почвы, сформированные на основе таких исходных материалов, содержат 0.1‑0.3; 0.1 - 1.0 и 3.0 - 11.0 мг/кг кадмия соответственно.

    В кислых почвах кадмий присутствует в форме Cd 2+ , CdCl + , CdSO 4 , а в известковых почвах - в форме Cd 2+ , CdCl + , CdSO 4 , CdHCO 3 + .

    Поглощение кадмия растениями существенно падает при известковании кислых почв. В этом случае увеличение pH снижает растворимость кадмия в почвенной влаге, равно как и биодоступность почвенного кадмия. Так содержание кадмия в свекольных листьях на известковых почвах было меньше содержания кадмия в таких же растениях на неизвесткованных почвах. Сходный эффект быд показан для риса и пшеницы -->.

    Отрицательное влияние увеличения pH на кадмиевую доступность связано с понижением не только растворимости кадмия в фазе почвенного раствора, но и корневой активности, влияющей на абсорбцию.

    Кадмий довольно мало подвижен в почвах, и, если добавлять кадмий‑содержащий материал на ее поверхность, основное его количество остается нетронутым.

    Методы для удаления загрязнений из почвы включают либо удаление самого загрязненного слоя, либо удаление кадмия из слоя, либо покрытие загрязненного слоя. Кадмий может быть превращен в комплексные нерастворимые соединения доступными хелатообразующими агентами (например, этилендиаминтетрауксусной кислотой). .

    Из-за относительно быстрого поглощения кадмия из почвы растениями и низкого токсического действия обычно встречающихся его концентраций, кадмий может накапливаться в растениях и поступать в звенья пищевой цепи быстрее чем свинец и цинк. Поэтому наибольшую опасность для здоровья человека при внесении в почву отходов представляет кадмий.

    Процедура для минимизации количества кадмия, способного входить в пищевую цепь человека из загрязненных почв, - это выращивание на данной почве растений, не используемых в пищу или таких культур, которые абсорбируют малые количества кадмия.

    В целом культуры на кислых почвах абсорбируют больше кадмия, чем таковые на нейтральных или щелочных почвах. Поэтому известкование кислых почв - это эффективное средство снижения количества абсорбированного кадмия.

    Ртуть (Hg)

    Ртуть находится в природе в виде паров металла Hg 0 , образующихся при ее испарении из земной коры; в виде неорганических солей Hg(I) и Hg(II), и в виде органического соединения метилртути СН 3 Hg + , монометил- и диметил производных СН 3 Hg + и (CH 3) 2 Hg.

    Ртуть накапливается в верхнем горизонте (0-40 см) почвы и слабо мигрирут в более глубокие ее слои. Соединения ртути относятся к высокостабильным веществам почвы. Растения, произрастающие на загрязненной ртутью почве, усваивают значительное количество элемента и накапливают его в опасных концентрациях, либо не произрастают.

    Свинец (Pb)

    По данным опытов, проводимых в условиях песчаной культуры с внесением пороговых для почв концентраций Hg (25 мг/кг) и Pb (25 мг/кг) и превышающие пороговые в 2-20 раз, растения овса до определенного уровня загрязнения растут и развиваются нормально. По мере увеличения концентрации металлов (для Pb начиная с дозы 100 мг/кг) изменяется внешний вид растений. При экстремальных дозах металлов растения погибают через три недели с начала опытов. Содержание металлов в компонентах биомассы в порядке убывания распределено следующим образом: корни - надземная часть - зерно.

    Суммарное поступление свинца в атмосферу (а следовательно частично и на почву) от автотранспорта на территории России в 1996 году оценивалось примерно в 4.0 тыс. т, в том числе 2.16 тыс. т. вносил грузовой транспорт. Максимальная нагрузка по свинцу приходилась на Московскую и Самарскую области, за которыми следуют Калужская, Нижегородская, Владимирская области и другие субъекты Российской Федерации, расположенные в центральной части Европейской территории России и Северного Кавказа. Наибольшие абсолютные выбросы свинца отмечались в Уральском (685 т), Поволжском (651 т) и Западно-Сибирском (568 т) регионах. А наиболее неблагоприятное воздействие выбросов свинца отмечалось в Татарстане, Краснодарском и Ставропольском краях, Ростовской, Московской, Ленинградской, Нижегородской, Волгоградской, Воронежской, Саратовской и Самарской областях (газета “Зеленый мир”, специальный выпуск №28, 1997 г.).

    Мышьяк (As)

    Мышьяк находится в окружающей среде в виде разнообразных химически устойчивых форм. Его два главных состояния окисления: As (III), и As (V). В природе распространен пятивалентный мышьяк в виде разнообразных неорганических соединений, хотя и трехвалентный мышьяк легко обнаруживается в воде, особенно в анаэробных условиях.

    Медь (Cu)

    Природные медные минералы в почвах включают сульфаты, фосфаты, оксиды и гидроксиды. Медные сульфиды могут образовываться в плохо дренируемых или затопляемых почвах, где реализуются восстановительные условия. Медные минералы обычно слишком растворимы, чтобы оставаться в свободно дренируемых сельскохозяйственных почвах. В загрязненных металлом почвах, однако, химическая среда может контролироваться неравновесными процессами, приводящими к накоплению метастабильных твердых фаз. Предполагается, что и в восстановленных, загрязненных медью почвах могут находиться ковеллин (CuS) или халькопирит (CuFeS 2).

    Следовые количества меди могут содержаться в виде отдельных сульфидных включений в силикатах и могут изоморфно замещать катионы в филлосиликатах. Несбалансированные по заряду глинистые минералы неспецифически абсорбируют медь, а вот оксиды и гидроксиды железа и марганца показывают очень высокое специфическое сродство к меди. Высокомолекулярные органические соединения способны быть твердыми абсорбентами для меди, а низкомолекулярные органические вещества склонны образовывать растворимые комплексы.

    Сложность состава почв ограничивает возможность количественного разделения медных соединений на конкретные химические формы. указывает на -->Наличие большой массы медных конгломератов находится и в органических веществах, и в оксидах Fe и Mn. Внесение медьсодержащих отходов или неорганических солей меди повышает концентрацию соединений меди в почве, способных к экстрагированию сравнительно мягкими реагентами; таким образом, медь может находиться в почве в виде лабильных химических форм. Но легко растворимый и заменяемый элемент - медь - образует малое количество форм, способных к поглощению растениями, обычно менее 5% от общего содержания меди в почве.

    Токсичность меди увеличивается с увеличением pH почвы и при низкой катионообменной емкости почвы. Обогащение медью за счет экстракции происходит только в поверхностных слоях почвы, и зерновые культуры с глубокой корневой системой не страдают от этого.

    Окружающая среда и питание растений могут повлиять на фитотоксичность меди. Так, например, медная токсичность для риса на равнинных землях отмечалась явно, когда растения поливали холодной, а не теплой водой. Дело в том, что микробиологическая активность подавляется в холодной почве и создает те востановительные условия в почве, которые бы способствовали осаждению меди из раствора.

    Фитотоксичность по меди происходит изначально от избытка в почве доступной меди и усиливается кислотностью почвы. Поскольку медь сравнительно малоподвижна в почве, почти вся попадающая в почву медь остается в верхних слоях. Внесение органических веществ в загрязненные медью почвы может снизить токсичность благодаря адсорбции растворимого металла органическим субстратом (при этом ионы Cu 2+ превращаются в менее доступные для растения комплексные соединения) либо повышением мобильности ионов Cu 2+ и вымыванием их из почвы в виде растворимых медьорганических комплексов.

    Цинк (Zn)

    Цинк может находиться в почве в виде оксосульфатов, карбонатов, фосфатов, силикатов, оксидов и гидроксидов. Эти неорганические соединения метастабильны в хорощо дренируемых сельскохозяественных угодьях. По-видимому, сфалерит ZnS является термодинамически преобладающей формой как в восстановленных, так и в окисленных почвах. Некоторая ассоциация цинка с фосфором и хлором налицо в восстановленных, загрязненных тяжелыми металлами осадках. Следовательно, сравнительно растворимые соли цинка должны встречаться в богатых металлами почвах.

    Цинк изоморфно замещается другими катионами в силикатных минералах, он может быть окклюдирован или соосажден с гидроксидами марганца и железа. Филлосиликаты, карбонаты, гидратированные оксиды металлов, а также органические соединения хорощо абсорбируют цинк, при этом используются и специфические, и неспецифические места связывания.

    Растворимочть цинка повышается в кислых почвах, а также при комплексообразовании с низкомолекулярными органическими лигандами. Восстанавливающие условия могут уменьшать растворимость у цинка из-за образования нерастворимого ZnS.

    Фитотоксичность цинка обычно проявляется при контакте корней растения с избыточным по цинку раствором в почве. Транспорт цинка через почву происходит посредством обмена и диффузии, причем последний процесс доминирует в почвах с низким содержанием цинка. Обменный транспорт более значителен в высокоцинковых почвах, в которых концентрации растворимого цинка сравнительно стабильны.

    Мобильность цинка в почвах повышается в присутствии хелатообразователей (природных или синтетических). Увеличение концентрации растворимого цинка, вызванное образованием растворимых хелатов, компенсирует понижение мобильности, обусловленное увеличением размера молекулы. Концентрации цинка в тканях растений, его общее поглощение и симптомы токсичности положительно коррелируют с концентрацией цинка в растворе, омывающем корни растения.

    Свободный ион Zn 2+ преимущественно абсорбируется корневой системой растений, поэтому образование растворимых хелатов способствует растворимости данного металла в почвах, а эта реакция компенсирует пониженную доступность цинка в хелатной форме.

    Исходная форма металлического загрязнения влияет на потенциал токсичности по цинку: доступность цинка для растения в удобряемых почвах с эквивалентным общим содержанием этого металла уменьшается в ряду ZnSO 4 >отстой>мусорный компост.

    Большинство опытов по загрязнению по почвы Zn-содержащим отстоем не показало падение урожая или явную их фитотоксичность; все же их долговременное внесение с высокой скоростью способно повредить растениям. Простое внесение цинка в виде ZnSO 4 вызывает понижение роста культур в кислых почвах, в то время как многолетнее внесение его в почти нейтральные почвы проходит незамеченным.

    Токсичность уровней в сельскохозяественных почвах цинк достигает, как правило, из-за поверхностного цинка; он обычно не проникает на глубину более 15-30 см. Глубокие корни определенных культур могут избежать контакта с избыточным цинком благодаря их расположению в незагрязненной подпочве.

    Известкование почв, загрязненных цинком, понижает концентрацию последнего в полевых культурах. Добавки NaOH или Ca(OH) 2 понижают токсичность цинка в овощных культурах, выращенных на высокоцинковых торфяных почвах, хотя в данных почвах поглощение цинка растениями весьма ограничено. Вызванную же цинком недостаточность по железу можно устранить при помощи внесения хелатов железа или FeSO 4 в почву либо прямо на листья. Физическое удаление или захоронение загрязненного цинком верхнего слоя вообще может позволить избежать токсичного воздействия металла на растения.

    Марганец

В почве марганец находится в трех состояниях окисления: +2 , +3 , +4 . По большей части этот металл ассоциирован с первичными минералами или со вторичными металлоксидами. В почве общее количество марганца колеблется на уровне 500 - 900 мг/кг.

Растворимость Mn 4+ чрезвычайно мала; трехвалентный марганец очень нестоек в почвах. Большая часть марганца в почвах присутствует в виде Mn 2+ , в то время как в хорошо аэрируемых почвах большая часть его в твердой фазе присутствует в виде оксида, в котором металл находится в степени окисления IV; в плохо же аэрируемых почвах марганец медленно восстанавливается микробной средой и переходит в почвенный раствор, становясь таким образом высокомобильным.

Растворимость Mn 2+ увеличивается значительно при низких значениях pH, но при этом поглощение марганца растениями падает.

Марганцевая токсичность часто имеет место там, где общий уровень марганца от среднего до высокого, pH почвы довольно низкий и кислородная доступность для почвы тоже низка (т.е. имеются восстановительные условия). Чтобы устранить действие перечисленных условий, pH почвы следует увеличивать с помощью известкования, потратить усилия на улучшение почвенного дренажа, уменьшить поступление воды, т.е. в целом улучшить структуру данной почвы.

Соединения Cr(VI) и Cr(III) в повышенных количествах обладают канцерогенными свойствами. Соединения Cr(VI) являются более опасными.

Попадает в природные воды в результате протекающих в природе процессов разрушения и растворения горных пород и минералов (сфалерит, цинкит, госларит, смитсонит, каламин), а также со сточными водами рудообогатительных фабрик и гальванических цехов, производств пергаментной бумаги, минеральных красок, вискозного волокна и др.

В воде существует главным образом в ионной форме или в форме его минеральных и органических комплексов. Иногда встречается в нерастворимых формах: в виде гидроксида, карбоната, сульфида и др.

В речных водах концентрация цинка обычно колеблется от 3 до 120 мкг/дм 3 , в морских - от 1.5 до 10 мкг/дм 3 . Содержание в рудных и особенно в шахтных водах с низкими значениями рН может быть значительным.

Цинк относится к числу активных микроэлементов, влияющих на рост и нормальное развитие организмов. В то же время многие соединения цинка токсичны, прежде всего его сульфат и хлорид.

ПДК в Zn 2+ составляет 1 мг/дм 3 (лимитирующий показатель вредности - органолептический), ПДК вр Zn 2+ - 0.01 мг/дм 3 (лимитирующий признак вредности - токсикологический).

Тяжёлые металлы уже сейчас занимают второе место по степени опасности, уступая пестицидам и значительно опережая такие широко известные загрязнители, как двуокись углерода и серы, в прогнозе же они должны стать самыми опасными, более опасными, чем отходы АЭС и твердые отходы. Загрязнение тяжёлыми металлами связано с их широким использованием в промышленном производстве вкупе со слабыми системами очистки, в результате чего тяжёлые металлы попадают в окружающую среду, в том числе и почву, загрязняя и отравляя её.

Тяжёлые металлы относятся к приоритетным загрязняющим веществам, наблюдения за которыми обязательны во всех средах. В различных научных и прикладных работах авторы по-разному трактуют значение понятия "тяжёлые металлы". В некоторых случаях под определение тяжелых металлов попадают элементы, относящиеся к хрупким (например, висмут) или металлоидам (например, мышьяк).

Почва являются основной средой, в которую попадают тяжёлые металлы, в том числе из атмосферы и водной среды. Она же служит источником вторичного загрязнения приземного воздуха и вод, попадающих из неё в Мировой океан. Из почвы тяжёлые металлы усваиваются растениями, которые затем попадают в пищу более высокоорганизованным животным.

3.3. Свинцовая интоксикация

В настоящее время свинец занимает первое место среди причин промышленных отравлений. Это вызвано широким применением его в различных отраслях промышленности. Воздействию свинца подвергаются рабочие, добывающие свинцовую руду, на свинцово-плавильных заводах, в производстве аккумуляторов, при пайке, в типографиях, при изготовлении хрустального стекла или керамических изделий, этилированного бензина, свинцовых красок и др. Загрязнение свинцом атмосферного воздуха, почвы и воды в окрестности таких производств, а также вблизи крупных автомобильных дорог создает угрозу поражения свинцом населения, проживающего в этих районах, и, прежде всего детей, которые более чувствительны к воздействию тяжелых металлов.

С сожалением надо отметить, что в России отсутствует государственная политика по правовому, нормативному и экономическому регулированию влияния свинца на состояние окружающей среды и здоровье населения, по снижению выбросов (сбросов, отходов) свинца и его соединений в окружающую среду, полному прекращению производства свинецсодержащих бензинов.

Вследствие чрезвычайно неудовлетворительной просветительной работы по разъяснению населению степени опасности воздействия тяжелых металлов на организм человека, в России не снижается, а постепенно увеличивается численность контингентов, имеющих профессиональный контакт со свинцом. Случаи свинцовой хронической интоксикации зафиксированы в 14 отраслях промышленности России. Ведущими являются электротехническая промышленность (производство аккумуляторов), приборостроение, полиграфия и цветная металлургия, в них интоксикация обусловлена превышением в 20 и более раз предельно допустимой концентрации (ПДК) свинца в воздухе рабочей зоны.

Значительным источником свинца являются автомобильные выхлопные газы, так как половина России все еще использует этилированный бензин. Однако металлургические заводы, в частности медеплавильные, остаются главным источником загрязнений окружающей среды. И здесь есть свои лидеры. На территории Свердловской области находятся 3 самых крупных источника выбросов свинца в стране: в городах Красноуральск, Кировоград и Ревда.

Дымовые трубы Красноуральского медеплавильного завода, построенного еще в годы сталинской индустриализации и использующего оборудование 1932 года, ежегодно извергают на 34-тысячный город 150 -170 тонн свинца, покрывая все свинцовой пылью.

Концентрация свинца в почве Красноуральска варьируется от 42,9 до 790,8 мг/кг при предельно допустимой концентрации ПДК=130 мк/кг. Пробы воды в водопроводе соседнего пос. Октябрьский, питаемого подземным водоисточником, фиксировали превышение ПДК до двух раз.

Загрязнение окружающей среды свинцом оказывает влияние на состояние здоровья людей. Воздействие свинца нарушает женскую и мужскую репродуктивную систему. Для женщин беременных и детородного возраста повышенные уровни свинца в крови представляют особую опасность, так как под действием свинца нарушается менструальная функция, чаще бывают преждевременные роды, выкидыши и смерть плода вследствие проникновения свинца через плацентарный барьер. У новорожденных детей высока смертность.

Отравление свинцом чрезвычайно опасно для маленьких детей - он действует на развитие мозга и нервной системы. Проведенное тестирование 165 красноуральских детей от 4 лет выявило существенную задержку психического развития у 75,7%, а у 6,8% обследованных детей обнаружена умственная отсталость, включая олигофрению.

Дети дошкольного возраста наиболее восприимчивы к вредному воздействию свинца, поскольку их нервная система находится в стадии формирования. Даже при низких дозах свинцовое отравление вызывает снижение интеллектуального развития, внимания и умения сосредоточиться, отставание в чтении, ведет к развитию агрессивности, гиперактивности и другим проблемам в поведении ребенка. Эти отклонения в развитии могут носить длительный характер и быть необратимыми. Низкий вес при рождении, отставание в росте и потеря слуха также являются результатом свинцового отравления. Высокие дозы интоксикации ведут к умственной отсталости, вызывают кому, конвульсии и смерть.

Белая книга, опубликованная российскими специалистами, сообщает, что свинцовое загрязнение покрывает всю страну и является одним из многочисленных экологических бедствий в бывшем Советском Союзе, которые стали известны в последние годы. Большая часть территории России испытывает нагрузку от выпадения свинца, превышающую критическую для нормального функционирования экосистемы. В десятках городов отмечается превышение концентраций свинца в воздухе и почве выше величин, соответствующих ПДК.

Наибольший уровень загрязнения воздуха свинцом, превышающий ПДК, отмечался в городах Комсомольск-на-Амуре, Тобольск, Тюмень, Карабаш, Владимир, Владивосток.

Максимальные нагрузки выпадения свинца, ведущие к деградации наземных экосистем, наблюдаются в Московской, Владимирской, Нижегородской, Рязанской, Тульской, Ростовской и Ленинградской областях.

Стационарные источники ответственны за сброс более 50 тонн свинца в виде различных соединений в водные объекты. При этом 7 аккумуляторных заводов сбрасывают ежегодно 35 тонн свинца через канализационную систему. Анализ распределения сбросов свинца в водные объекты на территории России показывает, что по этому виду нагрузки лидируют Ленинградская, Ярославская, Пермская, Самарская, Пензенская и Орловская области.

В стране необходимы срочные меры по снижению свинцового загрязнения, однако пока экономический кризис России затмевает экологические проблемы. В затянувшейся промышленной депрессии Россия испытывает недостаток средств для ликвидации прежних загрязнений, но если экономика начнет восстанавливаться, а заводы вернутся к работе, загрязнение может только усилиться.

10 наиболее загрязненных городов бывшего СССР

(Металлы приведены в порядке убывания уровня приоритетности для данного города)

1. Рудная Пристань (Примор. край) свинец, цинк, медь, марганец+ванадий, марганец.
2. Белово (Кемеровская область) цинк, свинец, медь, никель.
3. Ревда (Свердловская область) медь, цинк, свинец.
4. Магнитогорск никель, цинк, свинец.
5. Глубокое (Белоруссия) медь, свинец, цинк.
6. Усть-Каменогорск (Казахстан) цинк, медь, никель.
7. Дальнегорск (Приморский край) свинец, цинк.
8. Мончегорск (Мурманская обл.) никель.
9. Алаверди (Армения) медь, никель, свинец.
10. Константиновка (Украина) свинец, ртуть.

4. Гигиена почвы. Обезвреживание отходов.

Почва в городах и прочих населенных пунктах и их окрест­ностях уже давно отличается от природной, биологически цен­ной почвы, играющей важную роль в поддержании экологиче­ского равновесия. Почва в городах подвержена тем же вредным воздействиям, что и городской воздух и гидросфера, поэтому по­всеместно происходит значительная ее деградация. Гигиене поч­вы не уделяется достаточного внимания, хотя ее значение как одного из основных компонентов биосферы (воздух, вода, поч­ва) и биологического фактора окружающей среды еще более весомое, чем воды, поскольку количество последней (в первую очередь качество подземных вод) определяется состоянием поч­вы, и отделить эти факторы друг от друга невозможно. Почва обладает способностью биологического самоочищения: в почве происходит расщепление попавших в нее отходов н их минера­лизация; в конечном итоге почва компенсирует за их счет утра­ченные минеральные вещества.

CОДЕРЖАНИЕ

Введение

1. Почвенный покров и его использование

2. Эрозия почв (водная и ветреная) и методы борьбы с нею

3. Промышленное загрязнение почвы

3.1 Кислотные дожди

3.2 Тяжелые металлы

3.3 Свинцовая интоксикация

4. Гигиена почвы. Обезвреживание отходов

4.1 Роль почвы в обмене веществ

4.2 Экологическая взаимосвязь между почвой и водой и жид­кими отходами (сточными водами)

4.3 Пределы нагрузки почвы твердыми отходами (бытовой и уличный мусор, пром. отходы, сухой ил после осаждения сточных вод, радиоакт. вещества)

4.4 Роль почвы в распространении различных заболеваний

4.5 Вредное действие основных типов загрязнителей (твер­дых и жидких отходов), приводящих к деградации почвы

4.5.1 Обезвреживание жидких отходов в почве

4.5.2.1 Обезвреживание в почве твердых отходов

4.5.2.2 Сбор и вывоз мусора

4.5.3 Окончательное удаление и обезвреживание

4.6 Удаление радиоактивных отходов

Заключение

Список использованных источников

Введение.

Определенная часть почв, как в России, так и во всем мире с каждым годом выходит из сельскохозяйственного обращения в силу разных причин, подробно рассмотренных в УИР. Тысячи и более гектаров земли страдают от эрозии, кислотных дождей, неправильной обработки и токсичных отходов. Чтобы избежать этого, нужно ознакомиться с наиболее продуктивными и недорогими мелиоративными мероприятиями (Определение мелиорации см. в основной части работы), повышающими плодородие почвенного покрова, а прежде всего с самим негативным воздействием на почву, и как его избежать.

Эти исследования дают представление о вредном воздействии на почву и проводились по ряду книг, статей и научных журналов, посвященных проблемам почвы и защите окружающей среды.

Сама проблема загрязнения и деградации почв была актуальна всегда. Сейчас к сказанному можно еще добавить, что в наше время антропогенное влияние сильно сказывается на природе и только растет, а почва является для нас одним из главных источником пищи и одежды, не говоря уже о том, что мы по ней ходим и всегда будем находиться в тесном контакте с ней.

1. Почвенный покров и его использование.

Почвенный покров является важнейшим природным образова­нием. Его значение для жизни общества определяется тем, что почва является основным источником продовольствия, обеспечи­вающим 97-98% продовольственных ресурсов населения планеты. Вместе с тем, почвенный покров является местом деятельности че­ловека, на котором размещается промышленное и сельскохозяй­ственное производство.

Выделяя особую роль продовольствия в жизни общества, еще В. И. Ленин указывал: “Настоящие основы хозяйства - это про­довольственный фонд”.

Важнейшее свойство почвенного покрова - его плодородие, под которым понимается совокупность свойств почвы, обеспечиваю­щих урожай сельскохозяйственных культур. Естественное плодо­родие почвы регулируется запасом питательных веществ в почве и ее водным, воздушным и тепловым режимами. Велика роль поч­венного покрова в продуктивности наземных экологических систем, так как почва питает сухопутные растения водой и многими сое­динениями и является важнейшим компонентом фотосинтетической деятельности растений. Плодородие почвы зависит и от аккумули­рованной в ней величины солнечной энергии. Живые организмы, растения и животные, населяющие Землю, фиксируют солнечную энергию в форме фито- или зоомассы. Продуктивность наземных экологических систем зависит от теплового и водного баланса зем­ной поверхности, которым определяется многообразие форм обмена материей и веществом в пределах географической оболочки пла­неты.

Анализируя значение земли для общественного производства, К. Маркс выделял два понятия: земля-материя и земля-капи­тал. Под первым из них следует понимать землю, возникшую в про­цессе ее эволюционного развития помимо воли и сознания людей и являющуюся местом поселения человека и источником его пиши . С того момента, когда земля в процессе развития человеческого общества становится средством производства, она выступает в но­вом качестве-капитала, без которого немыслим процесс труда, “...потому что она дает рабочему... место, на котором он стоит..., а его процессу-сферу действия...”. Именно по этой причине зем­ля является универсальным фактором любой человеческой дея­тельности.

Роль и место земли неодинаковы в различных сферах мате­риального производства, прежде всего в промышленности и сель­ском хозяйстве. В обрабатывающей промышленности, в строитель­стве, на транспорте земля является местом, где совершаются про­цессы труда независимо от естественного плодородия почвы. В ином качестве выступает земля в сельском хозяйстве. Под воз­действием человеческого труда естественное плодородие из потен­циального превращается в экономическое. Специфика использова­ния земельных ресурсов в сельском хозяйстве приводит к тому, что они выступают в двух различных качествах, как предмет труда и как средство производства. К. Маркс отмечал: “Одним только новым вложением капиталов в участки земли... люди увеличивали землю-капитал без всякого увеличения материи земли, т. е. про­странства земли”.

Земля в сельском хозяйстве выступает в качестве производи­тельной силы благодаря своему естественному плодородию, кото­рое не остается постоянным. При рациональном использовании земли такое плодородие может быть повышено за счет улучшения ее водного, воздушного и теплового режима посредством проведе­ния мелиоративных мероприятии и увеличения содержания в почве питательных веществ. Напротив, при нерациональном использова­нии земельных ресурсов их плодородие падает, вследствие чего происходит снижение урожайности сельскохозяйственных культур. В некоторых местах возделывание культур становится вовсе невоз­можным, особенно на засоленных и эродированных почвах.

При низком уровне развития производительных сил общества расширение производства продуктов питания происходит за счет вовлечения в сельское хозяйство новых земель, что соответствует экстенсивному развитию сельского хозяйства. Этому способствуют два условия: наличие свободных земель и возможность ведения хозяйства на доступном среднем уровне затрат капитала на еди­ницу площади. Такое использование земельных ресурсов и веде­ние сельского хозяйства типичны для многих развивающихся стран современного мира.

В эпоху НТР произошло резкое разграничение системы ведения земледелия в промышленно развитых и развивающихся странах. Для первых характерна интенсификация земледелия с использо­ванием достижений НТР, при которой сельское хозяйство разви­вается не за счет увеличения площади обрабатываемой земли, а благодаря увеличению размеров капитала, вкладываемого в зем­лю. Известная ограниченность земельных ресурсов для большин­ства промышленно развитых капиталистических стран, увеличение спроса на продукты земледелия во всем мире в связи с высокими темпами роста населения, более высокая культура земледелия способствовали переводу сельского хозяйства этих стран еще в 50-е годы на путь интенсивного развития. Ускорение процесса интенсификации сельского хозяйства в промышленно развитых капита­листических странах связано не только с достижениями НТР, но главным образом с выгодностью вложения капитала в сельское хозяйство, что сконцентрировало сельскохозяйственное производ­ство в руках крупных землевладельцев и разорило мелких фер­меров.

Иными путями развивалось сельское хозяйство в развиваю­щихся странах. Среди острых естественно-ресурсных проблем этих стран можно выделить следующие: низкую культуру земледелия, вызвавшую деградацию почв (повышенную эрозию, засоление, снижение плодородия) и естественной растительности (например, тропических лесов), истощение водных ресурсов, опустынивание земель, особенно отчетливо проявившееся на африканском конти­ненте. Все эти факторы, связанные с социально-экономическими проблемами развивающихся стран, привели к хронической нехватке в этих странах продовольствия. Так, на начало 80-х годов по обес­печенности на одного человека зерном (222 кг) и мясом (14 кг) развивающиеся страны уступали промышленно развитым капита­листическим странам соответственно в несколько раз. Решение продовольственной проблемы в развивающихся странах немыслимо без крупных социально-экономических преобразований.

В нашей стране основу земельных отношений составляет об­щегосударственная (общенародная) собственность на землю, воз­никшая в результате национализации всей земли. Аграрные отношения стро­ятся на основе планов, по которым должно развиваться сельское хозяйство в будущем, при финансово-кредитной помощи государ­ства и поставок необходимого количества машин и удобрений. Оплата работников сельского хозяйства по количеству и качеству труда стимулирует постоянное повышение их жизненного уровня.

Использование земельного фонда как единого целого осущест­вляется на основах долговременных государственных планов. При­мером таких планов явилось освоение целинных и залежных зе­мель на востоке страны (середина 50-х годов), благодаря которому стало возможным за короткий срок ввести в состав пахотных зе­мель более 41 млн. га новых площадей. Еще пример - комплекс мероприятий, связанных с выполнением Продовольственной про­граммы, предусматривающей ускорение развития сельскохозяйст­венного производства на основе повышения культуры земледелия, широкого проведения мелиоративных мероприятий, а также осу­ществления широкой программы социально-экономического пере­устройства сельскохозяйственных районов.

Земельные ресурсы мира в целом позволяют обеспечить продук­тами питания большее количество людей, чем имеется в настоя­щее время и чем оно будет в ближайшем будущем. Вместе с тем, в связи с ростом населения, особенно в развивающихся странах, количество пашни на душу населения сокращается.

В земледельческих районах в направлении с севера на юг на­блюдается закономерное уменьшение площади слабоокультурен­ных угодий и возрастание площади пашни, которая достигает максимума в лесостепной и степной зонах. Если в северных областях Нечерноземной зоны РСФСР площадь пашни составляет 5-6% общей площади, то в лесостепной и степной зонах площадь пашни увеличивается более чем в 10 раз, достигая 60-70%. Севернее и южнее этих зон земледельческая территория резко сокра­щается. На севере граница устойчивого земледелия определяется суммой положительных температур 1000° за вегетационный период, на юге - годовой суммой осадков в 200-300 мм. Исключение со­ставляют лучше увлажненные предгорные и горные районы юга Европейской части страны и Средней Азии, где земледельческая освоенность территории составляет 20%. На севере Русской рав­нины в лесотундровой и тундровой зонах площадь пашни состав­ляет лишь 75 тыс. га (менее 0,1% территории).

Для ускорения развития сельского хозяйства страны требуется осуществление ряда крупномасштабных мероприятий:

Внедрение научно обоснованной системы земледелия для каж­дой природной зоны и ее отдельных регионов;

Осуществление широкой программы мелиорации земель в раз­личных природных зонах;

Ликвидация процессов вторичного засоления и заболачивания мелиоративных массивов;

Применение комплексов мероприятий по борьбе с водной и вет­ровой эрозией на площадях, измеряемых миллионами гектаров;

Создание сети культурных пастбищ в различных природных зо­нах с применением их орошения, обводнения и внесения удоб­рений;

Проведение широкого комплекса мероприятий по окультуриванию освоенных почв с созданием глубокого оструктуренного гори­зонта;

Модернизация машинно-тракторного парка и почвообрабаты­вающих орудий;

Применение полноценной дозы удобрений под все вилы сель­скохозяйственных культур, в том числе малорастворимых в защит­ной оболочке;

Осуществление комплекса мероприятий по социальному пере­устройству земледельческих территорий (строительство дорог, жи­лищ, складов, школ, больниц и т. д.);

Всемерное сохранение существующего земельного фонда. Эта программа может быть рассчитана на продолжительное время.

Нечерноземная зона РСФСР простирается от Прибалтийских равнин на западе до Уральского хребта на востоке, от побережья Северного Ледовитого океана на севере до границы лесостепи на юге. Ее площадь составляет около 2,8 км 2 . Нечерноземье отличается высокой концентрацией населения. Здесь проживает более 60 млн. человек (около 44% населения РСФСР), в том числе око­ло 73% в городах. Эта зона насчитывает 47 млн. га сельскохозяйственных угодий, из них 32 млн. га - пашни. Нечерноземная зона отличается развитым сельским хозяйством, на долю которого при­ходится до 30% сельскохозяйственной продукции РСФСР, в том числе почти все льноволокно, до 20% зерна, более 50 - картофеля, около 40 - молока и яиц, 43 - овощей, 30% - мяса.

Важнейшей особенностью Нечерноземной зоны является нали­чие большой площади естественных кормовых угодий. На каждый гектар пашни здесь приходится от 1 до 3 га кормовых сенокосов и пастбищ. Природно-климатические условия почти повсеместно благоприятствуют развитию сельского хозяйства мясомолочной специализации. Для интенсификации сельского хозяйства предпо­лагается на болотах и заболоченных землях провести мелиора­тивные мероприятия и химизацию сельскохозяйственных угодий.

2. Эрозия почв (водная и ветреная) и методы борьбы с ней.

Широкое использование земель, особенно возросшее в эпоху НТР, привело к увеличению распространения водной и ветровой эрозий (дефляции). Под их воздействием происходит вынос (водой либо ветром) почвенных агрегатов из верхнего, наиболее цен­ного слоя почвы, который приводит к снижению ее плодородия. Водная и ветровая эрозии, вызывая истощение почвенных ресур­сов, являются опасным экологическим фактором.

Общая площадь земель, подверженных водной и ветровой эро­зии, измеряется многими миллионами гектаров. По имеющимся оценкам, водной эрозии подвержено 31% суши, а ветровой-34%. Косвенным свидетельством возросших масштабов водной и вет­ровой эрозии в эпоху НТР является увеличение твердого стока ре­ками в океан, который ныне оценивается в 60 млрд. т, хотя 30 лет тому назад эта величина была почти в 2 раза меньше.

Общее сельскохозяйственное использование земель (включая пастбища и сенокосы) составляет около 1 / 3 суши. В результате водной и ветровой эрозии во всем мире пострадало около 430 млн. га земли, а при сохранении нынешних масштабов эрозии к концу века эта величина может удвоиться.

Ветровой эрозии наиболее подвержены частицы почвы 0,5- 0,1 мм и менее, которые при скоростях ветра у поверхности почвы 3,8-6,6 м/с приходят в движение и перемещаются на большие рас­стояния. Мелкие почвенные частицы (<,0,1 мм) способны преодо­левать расстояние в сотни (иногда тысячи километров). На осно­вании аэрокосмических снимков выявлено, что пыльные бури в Са­харе прослеживались вплоть до Северной Америки.

Категория частиц 0,5-0,1 мм является одной из агрономически ценных, поэтому ветровая эрозия снижает почвенное плодородие. Не менее деятельным процессом является водная эрозия, так как при смыве водой возрастает размер вымываемых почвенных частиц.

Смыв почвы зависит от типа почвы, ее физико-механического состава, величины поверхностного стока и состояния поверхности почвы (агрофон). Показатели смыва почвы изменяются для раз­личных пахотных угодий в весьма широких пределах. Для южных черноземов показатели смыва почв (т/га) меняются от 21,7 (зяблевая вспашка вдоль склона), 14,9 (то же поперек склона) до 0,2 (многолетняя залежь). Интенсивность эрозии в современную эпоху порождена прямыми либо косвенными последствиями антропогенного происхождения. К первым следует отнести широкую распашку земель в эрозионно-опасных районах, особенно в аридной либо семиаридной зонах. Такое явление типично для большинства раз­вивающихся стран.

Однако интенсивность эрозии возросла и в развитых странах, в том числе во Франции, Италии, ФРГ, Греции. Эрозионно-опасными считаются некоторые районы Нечерноземной зоны РСФСР, поскольку серые лесные почвы очень подвержены размыву. Эрозия имеет место и на переувлажненных орошаемых массивах.

В трудном положении оказываются районы, в которых проис­ходит одновременное проявление водной и ветровой эрозии. В нашей стране к таким относятся лесостепные и частично степные районы Центральной черноземной области, Поволжья, Зауралья, Западной и Восточной Сибири с интенсивным сельскохозяйственным использованием. Водная и ветровая эрозии развиваются в зоне недостаточного увлажнения с чередова­нием влажных и засухоустойчивых лет (либо сезонов) по таким схемам: смыв - осушение почвы - выдувание, выдувание - переувлажнение почвы - смыв. Отмечается, что она может прояв­ляться на участках со сложным рельефом неодинаково: на склонах северных экспозиций преобладает водная эрозия, на южных с ветроударным эффектом - ветровая. Одновременное развитие водной и ветровой эрозий может вызывать особенно большие нарушения почвенного покрова.

Ветровая эрозия возникает в степных районах с большими площадями пашни при скоростях ветра 10-15 м/с. (Поволжье, Северный Кавказ, юг Западной Сибири). Наибольший ущерб сельскому хо­зяйству наносят пыльные бури (наблюдающиеся ранней весной и летом), которые приводят к уничтожению посевов, снижению почвенного плодородия, загрязнению атмосферы, занесению полос и мелиоративных систем. Граница пыльных бурь проходит южнее линии Балта - Кременчуг - Полтава - Харьков - Балашов - Куйбышев - Уфа - Новотроицк.

Почвозащитная система земледелия, разработанная в Казах­стане, нашла широкое распространение. Ее основой является пе­реход от отвальной обработки почвы с помощью плуга к безотвальной с применением орудий плоскорезного типа, сохраняющих стерню и растительные остатки на поверхности почвы, а на почвах легкого механического состава - введение почвозащитных севооборотов с полосным размещением однолетних культур и многолет­них трав. Благодаря почвозащитной системе земледелия обеспечивается не только защита почв от ветровой эрозии, но и более эф­фективное использование атмосферных осадков. При плоскорезной обработке почва промерзает на меньшую глубину и весенний поверхностный сток используется для увлажнения поверхностных горизонтов почвы, в результате чего снижается губительное воз­действие засух па урожай зерновых культур в самые засушливые годы. Эрозия почвы может причинять как прямой ущерб - за счет уменьшения плодородия почвы, так и косвенный - за счет пере­вода одних ценных пахотных угодий в другие, менее ценные (например, лесные полосы либо луга). Только для агролесомелиоративных мероприятий защиты почв от эрозии, в которой нуждаются многие миллионы гектаров пашни, необходимо под лесопосадки использовать около 2,6% этой площади.

Для защиты почв от эрозии в настоящее время используется система научно-организационных, агролесомелиоративных и гид­ротехнических мероприятий. Основные виды борьбы с водной эрозией заключаются в макси­мальном снижении величины поверхностного стока и перевода его в подземный за счет почвозащитных севооборотов при соотноше­ние посевов многолетних трав и однолетних культур 1:2, глубо­ком поперечном бороздовании склонов, лунковании почвы, внедре­нии лесонасаждений. Гидротехнические меры борьбы с водной эро­зией включают в себя строительство прудов и водоемов для умень­шения величины талого стока. В зависимости от степени смытости почвы все сельскохозяйственные земли разделяются на девять ка­тегорий. К первой из них отнесены земли, не подверженные эро­зии, к девятой - непригодные земли для земледелия. Для каждой из категорий земель (кроме девятой) рекомендована своя противоэрозионная система земледелия.

3. Промышленное загрязнение почвы.

3.1. Кислотные дожди

Термином "кислотные дожди" называют все виды метеорологических осадков - дождь, снег, град, туман, дождь со снегом, - рН которых меньше, чем среднее значение рН дождевой воды (средний рН для дождевой воды равняется 5.6). Выделяющиеся в процессе человеческой деятельности двуокись серы (SO 2) и окислы азота (NО x) трансформируются в атмосфере земли в кислотообразующие частицы . Эти частицы вступают в реакцию с водой атмосферы, превращая ее в растворы кислот, которые и понижают рН дождевой воды. Впервые термин «кислотный дождь» был введен в 1872 году английским исследователем Ангусом Смитом. Его внимание привлек викторианский смог в Манчестере. И хотя ученые того времени отвергли теорию о существовании кислотных дождей, сегодня уже никто не сомневается, что кислотные дожди являются одной из причин гибели жизни в водоемах, лесов, урожаев, и растительности. Кроме того, кислотные дожди разрушают здания и памятники культуры, трубопроводы, приводят в негодность автомобили, понижают плодородие почв и могут приводить к просачиванию токсичных металлов в водоносные слои почвы.

Вода обычного дождя тоже представляет собой слабокислый раствор. Это происходит вследствие того, что природные вещества атмосферы, такие как двуокись углерода (СО 2), вступают в реакцию с дождевой водой. При этом образуется слабая угольная кислота (CO 2 + H 2 O -> H 2 CO 3). Тогда как в идеале рН дождевой воды равняется 5.6-5.7, в реальной жизни показатель кислотности (рН) дождевой воды в одной местности может отличаться от показателя кислотности дождевой воды в другой местности. Это, прежде всего, зависит от состава газов, содержащихся в атмосфере той или иной местности, таких как оксид серы и оксиды азота.

В 1883 году шведский ученый Сванте Аррениус ввел в обращение два термина - кислота и основание. Он назвал кислотами вещества, которые при растворении в воде образуют свободные положительно заряженные ионы водорода (Н +). Основаниями он назвал вещества, которые при растворении в воде образуют свободные отрицательно заряженные гидроксид-ионы (ОН -). Термин рН используют в качестве показателя кислотности воды. "Термин рН значит в переводе с английского "показатель степени концентрации ионов водорода".

Значение рН измеряется на шкале от 0 до 14. В воде и водных растворах присутствуют как ионы водорода(Н +), так и гидроксид-ионы (ОН -). Когда концентрация ионов водорода (Н +) в воде или растворе равна концентрации гидроксид-ионов (ОН -) в том же растворе, то такой раствор является нейтральным. Значение рН нейтрального раствора равняются 7 (на шкале от 0 до 14). Как вы уже знаете, при растворении кислот в воде повышается концентрация свободных ионов водорода (Н +). Они то и повышают кислотность воды или, иными словами, рН воды. При этом, с повышением концентрации ионов водорода (Н +) понижается концентрация гидроксид-ионов (ОН -). Те растворы, значение рН которых на приведенной шкале находится в пределах от 0 до <7, называются кислыми. Когда в воду попадают щелочи, то в воде повышается концентрация гидроксид-ионов (ОН -). При этом в растворе понижается концентрация ионов водорода (Н +). Растворы, значение рН которых находится в пределах от >7 до 14, называются щелочными.

Следует обратить внимание еще на одну особенность шкалы рН. Каждая последующая ступенька на шкале рН говорит о десятикратном уменьшении концентрации ионов водорода (Н +) (и, соответственно, кислотности) в растворе и увеличении концентрации гидроксид-ионов (ОН -). Например, кислотность вещества со значением рН4 в десять раз выше кислотности вещества со значением рН5, в сто раз выше, чем кислотность вещества со значением рН6 и в сто тысяч раз выше, чем кислотность вещества со значением рН9.

Кислотный дождь образуется в результате реакции между водой и такими загрязняющими веществами, как оксид серы (SO 2) и различными оксидами азота (NO х). Эти вещества выбрасываются в атмосферу автомобильным транспортом, в результате деятельности металлургических предприятий и электростанций, а также при сжигании угля и древесины. Вступая в реакцию с водой атмосферы, они превращаются в растворы кислот - серной, сернистой, азотистой и азотной. Затем, вместе со снегом или дождем, они выпадают на землю.

Последствия выпадения кислотных дождей наблюдаются в США, Германии, Чехии, Словакии, Нидерландах, Швейцарии, Австралии, республиках бывшей Югославии и еще во многих странах земного шара.

Кислотный дождь оказывает отрицательное воздействие на водоемы - озера, реки, заливы, пруды - повышая их кислотность до такого уровня, что в них погибает флора и фауна. Водяные растения лучше всего растут в воде со значениями рН между 7 и 9.2. С увеличением кислотности (показатели рН удаляются влево от точки отсчета 7) водяные растения начинают погибать, лишая других животных водоема пищи. При кислотности рН6 погибают пресноводные креветки. Когда кислотность повышается до рН5.5, погибают донные бактерии, которые разлагают органические вещества и листья, и органический мусор начинает скапливаться на дне. Затем гибнет планктон - крошечное животное, которое составляет основу пищевой цепи водоема и питается веществами, образующимися при разложении бактериями органических веществ. Когда кислотность достигает рН 4.5, погибает вся рыба, большинство лягушек и насекомых.

По мере накопления органических веществ на дне водоемов из них начинают выщелачиваться токсичные металлы. Повышенная кислотность воды способствует более высокой растворимости таких опасных металлов, как алюминий, кадмий, ртуть и свинец из донных отложений и почв.

Эти токсичные металлы представляют опасность для здоровья человека. Люди, пьющие воду с высоким содержанием свинца или принимающие в пищу рыбу с высоким содержанием ртути, могут приобрести серьезные заболевания.

Кислотный дождь наносит вред не только водной флоре и фауне. Он также уничтожает растительность на суше. Ученые считают, что хотя до сегодняшнего дня механизм до конца еще не изучен, "сложная смесь загрязняющих веществ, включающая кислотные осадки, озон, и тяжелые металлы...в совокупности приводят к деградации лесов.

Экономические потери от кислотных дождей в США, по оценкам одного исследования, составляют ежегодно на восточном побережье 13 миллионов долларов и к концу века убытки достигнут 1.750 миллиардов долларов от потери лесов; 8.300 миллиардов долларов от потери урожаев (только в бассейне реки Огайо) и только в штате Минессота 40 миллионов долларов на медицинские расходы. Единственный способ изменить ситуацию к лучшему, по мнению многих специалистов, - это уменьшить количество вредных выбросов в атмосферу.

3.2. Тяжелые металлы

Тяжелые металлы относятся к приоритетным загрязняющим веществам, наблюдения за которыми обязательны во всех средах.

Термин тяжелые металлы , характеризующий широкую группу загрязняющих веществ, получил в последнее время значительное распространение. В различных научных и прикладных работах авторы по-разному трактуют значение этого понятия. В связи с этим количество элементов, относимых к группе тяжелых металлов, изменяется в широких пределах. В качестве критериев принадлежности используются многочисленные характеристики: атомная масса, плотность, токсичность, распространенность в природной среде, степень вовлеченности в природные и техногенные циклы. В некоторых случаях под определение тяжелых металлов попадают элементы, относящиеся к хрупким (например, висмут) или металлоидам (например, мышьяк).

В работах, посвященных проблемам загрязнения окружающей природной среды и экологического мониторинга, на сегодняшний день к тяжелым металлам относят более 40 металлов периодической системы Д.И. Менделеева с атомной массой свыше 50 атомных единиц: V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cd, Sn, Hg, Pb, Bi и др. При этом немаловажную роль в категорировании тяжелых металлов играют следующие условия: их высокая токсичность для живых организмов в относительно низких концентрациях, а также способность к биоаккумуляции и биомагнификации. Практически все металлы, попадающие под это определение (за исключением свинца, ртути, кадмия и висмута, биологическая роль которых на настоящий момент не ясна), активно участвуют в биологических процессах, входят в состав многих ферментов. По классификации Н.Реймерса, тяжелыми следует считать металлы с плотностью более 8 г/см 3 . Таким образом, к тяжелым металлам относятся Pb, Cu, Zn, Ni, Cd, Co, Sb, Sn, Bi, Hg .

Формально определению тяжелые металлы соответствует большое количество элементов. Однако, по мнению исследователей, занятых практической деятельностью, связанной с организацией наблюдений за состоянием и загрязнением окружающей среды, соединения этих элементов далеко не равнозначны как загрязняющие вещества. Поэтому во многих работах происходит сужение рамок группы тяжелых металлов, в соответствии с критериями приоритетности, обусловленными направлением и спецификой работ. Так, в ставших уже классическими работах Ю.А. Израэля в перечне химических веществ, подлежащих определению в природных средах на фоновых станциях в биосферных заповедниках, в разделе тяжелые металлы поименованы Pb, Hg, Cd, As. С другой стороны, согласно решению Целевой группы по выбросам тяжелых металлов, работающей под эгидой Европейской Экономической Комиссии ООН и занимающейся сбором и анализом информации о выбросах загрязняющих веществ в европейских странах, только Zn, As, Se и Sb были отнесены к тяжелым металлам . По определению Н. Реймерса отдельно от тяжелых металлов стоят благородные и редкие металлы, соответственно, остаются только Pb, Cu, Zn, Ni, Cd, Co, Sb, Sn, Bi, Hg . В прикладных работах к числу тяжелых металлов чаще всего добавляют Pt, Ag, W, Fe, Au, Mn .

Ионы металлов являются непременными компонентами природных водоемов. В зависимости от условий среды (pH, окислительно-восстановительный потенциал, наличие лигандов) они существуют в разных степенях окисления и входят в состав разнообразных неорганических и металлорганических соединений, которые могут быть истинно растворенными, коллоидно-дисперсными или входить в состав минеральных и органических взвесей.

Истинно растворенные формы металлов, в свою очередь, весьма разнообразны, что связано с процессами гидролиза, гидролитической полимеризации (образованием полиядерных гидроксокомплексов) и комплексообразования с различными лигандами. Соответственно, как каталитические свойства металлов, так и доступность для водных микроорганизмов зависят от форм существования их в водной экосистеме.

Многие металлы образуют довольно прочные комплексы с органикой; эти комплексы являются одной из важнейших форм миграции элементов в природных водах. Большинство органических комплексов образуются по хелатному циклу и являются устойчивыми. Комплексы, образуемые почвенными кислотами с солями железа, алюминия, титана, урана, ванадия, меди, молибдена и других тяжелых металлов, относительно хорошо растворимы в условиях нейтральной, слабокислой и слабощелочной сред. Поэтому металлорганические комплексы способны мигрировать в природных водах на весьма значительные расстояния. Особенно важно это для маломинерализованных и в первую очередь поверхностных вод, в которых образование других комплексов невозможно.

Для понимания факторов, которые регулируют концентрацию металла в природных водах, их химическую реакционную способность, биологическую доступность и токсичность, необходимо знать не только валовое содержание, но и долю свободных и связанных форм металла.

Переход металлов в водной среде в металлокомплексную форму имеет три следствия:

1. Может происходить увеличение суммарной концентрации ионов металла за счет перехода его в раствор из донных отложений;

2. Мембранная проницаемость комплексных ионов может существенно отличаться от проницаемости гидратированных ионов;

3. Токсичность металла в результате комплексообразования может сильно измениться.

Так, хелатные формы Cu, Cd, Hg менее токсичны, нежели свободные ионы. Для понимания факторов, которые регулируют концентрацию металла в природных водах, их химическую реакционную способность, биологическую доступность и токсичность, необходимо знать не только валовое содержание, но и долю связанных и свободных форм .

Источниками загрязнения вод тяжелыми металлами служат сточные воды гальванических цехов, предприятий горнодобывающей, черной и цветной металлургии, машиностроительных заводов. Тяжелые металлы входят в состав удобрений и пестицидов и могут попадать в водоемы вместе со стоком с сельскохозяйственных угодий.

Повышение концентрации тяжелых металлов в природных водах часто связано с другими видами загрязнения, например, с закислением. Выпадение кислотных осадков способствует снижению значения рН и переходу металлов из сорбированного на минеральных и органических веществах состояния в свободное.

Прежде всего представляют интерес те металлы, которые в наибольшей степени загрязняют атмосферу ввиду использования их в значительных объемах в производственной деятельности и в результате накопления во внешней среде представляют серьезную опасность с точки зрения их биологической активности и токсических свойств. К ним относят свинец, ртуть, кадмий, цинк, висмут, кобальт, никель, медь, олово, сурьму, ванадий, марганец, хром, молибден и мышьяк.

Биогеохимические свойства тяжелых металлов

Свойство

Биохимическая активность

Токсичность

Канцерогенность

Обогащение аэрозолей

Минеральная форма распространения

Органическая форма распространения

Подвижность

Тенденция к биоконцентрированию

Эффективность накопления

Комплексообразующая способность

Склонность к гидролизу

Растворимость соединений

Время жизни

В - высокая, У - умеренная, Н - низкая

Ванадий находится преимущественно в рассеянном состоянии и обнаруживается в железных рудах, нефти, асфальтах, битумах, горючих сланцах, углях и др. Одним из главных источников загрязнения природных вод ванадием являются нефть и продукты ее переработки.

В природных водах встречается в очень малой концентрации: в воде рек 0.2 - 4.5 мкг/дм 3 , в морской воде - в среднем 2 мкг/дм 3

В воде образует устойчивые анионные комплексы (V 4 O 12) 4- и (V 10 O 26) 6- . В миграции ванадия существенна роль растворенных комплексных соединений его с органическими веществами, особенно с гумусовыми кислотами.

Повышенные концентрации ванадия вредны для здоровья человека. ПДК в ванадия составляет 0.1 мг/дм 3 (лимитирующий показатель вредности - санитарно-токсикологический), ПДК вр - 0.001 мг/дм 3 .

Естественными источниками поступления висмута в природные воды являются процессы выщелачивания висмутсодержащих минералов. Источником поступления в природные воды могут быть также сточные воды фармацевтических и парфюмерных производств, некоторых предприятий стекольной промышленности.

В незагрязненных поверхностных водах содержится в субмикрограммовых концентрациях. Наиболее высокая концентрация обнаружена в подземных водах и составляет 20 мкг/дм 3 , в морских водах - 0.02 мкг/дм 3 . ПДК в составляет 0.1 мг/дм 3

Главными источниками соединений железа в поверхностных водах являются процессы химического выветривания горных пород, сопровождающиеся их механическим разрушением и растворением. В процессе взаимодействия с содержащимися в природных водах минеральными и органическими веществами образуется сложный комплекс соединений железа, находящихся в воде в растворенном, коллоидном и взвешенном состоянии. Значительные количества железа поступают с подземным стоком и со сточными водами предприятий металлургической, металлообрабатывающей, текстильной, лакокрасочной промышленности и с сельскохозяйственными стоками.

Фазовые равновесия зависят от химического состава вод, рН, Eh и в некоторой степени от температуры. В рутинном анализе во взвешенную форму выделяют частицы с размером более 0.45 мк. Она представляет собой преимущественно железосодержащие минералы, гидрат оксида железа и соединения железа, сорбированные на взвесях. Истинно растворенную и коллоидную форму обычно рассматривают совместно. Растворенное железо представлено соединениями, находящимися в ионной форме, в виде гидроксокомплекса и комплексов с растворенными неорганическими и органическими веществами природных вод. В ионной форме мигрирует главным образом Fe(II), а Fe(III) в отсутствие комплексообразующих веществ не может в значительных количествах находиться в растворенном состоянии.

Железо обнаруживается в основном в водах с низкими значениями Eh.

В результате химического и биохимического (при участии железобактерий) окисления Fe(II) переходит в Fe(III), который, гидролизуясь, выпадает в осадок в виде Fe(OH) 3 . Как для Fе(II), так и для Fe(III) характерна склонность к образованию гидроксокомплексов типа + , 4+ , + , 3+ , - и других, сосуществующих в растворе в разных концентрациях в зависимости от рН и в целом определяющих состояние системы железо-гидроксил. Основной формой нахождения Fe(III) в поверхностных водах являются комплексные соединения его с растворенными неорганическими и органическими соединениями, главным образом гумусовыми веществами. При рН = 8.0 основной формой является Fe(OH) 3 .Коллоидная форма железа наименее изучена, она представляет собой гидрат оксида железа Fe(OH) 3 и комплексы с органическими веществами.

Содержание железа в поверхностных водах суши составляет десятые доли миллиграмма, вблизи болот - единицы миллиграммов. Повышенное содержание железа наблюдается в болотных водах, в которых оно находится в виде комплексов с солями гуминовых кислот - гуматами. Наибольшие концентрации железа (до нескольких десятков и сотен миллиграммов в 1 дм 3) наблюдаются в подземных водах с низкими значениями рН.

Являясь биологически активным элементом, железо в определенной степени влияет на интенсивность развития фитопланктона и качественный состав микрофлоры в водоеме.

Концентрация железа подвержена заметным сезонным колебаниям. Обычно в водоемах с высокой биологической продуктивностью в период летней и зимней стагнации заметно увеличение концентрации железа в придонных слоях воды. Осенне-весеннее перемешивание водных масс (гомотермия) сопровождается окислением Fe(II) в Fе(III) и выпадением последнего в виде Fe(OH) 3 .

В природные воды поступает при выщелачивании почв, полиметаллических и медных руд, в результате разложения водных организмов, способных его накапливать. Соединения кадмия выносятся в поверхностные воды со сточными водами свинцово-цинковых заводов, рудообогатительных фабрик, ряда химических предприятий (производство серной кислоты), гальванического производства, а также с шахтными водами. Понижение концентрации растворенных соединений кадмия происходит за счет процессов сорбции, выпадения в осадок гидроксида и карбоната кадмия и потребления их водными организмами.

Растворенные формы кадмия в природных водах представляют собой главным образом минеральные и органо-минеральные комплексы. Основной взвешенной формой кадмия являются его сорбированные соединения. Значительная часть кадмия может мигрировать в составе клеток гидробионтов.

В речных незагрязненных и слабозагрязненных водах кадмий содержится в субмикрограммовых концентрациях, в загрязненных и сточных водах концентрация кадмия может достигать десятков микрограммов в 1 дм 3 .

Соединения кадмия играют важную роль в процессе жизнедеятельности животных и человека. В повышенных концентрациях токсичен, особенно в сочетании с другими токсичными веществами.

ПДК в составляет 0.001 мг/дм 3 , ПДК вр - 0.0005 мг/дм 3 (лимитирующий признак вредности - токсикологический).

В природные воды соединения кобальта попадают в результате процессов выщелачивания их из медноколчедановых и других руд, из почв при разложении организмов и растений, а также со сточными водами металлургических, металлообрабатывающих и химических заводов. Некоторые количества кобальта поступают из почв в результате разложения растительных и животных организмов.

Соединения кобальта в природных водах находятся в растворенном и взвешенном состоянии, количественное соотношение между которыми определяется химическим составом воды, температурой и значениями рН. Растворенные формы представлены в основном комплексными соединениями, в т.ч. с органическими веществами природных вод. Соединения двухвалентного кобальта наиболее характерны для поверхностных вод. В присутствии окислителей возможно существование в заметных концентрациях трехвалентного кобальта.

Кобальт относится к числу биологически активных элементов и всегда содержится в организме животных и в растениях. С недостаточным содержанием его в почвах связано недостаточное содержание кобальта в растениях, что способствует развитию малокровия у животных (таежно-лесная нечерноземная зона). Входя в состав витамина В 12 , кобальт весьма активно влияет на поступление азотистых веществ, увеличение содержания хлорофилла и аскорбиновой кислоты, активизирует биосинтез и повышает содержание белкового азота в растениях. Вместе с тем повышенные концентрации соединений кобальта являются токсичными.

В речных незагрязненных и слабозагрязненных водах его содержание колеблется от десятых до тысячных долей миллиграмма в 1 дм 3 , среднее содержание в морской воде 0.5 мкг/дм 3 . ПДК в составляет 0.1 мг/дм 3 , ПДК вр 0.01 мг/дм 3 .

Марганец

В поверхностные воды марганец поступает в результате выщелачивания железомарганцевых руд и других минералов, содержащих марганец (пиролюзит, псиломелан, браунит, манганит, черная охра). Значительные количества марганца поступают в процессе разложения водных животных и растительных организмов, особенно сине-зеленых, диатомовых водорослей и высших водных растений. Соединения марганца выносятся в водоемы со сточными водами марганцевых обогатительных фабрик, металлургических заводов, предприятий химической промышленности и с шахтными водами.

Понижение концентрации ионов марганца в природных водах происходит в результате окисления Mn(II) до MnO 2 и других высоковалентных оксидов, выпадающих в осадок. Основные параметры, определяющие реакцию окисления, - концентрация растворенного кислорода, величина рН и температура. Концентрация растворенных соединений марганца понижается вследствие утилизации их водорослями.

Главная форма миграции соединений марганца в поверхностных водах - взвеси, состав которых определяется в свою очередь составом пород, дренируемых водами, а также коллоидные гидроксиды тяжелых металлов и сорбированные соединения марганца. Существенное значение в миграции марганца в растворенной и коллоидной формах имеют органические вещества и процессы комплексообразования марганца с неорганическими и органическими лигандами. Mn(II) образует растворимые комплексы с бикарбонатами и сульфатами. Комплексы марганца с ионом хлора встречаются редко. Комплексные соединения Mn(II) с органическими веществами обычно менее прочны, чем с другими переходными металлами. К ним относятся соединения с аминами, органическими кислотами, аминокислотами и гумусовыми веществами. Mn(III) в повышенных концентрациях может находиться в растворенном состоянии только в присутствии сильных комплексообразователей, Mn(YII) в природных водах не встречается.

В речных водах содержание марганца колеблется обычно от 1 до 160 мкг/дм 3 , среднее содержание в морских водах составляет 2 мкг/дм 3 , в подземных - n . 10 2 - n . 10 3 мкг/дм 3.

Концентрация марганца в поверхностных водах подвержена сезонным колебаниям.

Факторами, определяющими изменения концентраций марганца, являются соотношение между поверхностным и подземным стоком, интенсивность потребления его при фотосинтезе, разложение фитопланктона, микроорганизмов и высшей водной растительности, а также процессы осаждения его на дно водных объектов.

Роль марганца в жизни высших растений и водорослей водоемов весьма велика. Марганец способствует утилизации CO 2 растениями, чем повышает интенсивность фотосинтеза, участвует в процессах восстановления нитратов и ассимиляции азота растениями. Марганец способствует переходу активного Fe(II) в Fe(III), что предохраняет клетку от отравления, ускоряет рост организмов и т.д. Важная экологическая и физиологическая роль марганца вызывает необходимость изучения и распределения марганца в природных водах.

Для водоемов санитарно-бытового использования установлена ПДК в (по иону марганца), равная 0.1 мг/дм 3 .

Ниже представлены карты распределения средних концентраций металлов: марганца, меди, никеля и свинца, построенные по данным наблюдений за 1989 - 1993 гг. в 123 городах. Использование более поздних данных предполагается нецелесообразным, поскольку в связи с сокращением производства значительно снизились концентрации взвешенных веществ и соответственно, металлов.

Влияние на здоровье. Многие металлы являются составляющей пыли и оказывают существенное влияние на здоровье.

Марганец поступает в атмосферу от выбросов предприятий черной металлургии (60% всех выбросов марганца), машиностроения и металлообработки (23%), цветной металлургии (9%), многочисленных мелких источников, например, от сварочных работ.

Высокие концентрации марганца приводят к появлению нейротоксических эффектов, прогрессирующего поражения центральной нервной системы, пневмонии.
Самые высокие концентрации марганца (0,57 - 0,66 мкг/м3) наблюдаются в крупных центрах металлургии: в Липецке и Череповце, а также в Магадане. Больше всего городов с высокими концентрациями Mn (0,23 - 0,69 мкг/м 3) сосредоточено на Кольском полуострове: Заполярный, Кандалакша, Мончегорск, Оленегорск (см. карту).

За 1991 - 1994 гг. выбросы марганца от промышленных источников снизились на 62%, средние концентрации – на 48%.



Медь - один из важнейших микроэлементов. Физиологическая активность меди связана главным образом с включением ее в состав активных центров окислительно-восстановительных ферментов. Недостаточное содержание меди в почвах отрицательно влияет на синтез белков, жиров и витаминов и способствует бесплодию растительных организмов. Медь участвует в процессе фотосинтеза и влияет на усвоение азота растениями. Вместе с тем, избыточные концентрации меди оказывают неблагоприятное воздействие на растительные и животные организмы.

В природных водах наиболее часто встречаются соединения Cu(II). Из соединений Cu(I) наиболее распространены трудно растворимые в воде Cu 2 O, Cu 2 S, CuCl. При наличии в водной среде лигандов наряду с равновесием диссоциации гидроксида необходимо учитывать образование различных комплексных форм, находящихся в равновесии с акваионами металла.

Основным источником поступления меди в природные воды являются сточные воды предприятий химической, металлургической промышленности, шахтные воды, альдегидные реагенты, используемые для уничтожения водорослей. Медь может появляться в результате коррозии медных трубопроводов и других сооружений, используемых в системах водоснабжения. В подземных водах содержание меди обусловлено взаимодействием воды с горными породами, содержащими ее (халькопирит, халькозин, ковеллин, борнит, малахит, азурит, хризаколла, бротантин).

Предельно допустимая концентрация меди в воде водоемов санитарно-бытового водопользования составляет 0.1 мг/дм 3 (лимитирующий признак вредности - общесанитарный), в воде рыбохозяйственных водоемов - 0.001 мг/дм 3 .

Выбросы М (тыс.т/год) оксида меди и среднегодовые концентрации q (мкг/м 3) меди.

Медь поступает в воздух с выбросами металлургических производств. В выбросах твердых веществ она содержится в основном в виде соединений, преимущественно оксида меди.

На долю предприятий цветной металлургии приходится 98,7 % всех антропогенных выбросов этого металла, из них 71% осуществляется предприятиями концерна “Норильский никель”, расположенными в Заполярном и Никеле, Мончегорске и Норильске, а еще примерно 25% выбросов меди осуществляются в Ревде, Красноуральске, Кольчугино и в других.



Высокие концентрации меди приводят к интоксикации, анемии и заболеванию гепатитом.

Как видно из карты, самые высокие концентрации меди отмечены в городах Липецк и Рудная Пристань. Повышены также концентрации меди в городах Кольского полуострова, в Заполярном, Мончегорске, Никеле, Оленегорске, а также в Норильске.

Выбросы меди от промышленных источников снизились на 34%, средние концентрации – на 42%.

Молибден

Соединения молибдена попадают в поверхностные воды в результате выщелачивания их из экзогенных минералов, содержащих молибден. Молибден попадает в водоемы также со сточными водами обогатительных фабрик, предприятий цветной металлургии. Понижение концентраций соединений молибдена происходит в результате выпадения в осадок труднорастворимых соединений, процессов адсорбции минеральными взвесями и потребления растительными водными организмами.

Молибден в поверхностных водах находится в основном в форме МоО 4 2- . Весьма вероятно существование его в виде органоминеральных комплексов. Возможность некоторого накопления в коллоидном состоянии вытекает из того факта, что продукты окисления молибденита представляют рыхлые тонкодисперсные вещества.

В речных водах молибден обнаружен в концентрациях от 2.1 до 10.6 мкг/дм 3 . В морской воде содержится в среднем 10 мкг/дм 3 молибдена.

В малых количествах молибден необходим для нормального развития растительных и животных организмов. Молибден входит в состав фермента ксантиноксидазы. При дефиците молибдена фермент образуется в недостаточном количестве, что вызывает отрицательные реакции организма. В повышенных концентрациях молибден вреден. При избытке молибдена нарушается обмен веществ.

Предельно допустимая концентрация молибдена в водоемах санитарно-бытового использования составляет 0.25 мг/дм 3 .

В природные воды мышьяк поступает из минеральных источников, районов мышьяковистого оруднения (мышьяковый колчедан, реальгар, аурипигмент), а также из зон окисления пород полиметаллического, медно-кобальтового и вольфрамового типов. Некоторое количество мышьяка поступает из почв, а также в результате разложения растительных и животных организмов. Потребление мышьяка водными организмами является одной из причин понижения концентрации его в воде, наиболее отчетливо проявляющегося в период интенсивного развития планктона.

Значительные количества мышьяка поступают в водные объекты со сточными водами обогатительных фабрик, отходами производства красителей, кожевенных заводов и предприятий, производящих пестициды, а также с сельскохозяйственных угодий, на которых применяются пестициды.

В природных водах соединения мышьяка находятся в растворенном и взвешенном состоянии, соотношение между которыми определяется химическим составом воды и значениями рН. В растворенной форме мышьяк встречается в трех- и пятивалентной форме, главным образом в виде анионов.

В речных незагрязненных водах мышьяк находится обычно в микрограммовых концентрациях. В минеральных водах его концентрация может достигать нескольких миллиграммов в 1 дм 3 , в морских водах в среднем содержится 3 мкг/дм 3 , в подземных - встречается в концентрациях n . 10 5 мкг/дм 3 . Соединения мышьяка в повышенных концентрациях являются токсичными для организма животных и человека: они тормозят окислительные процессы, угнетают снабжение кислородом органов и тканей.

ПДК в мышьяка составляет 0.05 мг/дм 3 (лимитирующий показатель вредности - санитарно-токсикологический) и ПДК вр - 0.05 мг/дм 3 .

Присутствие никеля в природных водах обусловлено составом пород, через которые проходит вода: он обнаруживается в местах месторождений сульфидных медно-никелевых руд и железо-никелевых руд. В воду попадает из почв и из растительных и животных организмов при их распаде. Повышенное по сравнению с другими типами водорослей содержание никеля обнаружено в сине-зеленых водорослях. Соединения никеля в водные объекты поступают также со сточными водами цехов никелирования, заводов синтетического каучука, никелевых обогатительных фабрик. Огромные выбросы никеля сопровождают сжигание ископаемого топлива.

Концентрация его может понижаться в результате выпадения в осадок таких соединений, как цианиды, сульфиды, карбонаты или гидроксиды (при повышении значений рН), за счет потребления его водными организмами и процессов адсорбции.

В поверхностных водах соединения никеля находятся в растворенном, взвешенном и коллоидном состоянии, количественное соотношение между которыми зависит от состава воды, температуры и значений рН. Сорбентами соединений никеля могут быть гидроксид железа, органические вещества, высокодисперсный карбонат кальция, глины. Растворенные формы представляют собой главным образом комплексные ионы, наиболее часто с аминокислотами, гуминовыми и фульвокислотами, а также в виде прочного цианидного комплекса. Наиболее распространены в природных водах соединения никеля, в которых он находится в степени окисления +2. Соединения Ni 3+ образуются обычно в щелочной среде.

Соединения никеля играют важную роль в кроветворных процессах, являясь катализаторами. Повышенное его содержание оказывает специфическое действие на сердечно-сосудистую систему. Никель принадлежит к числу канцерогенных элементов. Он способен вызывать респираторные заболевания. Считается, что свободные ионы никеля (Ni 2+) примерно в 2 раза более токсичны, чем его комплексные соединения.



В речных незагрязненных и слабозагрязненных водах концентрация никеля колеблется обычно от 0.8 до 10 мкг/дм 3 ; в загрязненных она составляет несколько десятков микрограммов в 1 дм 3 . Средняя концентрация никеля в морской воде 2 мкг/дм 3 , в подземных водах - n . 10 3 мкг/дм 3 . В подземных водах, омывающих никельсодержащие горные породы, концентрация никеля иногда возрастает до 20 мг/дм 3 .

Никель поступает в атмосферу от предприятий цветной металлургии, на долю которых приходится 97% всех выбросов никеля, из них 89% на долю предприятий концерна “Норильский никель”, расположенных в Заполярном и Никеле, Мончегорске и Норильске.

Повышенное содержание никеля в окружающей среде приводит к появлению эндемических заболеваний, бронхиального рака. Соединения никеля относят к 1 группе канцерогенов.

На карте видно несколько точек с высокими средними концентрациями никеля в местах расположения концерна Норильский никель: Апатиты, Кандалакша, Мончегорск, Оленегорск.

Выбросы никеля от промышленных предприятий снизились на 28%, средние концентрации – на 35%.

Выбросы М (тыс.т/год) и среднегодовые концентрации q (мкг/м 3) никеля.

В природные воды поступает в результате процессов выщелачивания оловосодержащих минералов (касситерит, станнин), а также со сточными водами различных производств (крашение тканей, синтез органических красок, производство сплавов с добавкой олова и др.).

Токсическое действие олова невелико.

В незагрязненных поверхностных водах олово содержится в субмикрограммовых концентрациях. В подземных водах его концентрация достигает единиц микрограммов в 1 дм 3 . ПДК в составляет 2 мг/дм 3 .

В поверхностные воды соединения ртути могут поступать в результате выщелачивания пород в районе ртутных месторождений (киноварь, метациннабарит, ливингстонит), в процессе разложения водных организмов, накапливающих ртуть. Значительные количества поступают в водные объекты со сточными водами предприятий, производящих красители, пестициды, фармацевтические препараты, некоторые взрывчатые вещества. Тепловые электростанции, работающие на угле, выбрасывают в атмосферу значительные количества соединений ртути, которые в результате мокрых и сухих выпадений попадают в водные объекты.

Понижение концентрации растворенных соединений ртути происходит в результате извлечения их многими морскими и пресноводными организмами, обладающими способностью накапливать ее в концентрациях, во много раз превышающих содержание ее в воде, а также процессов адсорбции взвешенными веществами и донными отложениями.

В поверхностных водах соединения ртути находятся в растворенном и взвешенном состоянии. Соотношение между ними зависит от химического состава воды и значений рН. Взвешенная ртуть представляет собой сорбированые соединения ртути. Растворенными формами являются недиссоциированные молекулы, комплексные органические и минеральные соединения. В воде водных объектов ртуть может находиться в виде метилртутных соединений.

Соединения ртути высоко токсичны, они поражают нервную систему человека, вызывают изменения со стороны слизистой оболочки, нарушение двигательной функции и секреции желудочно-кишечного тракта, изменения в крови и др. Бактериальные процессы метилирования направлены на образование метилртутных соединений, которые во много раз токсичнее минеральных солей ртути. Метилртутные соединения накапливаются в рыбе и могут попадать в организм человека.

ПДК в ртути составляет 0.0005 мг/дм 3 (лимитирующий признак вредности - санитарно-токсикологический), ПДК вр 0.0001 мг/дм 3 .

Естественными источниками поступления свинца в поверхностные воды являются процессы растворения эндогенных (галенит) и экзогенных (англезит, церуссит и др.) минералов. Значительное повышение содержания свинца в окружающей среде (в т.ч. и в поверхностных водах) связано со сжиганием углей, применением тетраэтилсвинца в качестве антидетонатора в моторном топливе, с выносом в водные объекты со сточными водами рудообогатительных фабрик, некоторых металлургических заводов, химических производств, шахт и т.д. Существенными факторами понижения концентрации свинца в воде является адсорбция его взвешенными веществами и осаждение с ними в донные отложения. В числе других металлов свинец извлекается и накапливается гидробионтами.

Свинец находится в природных водах в растворенном и взвешенном (сорбированном) состоянии. В растворенной форме встречается в виде минеральных и органоминеральных комплексов, а также простых ионов, в нерастворимой - главным образом в виде сульфидов, сульфатов и карбонатов.

В речных водах концентрация свинца колеблется от десятых долей до единиц микрограммов в 1 дм 3 . Даже в воде водных объектов, прилегающих к районам полиметаллических руд, концентрация его редко достигает десятков миллиграммов в 1 дм 3 . Лишь в хлоридных термальных водах концентрация свинца иногда достигает нескольких миллиграммов в 1 дм 3 .

Лимитирующий показатель вредности свинца - санитарно-токсилогический. ПДК в свинца составляет 0.03 мг/дм 3 , ПДК вр - 0.1 мг/дм 3 .

Свинец содержится в выбросах предприятиями металлургии, металлообработки, электротехники, нефтехимии и автотранспорта.

Влияние свинца на здоровье происходит при вдыхании воздуха, содержащего свинец, и поступлении свинца с пищей, водой, на пылевых частицах. Свинец накапливается в теле, в костях и поверхностных тканях. Свинец влияет на почки, печень, нервную систему и органы кровообразования. Пожилые и дети особенно чувствительны даже к низким дозам свинца.

Выбросы М (тыс.т/год) и среднегодовые концентрации q (мкг/м 3) свинца.



За семь лет выбросы свинца от промышленных источников снизились на 60% вследствие сокращения производства и закрытия многих предприятий. Резкое снижение промышленных выбросов не сопровождается снижением выбросов автотранспорта. Средние концентрации свинца снизились только на 41%. Различие в степени снижения выбросов и концентраций свинца можно объяснить неполным учетом выбросов от автомобилей в предыдущие годы; в настоящее время увеличилось количество автомобилей и интенсивность их движения.

Тетраэтилсвинец

Поступает в природные воды в связи с использованием в качестве антидетонатора в моторном топливе водных транспортных средств, а также с поверхностным стоком с городских территорий.

Данное вещество характеризуется высокой токсичностью, обладает кумулятивными свойствами.

Источниками поступления серебра в поверхностные воды служат подземные воды и сточные воды рудников, обогатительных фабрик, фотопредприятий. Повышенное содержание серебра бывает связано с применением бактерицидных и альгицидных препаратов.

В сточных водах серебро может присутствовать в растворенном и взвешенном виде, большей частью в форме галоидных солей.

В незагрязненных поверхностных водах серебро находится в субмикрограммовых концентрациях. В подземных водах концентрация серебра колеблется от единиц до десятков микрограммов в 1 дм 3 , в морской воде - в среднем 0.3 мкг/дм 3 .

Ионы серебра способны уничтожать бактерии и уже в незначительной концентрации стерилизуют воду (нижний предел бактерицидного действия ионов серебра 2 . 10 -11 моль/дм 3). Роль серебра в организме животных и человека изучена недостаточно.

ПДК в серебра составляет 0.05 мг/дм 3 .

Сурьма поступает в поверхностные воды за счет выщелачивания минералов сурьмы (стибнит, сенармонтит, валентинит, сервантит, стибиоканит) и со сточными водами резиновых, стекольных, красильных, спичечных предприятий.

В природных водах соединения сурьмы находятся в растворенном и взвешенном состоянии. В окислительно-восстановительных условиях, характерных для поверхностных вод, возможно существование как трехвалентной, так и пятивалентной сурьмы.

В незагрязненных поверхностных водах сурьма находится в субмикрограммовых концентрациях, в морской воде ее концентрация достигает 0.5 мкг/дм 3 , в подземных водах - 10 мкг/дм 3 . ПДК в сурьмы составляет 0.05 мг/дм 3 (лимитирующий показатель вредности - санитарно-токсикологический), ПДК вр - 0.01 мг/дм 3 .

В поверхностные воды соединения трех- и шестивалентного хрома попадают в результате выщелачивания из пород (хромит, крокоит, уваровит и др.). Некоторые количества поступают в процессе разложения организмов и растений, из почв. Значительные количества могут поступать в водоемы со сточными водами гальванических цехов, красильных цехов текстильных предприятий, кожевенных заводов и предприятий химической промышленности. Понижение концентрации ионов хрома может наблюдаться в результате потребления их водными организмами и процессов адсорбции.

В поверхностных водах соединения хрома находятся в растворенном и взвешенном состояниях, соотношение между которыми зависит от состава вод, температуры, рН раствора. Взвешенные соединения хрома представляют собой в основном сорбированные соединения хрома. Сорбентами могут быть глины, гидроксид железа, высокодисперсный оседающий карбонат кальция, остатки растительных и животных организмов. В растворенной форме хром может находитьсяв виде хроматов и бихроматов. При аэробных условиях Cr(VI) переходит в Cr(III), соли которого в нейтральной и щелочной средах гидролизуются с выделением гидроксида.

В речных незагрязненных и слабозагрязненных водах содержание хрома колеблется от нескольких десятых долей микрограмма в литре до нескольких микрограммов в литре, в загрязненных водоемах оно достигает нескольких десятков и сотен микрограммов в литре. Средняя концентрация в морских водах - 0.05 мкг/дм 3 , в подземных водах - обычно в пределах n . 10 - n . 10 2 мкг/дм 3 .

Соединения Cr(VI) и Cr(III) в повышенных количествах обладают канцерогенными свойствами. Соединения Cr(VI) являются более опасными.

Попадает в природные воды в результате протекающих в природе процессов разрушения и растворения горных пород и минералов (сфалерит, цинкит, госларит, смитсонит, каламин), а также со сточными водами рудообогатительных фабрик и гальванических цехов, производств пергаментной бумаги, минеральных красок, вискозного волокна и др.

В воде существует главным образом в ионной форме или в форме его минеральных и органических комплексов. Иногда встречается в нерастворимых формах: в виде гидроксида, карбоната, сульфида и др.

В речных водах концентрация цинка обычно колеблется от 3 до 120 мкг/дм 3 , в морских - от 1.5 до 10 мкг/дм 3 . Содержание в рудных и особенно в шахтных водах с низкими значениями рН может быть значительным.

Цинк относится к числу активных микроэлементов, влияющих на рост и нормальное развитие организмов. В то же время многие соединения цинка токсичны, прежде всего его сульфат и хлорид.

ПДК в Zn 2+ составляет 1 мг/дм 3 (лимитирующий показатель вредности - органолептический), ПДК вр Zn 2+ - 0.01 мг/дм 3 (лимитирующий признак вредности - токсикологический).

Тяжёлые металлы уже сейчас занимают второе место по степени опасности, уступая пестицидам и значительно опережая такие широко известные загрязнители, как двуокись углерода и серы, в прогнозе же они должны стать самыми опасными, более опасными, чем отходы АЭС и твердые отходы. Загрязнение тяжёлыми металлами связано с их широким использованием в промышленном производстве вкупе со слабыми системами очистки, в результате чего тяжёлые металлы попадают в окружающую среду, в том числе и почву, загрязняя и отравляя её.

Тяжёлые металлы относятся к приоритетным загрязняющим веществам, наблюдения за которыми обязательны во всех средах. В различных научных и прикладных работах авторы по-разному трактуют значение понятия "тяжёлые металлы". В некоторых случаях под определение тяжелых металлов попадают элементы, относящиеся к хрупким (например, висмут) или металлоидам (например, мышьяк).

Почва являются основной средой, в которую попадают тяжёлые металлы, в том числе из атмосферы и водной среды. Она же служит источником вторичного загрязнения приземного воздуха и вод, попадающих из неё в Мировой океан. Из почвы тяжёлые металлы усваиваются растениями, которые затем попадают в пищу более высокоорганизованным животным.

3.3. Свинцовая интоксикация

В настоящее время свинец занимает первое место среди причин промышленных отравлений. Это вызвано широким применением его в различных отраслях промышленности. Воздействию свинца подвергаются рабочие, добывающие свинцовую руду, на свинцово-плавильных заводах, в производстве аккумуляторов, при пайке, в типографиях, при изготовлении хрустального стекла или керамических изделий, этилированного бензина, свинцовых красок и др. Загрязнение свинцом атмосферного воздуха, почвы и воды в окрестности таких производств, а также вблизи крупных автомобильных дорог создает угрозу поражения свинцом населения, проживающего в этих районах, и, прежде всего детей, которые более чувствительны к воздействию тяжелых металлов.

С сожалением надо отметить, что в России отсутствует государственная политика по правовому, нормативному и экономическому регулированию влияния свинца на состояние окружающей среды и здоровье населения, по снижению выбросов (сбросов, отходов) свинца и его соединений в окружающую среду, полному прекращению производства свинецсодержащих бензинов.

Вследствие чрезвычайно неудовлетворительной просветительной работы по разъяснению населению степени опасности воздействия тяжелых металлов на организм человека, в России не снижается, а постепенно увеличивается численность контингентов, имеющих профессиональный контакт со свинцом. Случаи свинцовой хронической интоксикации зафиксированы в 14 отраслях промышленности России. Ведущими являются электротехническая промышленность (производство аккумуляторов), приборостроение, полиграфия и цветная металлургия, в них интоксикация обусловлена превышением в 20 и более раз предельно допустимой концентрации (ПДК) свинца в воздухе рабочей зоны.

Значительным источником свинца являются автомобильные выхлопные газы, так как половина России все еще использует этилированный бензин. Однако металлургические заводы, в частности медеплавильные, остаются главным источником загрязнений окружающей среды. И здесь есть свои лидеры. На территории Свердловской области находятся 3 самых крупных источника выбросов свинца в стране: в городах Красноуральск, Кировоград и Ревда.

Дымовые трубы Красноуральского медеплавильного завода, построенного еще в годы сталинской индустриализации и использующего оборудование 1932 года, ежегодно извергают на 34-тысячный город 150 -170 тонн свинца, покрывая все свинцовой пылью.

Концентрация свинца в почве Красноуральска варьируется от 42,9 до 790,8 мг/кг при предельно допустимой концентрации ПДК=130 мк/кг. Пробы воды в водопроводе соседнего пос. Октябрьский, питаемого подземным водоисточником, фиксировали превышение ПДК до двух раз.

Загрязнение окружающей среды свинцом оказывает влияние на состояние здоровья людей. Воздействие свинца нарушает женскую и мужскую репродуктивную систему. Для женщин беременных и детородного возраста повышенные уровни свинца в крови представляют особую опасность, так как под действием свинца нарушается менструальная функция, чаще бывают преждевременные роды, выкидыши и смерть плода вследствие проникновения свинца через плацентарный барьер. У новорожденных детей высока смертность.

Отравление свинцом чрезвычайно опасно для маленьких детей - он действует на развитие мозга и нервной системы. Проведенное тестирование 165 красноуральских детей от 4 лет выявило существенную задержку психического развития у 75,7%, а у 6,8% обследованных детей обнаружена умственная отсталость, включая олигофрению.

Дети дошкольного возраста наиболее восприимчивы к вредному воздействию свинца, поскольку их нервная система находится в стадии формирования. Даже при низких дозах свинцовое отравление вызывает снижение интеллектуального развития, внимания и умения сосредоточиться, отставание в чтении, ведет к развитию агрессивности, гиперактивности и другим проблемам в поведении ребенка. Эти отклонения в развитии могут носить длительный характер и быть необратимыми. Низкий вес при рождении, отставание в росте и потеря слуха также являются результатом свинцового отравления. Высокие дозы интоксикации ведут к умственной отсталости, вызывают кому, конвульсии и смерть.

Белая книга, опубликованная российскими специалистами, сообщает, что свинцовое загрязнение покрывает всю страну и является одним из многочисленных экологических бедствий в бывшем Советском Союзе, которые стали известны в последние годы. Большая часть территории России испытывает нагрузку от выпадения свинца, превышающую критическую для нормального функционирования экосистемы. В десятках городов отмечается превышение концентраций свинца в воздухе и почве выше величин, соответствующих ПДК.

Наибольший уровень загрязнения воздуха свинцом, превышающий ПДК, отмечался в городах Комсомольск-на-Амуре, Тобольск, Тюмень, Карабаш, Владимир, Владивосток.

Максимальные нагрузки выпадения свинца, ведущие к деградации наземных экосистем, наблюдаются в Московской, Владимирской, Нижегородской, Рязанской, Тульской, Ростовской и Ленинградской областях.

Стационарные источники ответственны за сброс более 50 тонн свинца в виде различных соединений в водные объекты. При этом 7 аккумуляторных заводов сбрасывают ежегодно 35 тонн свинца через канализационную систему. Анализ распределения сбросов свинца в водные объекты на территории России показывает, что по этому виду нагрузки лидируют Ленинградская, Ярославская, Пермская, Самарская, Пензенская и Орловская области.

В стране необходимы срочные меры по снижению свинцового загрязнения, однако пока экономический кризис России затмевает экологические проблемы. В затянувшейся промышленной депрессии Россия испытывает недостаток средств для ликвидации прежних загрязнений, но если экономика начнет восстанавливаться, а заводы вернутся к работе, загрязнение может только усилиться.

10 наиболее загрязненных городов бывшего СССР

(Металлы приведены в порядке убывания уровня приоритетности для данного города)

1. Рудная Пристань

(Примор. край)

свинец, цинк, медь, марганец+ванадий, марганец.

2. Белово (Кемеровская область)

цинк, свинец, медь, никель.

3. Ревда (Свердловская область)

медь, цинк, свинец.

4. Магнитогорск

никель, цинк, свинец.

5. Глубокое (Белоруссия)

медь, свинец, цинк.

6. Усть-Каменогорск (Казахстан)

цинк, медь, никель.

7. Дальнегорск

(Приморский край)

свинец, цинк.

8. Мончегорск (Мурманская обл.)

никель.

9. Алаверди (Армения)

медь, никель, свинец.

10. Константиновка (Украина)

свинец, ртуть.

4. Гигиена почвы. Обезвреживание отходов.

Почва в городах и прочих населенных пунктах и их окрест­ностях уже давно отличается от природной, биологически цен­ной почвы, играющей важную роль в поддержании экологиче­ского равновесия. Почва в городах подвержена тем же вредным воздействиям, что и городской воздух и гидросфера, поэтому по­всеместно происходит значительная ее деградация. Гигиене поч­вы не уделяется достаточного внимания, хотя ее значение как одного из основных компонентов биосферы (воздух, вода, поч­ва) и биологического фактора окружающей среды еще более весомое, чем воды, поскольку количество последней (в первую очередь качество подземных вод) определяется состоянием поч­вы, и отделить эти факторы друг от друга невозможно. Почва обладает способностью биологического самоочищения: в почве происходит расщепление попавших в нее отходов н их минера­лизация; в конечном итоге почва компенсирует за их счет утра­ченные минеральные вещества.

Если в результате перегрузки почвы будет утерян любой из компонентов ее минерализирующей способности, это неизбеж­но приведет к нарушению механизма самоочищения и к полной деградации почвы. И, напротив, создание оптимальных условий для самоочищения почвы способствует сохранению экологиче­ского равновесия и условий для существования всех живых ор­ганизмов, в том числе и человека.

Поэтому проблема обезвреживания отходов, оказывающих вредное биологическое действие, не сводится только к вопросу их вывоза; она является более сложной гигиенической пробле­мой, так как почва является связующим звеном между водой, воздухом и человеком.

4.1. Роль почвы в обмене веществ

Биологическая взаимосвязь между почвой и человеком осу­ществляется главным образом путем обмена веществ. Почва является как бы поставщиком минеральных веществ, необхо­димых для цикла обмена веществ, для роста растений, потреб­ляемых человеком и травоядными животными, съедаемыми в свою очередь человеком и плотоядными животными. Таким об­разом, почва обеспечивает пищей многих представителей расти­тельного и животного мира.

Следовательно, ухудшение качества почвы, понижение ее биологической ценности, способности к самоочищению вызы­вает биологическую цепную реакцию, которая в случае продол­жительного вредного воздействия может привести к самым различным расстройствам здоровья у населения. Более того, в слу­чае замедления процессов минерализации образующиеся при распаде веществ нитраты, азот, фосфор, калий и т. д. могут по­падать в используемые для питьевых нужд подземные воды и явиться причиной серьезных заболеваний (например, нитраты могут вызвать метгемоглобинемию, в первую очередь у детой грудного возраста).

Потребление воды из бедной йодом почвы может стать при­чиной эндемического зоба и т. д.

4.2. Экологическая взаимосвязь между почвой и водой и жид­кими отходами (сточными водами)

Человек добывает из почвы воду, необходимую для поддер­жания процессов обмена веществ и самой жизни. Качество воды зависит от состояния почвы; оно всегда отражает биологическое состояние данной почвы.

Это в особенности относится к подземным водам, био­логическая ценность которых существенно определяется свой­ствами грунтов и почвы, способностью к самоочищению послед­ней, ее фильтрационной способностью, составом ее макрофлоры, микрофауны и т. д.

Прямое влияние почвы на поверхностные воды уже ме­нее значительно, оно связано главным образом с выпадением осадков. Например, после обильных дождей из почвы смываются в открытые водоемы (реки, озера) различные загрязняющие ве­щества, в том числе искусственные удобрения (азотные, фос­фатные) , пестициды, гербициды, в районах карстовых, трещино­ватых отложений загрязняющие вещества могут проникнуть че­рез щели в глубоко расположенные подземные воды.

Несоответствующая очистка сточных вод также может стать причиной вредного биологического действия на почву и в конеч­ном итоге привести к ее деградации. Поэтому охрана почвы в населенных пунктах представляет одно из основных требований охраны окружающей среды в целом.

4.3. Пределы нагрузки почвы твердыми отходами (бытовой и уличный мусор, промышленные отходы, сухой ил, остающийся после осаждения сточных вод, радиоактивные вещества и т. д.)

Проблема осложняется тем, что в результате образования все большего количества твердых отходов в городах почва в их окрестностях подвергается все более значительным нагрузкам. Свойства и состав почвы ухудшаются все более бы­стрыми темпами.

Из произведенных в США 64,3 млн. т бумаги 49,1 млн. т попадает в отходы (из этого количества 26 млн. т «поставляет» домашнее хозяйство, а 23,1 млн. т - торговая сеть).

В связи с изложенным удаление и окончательное обезврежи­вание твердых отходов представляет весьма существенную, более трудно осуществимую гигиеническую проблему в ус­ловиях усиливающейся урбанизации.

Окончательное обезвреживание твердых отходов в загрязнен­ной почве представляется возможным. Однако ввиду постоянно ухудшающейся способности к самоочищению городской почвы окончательное обезвреживание отходов, закапываемых в землю, невозможно.

Человек мог бы с успехом воспользоваться для обезврежи­вания твердых отходов биохимическими процессами, происходя­щими в почве, ее обезвреживающей и обеззараживающей способ­ностью, однако городская почва в результате многовекового проживания в городах человека и его деятельности уже давно стала непригодной для этой цели.

Механизмы самоочищения, минерализации, происходящие в почве, роль участвующих в них бактерий и энзимов, а также промежуточные и конечные продукты распада веществ хорошо известны. В настоящее время исследования направлены на вы­явление факторов, обеспечивающих биологическое равновесие природной почвы, а также на выяснение вопроса, какое количе­ство твердых отходов (и какой их состав) может привести к нарушению биологического равновесия почвы.

Количество бытовых отходов (мусора) из расчета на одного жителя некоторых крупных городов мира

Необходимо отметить, что гигиеническое состояние почвы в городах в результате ее перегрузки быстро ухудшается, хотя способность почвы к самоочищению является основным гигиени­ческим требованием для сохранения биологического равновесия. Почва в городах уже не в состоянии справиться без помощи че­ловека со своей задачей. Единственный выход из создавшегося положения - полное обезвреживание и уничтожение отходов в соответствии с гигиеническими требованиями.

Поэтому деятельность по строительству коммунальных соору­жений должна быть направлена на сохранение природной спо­собности почвы к самоочищению, а если эта ее способность ста­ла уже неудовлетворительной, то надо восстановить ее искус­ственным путем.

Наиболее неблагоприятным является токсическое действие промышленных отходов - как жидких, так и твердых. В почву попадает все большее количество таких отходов, с которыми она не в состоянии справиться. Так, например, установлено за­грязнение почвы мышьяком в окрестностях заводов по производ­ству суперфосфатов (в радиусе 3 км). Как известно, некото­рые пестициды, такие, как хлорорганические соединения, попав­шие в почву, длительно не подвергаются распаду.

Подобным же образом обстоит дело и с некоторыми синте­тическими упаковочными материалами (поливинилхлорид, по­лиэтилен и т. д.).

Некоторые токсические соединения рано пли поздно попа­дают в подземные воды, в результате чего нарушается не только биологическое равновесие почвы, но ухудшается и качество подземных вод до такой степени, что их уже нельзя использо­вать в качестве питьевых.

Процентное соотношение количества основных синтетических материалов, содержащихся в бытовых отходах (мусор)

* Вместе с отходами прочих пластмасс, затвердевающих под дейст­вием тепла.

Проблема отходов возросла в наши дни еще и потому, что часть отходов, главным образом фекалии человека и животных используют для удобрения сельскохозяйственных угодий [в фе­калиях содержится значительное количество азота -0.4- 0,5%, фосфора (Р20з) -0,2-0,6%, калия (К?0) -0,5-1,5%, углерода -5-15%]. Эта проблема города распространилась и на городские окрестности.

4.4. Роль почвы в распространении различных заболеваний

Почве принадлежит определенная роль в распространении инфекционных заболеваний. Об этом сообщали еще в прош­лом веке Petterkoffer (1882) и Fodor (1875), осветившие глав­ным образом роль почвы в распространении кишечных заболе­ваний: холеры, брюшного тифа, дизентерии и т. д. Они обрати­ли внимание также на то обстоятельство, что некоторые бакте­рии и вирусы сохраняют в почве месяцами жизнеспособность и вирулентность. В последующем ряд авторов подтвердили их наблюдения, в особенности в отношении городской почвы. Так, например, возбудитель холеры сохраняет жизнеспособность и патогенность в подземных водах от 20 до 200 дней, возбудитель брюшного тифа в фекалиях - от 30 до 100 дней, возбудитель паратифа - от 30 до 60 дней. (С точки зрения распространения инфекционных болезней городская почва представляет значи­тельно большую опасность, чем почва на полях, удобренная на­возом.)

Для определения степени загрязнения почвы ряд авторов пользуются определением бактериального числа (кишечной па­лочки), как и при определении качества воды. Другие авторы считают целесообразным определять, кроме того, число термо­фильных бактерий, принимающих участие в процессе минера­лизации.

Распространению инфекционных болезней посредст­вом почвы в значительной степени способствует полив земель сточными водами. При этом ухудшаются и минерализационные свойства почвы. Поэтому полив сточными водами должен осу­ществляться под постоянным строгим санитарным надзором и только вне городской территории.

4.5. Вредное действие основных типов загрязнителей (твер­дых и жидких отходов), приводящих к деградации почвы

4.5.1. Обезвреживание жидких отходов в почве

В ряде населенных пунктов, не имеющих канализации, некоторые отходы, в том числе и навоз, обезвреживают в почве.

Как известно, это наиболее простой способ обезвреживания. Однако он допустим лишь в том случае, если мы имеем дело с биологически полноценной почвой, сохранившей способность к самоочищению, что нехарактерно для городских почв. Если поч­ва уже не обладает этими качествами, то для того, чтобы защи­тить ее от дальнейшей деградации, возникает необходимость в сложных технических сооружениях для обезвреживания жид­ких отходов.

В ряде мест отходы обезвреживают в компостных ямах. В техническом отношении это решение представляет со­бой сложную задачу. Кроме того, жидкие способны проникнуть в почве на довольно большие расстояния. Задача осложняется еще и тем, что в городских сточных водах содержится все большее количе­ство токсических промышленных отходов, ухудшающих минерализационные свойства почвы еще в большей степени, чем че­ловеческие и животные фекалии. Поэтому в компостные ямы допустимо спускать лишь сточные воды, подвергшиеся предва­рительно отстою. В противном случае нарушается фильтрационная способность почвы, затем почва утрачивает и остальные защитные свойства, постепенно происходит закупорка пор и т. д.

Применение человеческих фекалий для полива сель­скохозяйственных полей представляет второй способ обезврежи­вания жидких отходов. Этот способ представляет собой двойную гигиеническую опасность: во-первых, он может привести к перегрузке почвы; во-вторых, эти отходы могут стать серьезным источником рас­пространения инфекции. Поэтому фекалии необходимо предва­рительно обеззараживать и подвергать соответствующей обра­ботке и лишь после этого использовать в качестве удобрения. Здесь сталкиваются две противоположные точки зрения. Сог­ласно гигиеническим требованиям, фекалии подлежат почти полному уничтожению, а с точки зрения народного хозяйства они представляют ценное удобрение. Свежие фекалии нельзя использовать для полива огородов и полей без предварительного их обеззараживания. Если все же приходится пользоваться све­жими фекалиями, то они требуют такой степени обезврежива­ния, что как удобрение они уже не представляют почти никакой ценности.

Фекалии могут быть использованы в качество удобрения только на специально выделенных участках - при постоянном санитарно-гигиеническом контроле, в особенности за состояни­ем подземных вод, количеством, мух и т. д.

Требования к удалению и почвенному обезврежива­нию фекалий животных в принципе не отличаются от требова­ний, предъявляемых к обезвреживанию человеческих фекалий.

До недавнего времени навоз представлял в сельском хозяй­стве существенный источник ценных питательных веществ, необходимых для повышения плодородия почвы. Однако в пос­ледние годы навоз утратил свое значение отчасти из-за механи­зации сельского хозяйства, отчасти из-за все более широкого применения искусственных удобрений.

При отсутствии соответствующей обработки и обезвреживания навоз также представляет опасность, как и необезвреженные фекалии человека. Поэтому навозу перед тем, как его вывезти на поля, дают созреть, чтобы за это время в нем (при температуре 60-70°С) могли произойти необходимые биотермические процессы. После этого навоз считается «зрелым» и освободившимся от большинства содержащихся в нем возбуди­телей болезней (бактерии, яйца глистов и т. д.).

Необходимо помнить, что хранилища навоза могут представ­лять идеальные места для размножения мух, способствующих распространению различных кишечных инфекций. Следует от­метить, что мухи для размножения охотнее всего выбирают сви­ной навоз, затем конский, овечий и в последнюю очередь коро­вий. Перед вывозом навоза на поля его обязательно надо обработать инсектицидными средствами.

4.5.2. Обезвреживание в почве твердых отходов.

В наши дни ко­личество твердых отходов повсеместно увеличивается с угро­жающей быстротой.

Размещение и обезвреживание твердых отходов в населен­ных пунктах представляет проблему капитального значения. Однако и в наши дни в большинстве мест пользуются самыми примитивными способами уничтожения отбросов, ни применяя почти никаких, технических сооружении, а рассчитывая только на минерализационную способность почвы.

Жизненно важным вопросом является поиск наиболее эффек­тивных способов уничтожения твердых отходов. Проблема ос­ложняется тем, что значительную часть городской территории с твердым покрытием (дороги, улицы, тротуары) невозможно использовать для закапывания отходов.

Обработка твердых отходов состоит из: сбора, вывоза мусора и его обезвреживания.

4.5.2.1. Сбор и вывоз мусора.

Бытовой мусор в квартирах наиболее целесообразно собирать в педальное пластмассовое ведро с крышкой. Затем мусор помещают в специальные контейнеры (баки) во дворе или его предварительно сбрасывают в мусоро­провод. Последний способ является более удобным для жильцов, а также и более гигиеничным, так как не нужно оставлять му­сор в квартире до его выноса в контейнер. Недостатком мусоро­провода является то, что его трудно содержать в чистоте. Осо­бенно удачным является сочетание мусоропровода с печью для сжигания мусора, расположенной в подвальном помещении.

Для обезвреживания бытовых отходов наиболее целесообраз­но применение размалывающего устройства, соединенного с ра­ковиной (мойкой) на кухне. Размельченные отходы попадают прямо в канализацию. Однако этот способ имеет ряд недостат­ков. Например, пока не разрешена проблема удаления из зак­рытой канализационной сети измельченных бытовых отходов. Сама техника размельчения отходов отличается рядом недостатков. Поэтому в США, где этот способ получил широкое распрост­ранение, часто возникают заторы в канализационной сети.

С точки зрения гигиены этот метод заслуживает внимания, потому что, с одной стороны, кухонные отходы не представляют перегрузки для почвы, в которую в конечном итоге попадают, с другой стороны, метод экономичен, так как транспортировка отходов становится излишней и не нужно отводить земельные участки под свалки.

Большие, многоквартирные жилые дома, крупные учрежде­ния и предприятия, в которых имеется мусоропровод, но нет пе­чи для сжигания мусора, целесообразно снабжать контейнерами большой емкости (500-3000 л). Контейнеры доставляются на специальных машинах с подъемным краном на свалку или на мусоросжигательный завод. Недостаток использования контей­неров состоит в том, что мусор в них нельзя уплотнить. Вблизи больших жилых домов необходимо оборудовать специальные площадки для контейнеров.

В некоторых местах, где мусор не вывозится регулярно, вы­нуждены строить закрытые «домики» из бетона для сбора и временного хранения мусора. Эти «домики» должны находиться на расстоянии не менее 20 м от жилых зданий, и к ним должна быть обеспечена подъездная дорога для мусоровозов. Двери «домиков» должны быть постоянно закрытыми, чтобы они не превращались в место для размножения мух и не распространя­ли вокруг себя запах.

Одной из важных задач является содержание го­родских улиц в чистоте. Сбор и транспортировка уличного мусо­ра, уборка мостовых специальными машинами, мытье и поливка улиц, достаточное количество урн для мусора в наиболее ожив­ленных частях города (на остановках городского транспорта, в парках и скверах), уборка снега зимой и соответствующий уход за мостовыми и тротуарами в период гололедицы (исполь­зование песка или соли) представляют собой наиболее важные компоненты этой задачи.

В уличном мусоре могут содержаться патогенные микроор­ганизмы, в том числе возбудители туберкулеза, столбняка, си­бирской язвы, различные патогенные кокки и т. д. Наконец, скользкие улицы могут явиться причиной тяжелых несчастных случаев (вследствие травматизма).

Контейнеры с мусором вывозят на специально оборудован­ных мусоровозах, в которых мусор уплотняется. В последнее время широкое распространение получил сбор мусора в пласт­массовых или бумажных мешках. Этот способ сбора мусора более гигиеничен, чем сбор в контейнеры, так как при транспор­тировке мешков не образуется пыль и возможно сортировка от­ходов (на сгораемые - несгораемые вещества, синтетические материалы и т. д.).

4.5.2.2. Окончательное удаление и обезвреживание твердых отходов.

Наиболее распространенным способом удаления твердых отходов является заполнение ими оврагов и карьеров (например, на территории бывших кирпичных заводов). В пос­ледующем на этих земельных участках разбивают городские парки, строят жилые дома и т. д.

Наиболее простой вариант этого способа представляют от­крытые городские свалки. Этот вариант является в санитарно-гигиеническом отношении неудовлетворительным (загрязняют­ся почва и подземные воды, на свалках размножаются мухи, крысы и т. д.). Поэтому размещение отходов на открытых свалках надо считать лишь вынужденным решением проблемы, свалка должна располагаться на расстояние не менее 1 км от застроенной части города.

Улучшенным в гигиеническом отношении вариантом можно считать принятый в США так называемый «Sanitary land fill» - способ, получивший в последующем распространение и в других странах мира. Доставленный мусор сваливают в вырытые зара­нее канавы, затем его уплотняют (трамбуют) и засыпают слоем земли толщиной 70-80 см.

Однако и этот улучшенный вариант окончательного удале­ния и обезвреживания отходов имеет определенные недостатки. Прежде всего с каждым годом увеличивается количество твердых отходов, так что для удаления мусора с каждым годом требуются все большие территории.

С гигиенической точки зрения последний способ обработки мусора можно считать удовлетворительным. В случае необходи­мости им можно пользоваться и на застроенной городской тер­ритории. Преимущество способа состоит в том, что его можно применить в любой местности, кроме того, за счет заполнения отходами оврагов и ям восстановленные земельные участки мо­гут быть использованы для различных целей. Недостатком его является необходимость довольно больших территорий, а обез­вреживание отходов все же неполное. Кроме того, нельзя исполь­зовать органические вещества, необходимые сельскому хо­зяйству.

Сжигание мусора с гигиенической точки зрения является наиболее приемлемым, по­этому оно получило широкое распространение во всем мире. Су­щественно улучшился и процесс сжигания; с каждым годом строятся все более совершенные печи для сжигания мусора.

Первые мусоросжигательные заводы с их невысокими труба­ми сильно загрязняли воздух, в который попадало значительное количество пыли и пепла (до13мг/м 3). Современные мусоро­сжигательные заводы оснащены специальным оборудованием, пригодным для сжигания не только обычных отходов, но и отходов поливинилхлорида и прочих синтетических материалов (пластмасс). Трубы новых заводов более высокие и оснащены электрическими пылеулавливающими фильтрами. Такие заводы можно размещать и на застроенной городской территории. Этот способ обезвреживания отходов позволяет сократить расходы на транспортировку отходов и дает значительный экономичес­кий эффект.

Недостатком этого способа является то, что строительство современных мусоросжигательных заводов связано со значитель­ными капиталовложениями. Кроме того, эксплуатационные рас­ходы также довольно высоки. Деятельность мусоросжигатель­ных заводов экономична лишь в крупных городах с плотной застройкой (с населением не менее 400-600 тыс.). В таких городах нет условий для обезвреживания отходов другими спо­собами и сжигание отходов является единственным приемлемым способом.

Местные установки для сжигания мусора оправданы на предприятиях, выпускающих пластмассовые изделия, в учреж­дениях, где отходы инфицированы и подлежат сжиганию на мес­те (больницы, некоторые научно-исследовательские учрежде­ния и т. д.).

4.6. Удаление радиоактивных отходов.

Любой вид радиоактивных отхо­дов подлежит особой обработке и обезвреживанию.

В мирное время радиоактивные отходы образуются лишь на предприятиях, вырабатывающих радиоактивные вещества и использующих их в своей работе (атомные реакторы, обслужи­вающие их предприятия и т.д.). Небольшое количество радио­активных отходов образуется в лабораториях радиоактивных изотопов некоторых научно-исследовательских учреждений, в лечебных учреждениях (радиотерапевтические отделения, лаборатории радиоактивных изотопов и т. д.), а также на некото­рых промышленных и сельскохозяйственных предприятиях, работающих с радиоактивными веществами.

Поскольку радиоактивные вещества ионизируют то, с чем соприкасаются, в том числе и организм человека, их практически невозможно устранить, и в силу своего кумулирующего действия они намного более опасны, чем обычные отходы.

В настоящее время существуют два способа удаления радио­активных отходов: радиоактивные вещества, обладающие невы­сокой активностью, многократно разбавляют и выбрасывают в окружающую среду (например, сточные воды, загрязненные низкоактивными веществами с коротким периодом полураспада, спускают в канализационную сеть; газообразные радиоактивные вещества выпускают через высокие трубы в воздух и т. д.). Для обезвреживания высокоактивных радиоизотопных отходов с длительным периодом полураспада этот способ уже не годится. Эти радиоактивные вещества сначала концентрируют, затем помещают в специальные хранилища. При этом необходимо по­заботиться, чтобы радиоактивные отходы не просачивались в окружающую среду (в почву, поверхностные водоемы, воздух и т.д.).

Радиоактивные отходы хранят в погруженных в землю спе­циальных емкостях (контейнеры) или в глубоких железобетон­ных колодцах (шахты). Поскольку почву и подземные воды не­обходимо максимально защитить от радиоактивного загрязне­ния, стенки колодца должны быть абсолютно герметичными. Несмотря на все принятые меры предосторожности, надо посто­янно осуществлять радиоактивный контроль за почвой и под­земными водами.

Существуют нормативы, четко определяющие допустимые дозы радиоактивных отходов, спускаемых в канализацию.

Заключение

В данной работе были получены довольно подробные сведения о многих видах загрязнения почвы. Рассмотрены их негативные воздействия на почву, а также зоны нашей страны, подверженные загрязнению. Получены также данные по мелиоративным мероприятиям, по орошению и осушению почв. Мы выяснили, что при неумеренном орошении и высоком уровне грунтовых вод появляется опасность вторичного засоления почвы.

Что касается видов загрязнения, мы узнали, как обстоит дело с кислотными дождями в России, и как они образуются (из чего и какими реакциями); какие места могут подвергнуться эрозии и подвергаются загрязнению нефтепродуктами и какие области России нужно защищать от них.

Из области сельского хозяйства были рассмотрены предельно допустимые концентрации удобрений, а также вред от злоупотребления ими. Получены данные по различным видам пестицидов и вредным последствиям после их использования.

Что касается твердых, жидких и радиоактивных отходов, были представлены возможные способы их утилизации.

Выяснено также, что почва играет определенную роль в распространении различных заболеваний. Некоторые бактерии сохраняются в почве долгое время.

Полученная информация дает читателю разнообразные сведения о почве и о процессах, происходящих на ее поверхности. Если мы хотим содержать нашу почву в порядке, нужно соблюдать хотя бы элементарные мероприятия по ее очистке.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Разумихин Н.В. Реализация продовольственной программы СССР и охрана окружающей среды, 1986.

2. Ленин В.И. Полное собрание сочинений, т. 42, с. 150.

3. Маркс К., Энгельс Ф. Полн. собр. соч., т. 23, с.191.

4. "ХХ век: последние 10 лет". Москва: А/О Издательская группа "Прогресс", 1992.

5. "Химия и общество". Москва: Мир, 1995.

6. Бакач Тибор. Охрана окружающей среды, 1980.

7. “Экология и жизнь”. Весна 1(9) 1999.


Тяжелые металлы в почве

В последнее время в связи с бурным развитием промышленности наблюдается значительное возрастание уровня тяжелых металлов в окружающей среде. Термин "тяжелые металлы" применяется к металлам либо с плотностью, превышающей 5 г/см 3 , либо с атомным номером больше 20. Хотя, существует и другая точка зрения, согласно которой к тяжелым металлам относятся свыше 40 химических элементов с атомными массами, превышающими 50 ат. ед. Среди химических элементов тяжелые металлы наиболее токсичны и уступают по уровню своей опасности только пестицидам. При этом к токсичным относятся следующие химические элементы: Co, Ni, Cu, Zn, Sn, As, Se, Te, Rb, Ag, Cd, Au, Hg, Pb, Sb, Bi, Pt.

Фитотоксичность тяжелых металлов зависит от их химических свойств: валентности, ионного радиуса и способности к комплексообразованию. В большинстве случаев элементы по степени токсичности располагаются в последовательности: Cu> Ni > Cd>Zn> Pb> Hg>Fe> Mo> Mn. Однако этот ряд может несколько изменяться в связи с неодинаковым осаждением элементов почвой и переводом в недоступное для растений состояние, условиями выращивания, физиолого-генетическими особенностями самих растений. Трансформация и миграция тяжелых металлов происходит при непосредственном и косвенном влиянии реакции комплексообразования. При оценке загрязнения окружающей среды необходимо учитывать свойства почвы и, в первую очередь, гранулометрический состав, гумусированность и буферность. Под буферностью понимают способность почв поддерживать концентрацию металлов в почвенном растворе на постоянном уровне.

В почвах тяжелые металлы присутствуют в двух фазах – твердой и в почвенном растворе. Форма существования металлов определяется реакцией среды, химическим и вещественным составом почвенного раствора и, в первую очередь, содержанием органических веществ. Элементы - комплексанты, загрязняющие почву, концентрируются, в основном, в ее верхнем 10 см слое. Однако при подкислении малобуферной почвы значительная доля металлов из обменно-поглощенного состояния переходит в почвенный раствор. Сильной миграционной способностью в кислой среде обладают кадмий, медь, никель, кобальт. Уменьшение рН на 1,8-2 единицы приводит к увеличению подвижности цинка в 3,8-5,4, кадмия - в 4-8, меди - в 2-3 раза..

Таблица 1 Нормативы ПДК (ОДК), фоновые содержания химических элементов в почвах (мг/кг)

Элемент Класс опасности ПДК ОДК по группам почв Фоновое содержание
Валовое содержание Извлекаемые ацетатно-аммонийным буфером (рН=4,8) Песчаные, супесчаные Суглинистые, глинистые
рН кс l < 5,5 рН кс l > 5,5
Pb 1 32 6 32 65 130 26
Zn 1 - 23 55 110 220 50
Cd 1 - - 0,5 1 2 0,3
Cu 2 - 3 33 66 132 27
Ni 2 - 4 20 40 80 20
Со 2 - 5 - - - 7,2

Таким образом, при попадании в почву тяжелые металлы быстро взаимодействуют с органическими лигандами с образованием комплексных соединений. Так, что при низких концентрациях в почве (20-30 мг/кг) приблизительно 30% свинца находится в виде комплексов с органическими веществами. Доля комплексных соединений свинца увеличивается с возрастанием его концентрации до 400 мг/г, а затем уменьшается. Металлы также сорбируются (обменно или необменно) осадками гидроксидов железа и марганца, глинистыми минералами и органическим веществом почвы. Металлы, доступные растениям и способные к вымыванию, находятся в почвенном растворе в виде свободных ионов, комплексов и хелатов.

Поглощение ТМ почвой в большей степени зависит от реакции среды и от того, какие анионы преобладают в почвенном растворе. В кислой среде больше сорбируются медь, свинец и цинк, а в щелочной – интенсивно поглощаются кадмий и кобальт. Медь преимущественно связывается с органическими лигандами и гидроксидами железа.

Таблица 2 Подвижность микроэлементов в различных почвах в зависимости от рН почвенного раствора

Почвенно-климатические факторы часто определяют направление и скорость миграции и трансформации ТМ в почве. Так, условия почвенного и водного режимов лесостепной зоны способствуют интенсивной вертикальной миграции ТМ по профилю почвы, в том числе возможен перенос металлов с потоком воды по трещинам, ходам корней и т.д..

Никель(Ni) – элемент VIII группы периодической системы с атомной массой 58,71. Никель наряду с Mn, Fe, Co и Cu относится к так называемым переходным металлам, соединения которых обладают высокой биологической активностью. Вследствие особенностей строения электронных орбиталей вышеуказанные металлы, в том числе и никель, обладают хорошо выраженной способностью к комплексообразованию. Никель способен формировать стабильные комплексы, например, с цистеином и цитратом, а также со многими органическими и неорганическими лигандами. Геохимический состав материнских пород во многом определяет содержание никеля в почвах. Наибольшее количество никеля содержат почвы, образовавшиеся из основных и ультраосновных пород. По данным некоторых авторов, границы избыточного и токсичного уровней никеля для большинства видов изменяются от 10 до 100 мг/кг. Основная масса никеля закреплена в почве неподвижно, а очень слабая миграция в коллоидном состоянии и в составе механических взвесей не влияет на распределение их по вертикальному профилю и вполне равномерна.

Свинец (Pb). Химизм свинца в почве определяется тонким равновесием противоположно направленных процессов: сорбция-десорбция, растворение-переход в твердое состояние. Попавший в почву с выбросами свинец включается в цикл физических, химических и физико-химических превращений. Сначала доминируют процессы механического перемещения (частицы свинца перемещаются по поверхности и в толще почвы по трещинам) и конвективной диффузии. Затем по мере растворения твердофазных соединений свинца вступают в действие более сложные физико-химические процессы (в частности, процессы ионной диффузии), сопровождающиеся трансформацией поступивших с пылью соединений свинца.

Установлено, что свинец мигрирует как в вертикальном, так и в горизонтальном направлении, причем второй процесс превалирует над первым. За 3 года наблюдений на разнотравном лугу нанесенная локально на поверхность почвы свинцовая пыль переместилась в горизонтальном направлении на 25-35 см, глубина же ее проникновения в толщину почвы составила 10-15 см. Важную роль в миграции свинца играют биологические факторы: корни растений поглощают ионы металлов; во время вегетации происходит их перемещение в толще почвы; при отмирании и разложении растений свинец выделяется в окружающую почвенную массу.

Известно, что почва обладает способностью связывать (сорбировать) поступивший в нее техногенный свинец. Сорбция, как полагают, включает несколько процессов: полный обмен с катионами поглощающего комплекса почв (неспецифическая адсорбция) и ряд реакций комплексообразования свинца с донорами почвенных компонентов (специфическая адсорбция). В почве свинец ассоциируется главным образом с органическим веществом, а также с глинистыми минералами, оксидами марганца, гидроокислами железа и алюминия. Связывая свинец, гумус препятствует его миграции в сопредельные среды и ограничивает поступление в растения. Из глинистых минералов склонностью к сорбции свинца характеризуются иллиты. Повышение рН почвы при известковании ведет к еще большему связыванию свинца почвой за счет образования труднорастворимых соединений (гидроокислов, карбонатов и др.).

Свинец, присутствующий в почве в подвижных формах, со временем фиксируется почвенными компонентами и становится недоступным для растений. По данным отечественных исследователей, наиболее прочно фиксируется свинец черноземных и торфяно-иловых почв.

Кадмий (Cd) Особенность кадмия, отличающая его от других ТМ, заключается в том, что в почвенном растворе он присутствует в основном в виде катионов (Cd 2+), хотя в почве с нейтральной реакцией среды он может образовывать труднорастворимые комплексы с сульфатами, фосфатами или гидроокислами.

По имеющимся данным, концентрация кадмия в почвенных растворах фоновых почв колеблется от 0,2 до 6 мкг/л. В очагах загрязнения почв она возрастает до 300-400 мкг/л..

Известно, что кадмий в почвах очень подвижен, т.е. способен переходить в больших количествах из твердой фазы в жидкую и обратно (что затрудняет прогнозирование его поступления в растение). Механизмы, регулирующие концентрацию кадмия в почвенном растворе, определяются процессами сорбции (под сорбцией понимают собственно адсорбцию, преципитацию и комплексообразование). Кадмий поглощается почвой в меньших количествах, чем другие ТМ. Для характеристики подвижности тяжелых металлов в почве используют отношение концентраций металлов в твердой фазе к таковой в равновесном растворе. Высокие значения этого отношения свидетельствуют о том, что ТМ удерживаются в твердой фазе благодаря реакции сорбции, низкие – благодаря тому, что металлы находятся в растворе, откуда они могут мигрировать в другие среды или вступать в различные реакции (геохимические или биологические). Известно, что ведущим процессом в связывании кадмия является адсорбция глинами. Исследования последних лет показали также большую роль в этом процессе гидроксильных групп, окислов железа и органического вещества. При невысоком уровне загрязнения и нейтральной реакции среды кадмий адсорбируется в основном окислами железа. А в кислой среде (рН=5) в качестве мощного адсорбента начинает выступать органическое вещество. При более низком показателе рН (рН=4) функции адсорбции переходят почти исключительно к органическому веществу. Минеральные компоненты в этих процессах перестают играть какую-либо роль.

Известно, что кадмий не только сорбируется поверхностью почв, но и фиксируется за счет осаждения, коагуляции, межпакетного поглощения глинистыми минералами. Внутрь почвенных частиц он диффундирует по микропорам и другими путями.

Кадмий по-разному закрепляется в почвах разного типа. Пока мало что известно о конкурентных взаимоотношениях кадмия с другими металлами в процессах сорбции в почвенно-поглощающем комплексе. По исследованиям специалистов Технического университета Копенгагена (Дания), в присутствии никеля, кобальта и цинка поглощение кадмия почвой подавлялось. Другие исследования показали, что процессы сорбции кадмия почвой затухают в присутствии ионов хлора. Насыщение почвы ионами Са 2+ приводило к увеличению сорбируемости кадмия. Многие связи кадмия с компонентами почвы оказываются непрочными, в определенных условиях (например, кислая реакция среды) он высвобождается и снова переходит в раствор.

Выявлена роль микроорганизмов в процессе растворения кадмия и перехода его в подвижное состояние. В результате их жизнедеятельности либо образуются водорастворимые металлокомплексы, либо создаются физико-химические условия, благоприятствующие переходу кадмия из твердой фазы в жидкую.

Процессы, происходящие с кадмием в почве (сорбция-десорбция, переход в раствор и пр.) взаимосвязаны и взаимозависимы, от их направленности, интенсивности и глубины зависит поступление этого металла в растения. Известно, что величина сорбции кадмия почвой зависит от величины рН: чем выше рН почвы, тем больше она сорбирует кадмия. Так, по имеющимся данным, в интервале рН от 4 до 7,7 при увеличении рН на единицу сорбционная емкость почв по отношению к кадмию возрастала примерно втрое.

Цинк (Zn). Недостаток цинка может проявляться как на кислых сильнооподзоленных легких почвах, так и на карбонатных, бедных цинком, и на высокогумусированных почвах. Усиливают проявление цинковой недостаточности применение высоких доз фосфорных удобрений и сильное припахивание подпочвы к пахотному горизонту.

Наиболее высокое валовое содержание цинка в тундровых (53-76 мг/кг) и черноземных (24-90 мг/кг) почвах, наиболее низкое - в дерново-подзолистых почвах (20-67 мг/кг). Недостаток цинка чаще всего проявляется на нейтральных и слабощелочных карбонатных почвах. В кислых почвах цинк более подвижен и доступен растениям.

Цинк в почве присутствует в ионной форме, где адсорбируется по катионообменному механизму в кислой или в результате хемосорбции в щелочной среде. Наиболее подвижен ион Zn 2+ . На подвижность цинка в почве в основном влияют величина рН и содержание глинистых минералов. При рН<6 подвижность Zn 2+ возрастает, что приводит к его выщелачиванию. Попадая в межпакетные пространства кристаллической решетки монтмориллонита, ионы цинка теряют свою подвижность. Кроме того, цинк образует устойчивые формы с органическим веществом почвы, поэтому он накапливается в основном в горизонтах почв с высоким содержанием гумуса и в торфе.

Тяжелые металлы в растениях

По мнению А. П. Виноградова (1952), все химические элементы в той или иной степени участвуют в жизнедеятельности растений, и если многие из них считаются физиологически значимыми, то только потому, что для этого пока нет доказательств. Поступая в растение в небольшом количестве и становясь в них составной частью или активаторами ферментов, микроэлемента выполняют сервисные функции в процессах метаболизма. Когда же в среду поступают непривычно высокие концентрации элементов, они становятся токсичными для растений. Проникновение тяжелых металлов в ткани растений в избыточном количестве приводит к нарушению нормальной работы их органов, и это нарушение тем сильнее, чем больше избыток токсикантов. Продуктивность при этом падает. Токсическое действие ТМ проявляется с ранних стадий развития растений, но в различной степени на различных почвах и для разных культур.

Поглощение химических элементов растениями – активный процесс. Пассивная диффузия составляет всего 2-3% от всей массы усвоенных минеральных компонентов. При содержании металлов в почве на уровне фона происходит активное поглощение ионов, и если учитывать малую подвижность данных элементов в почвах, то их поглощению должна предшествовать мобилизация прочносвязанных металлов. При содержании ТМ в корнеобитаемом слое в количествах, значительно превышающих предельные концентрации, при которых металл может быть закреплен за счет внутренних ресурсов почвы, в корни поступают такие количества металлов, которые мембраны удержать уже не могут. В результате этого поступление ионов или соединений элементов перестает регулироваться клеточными механизмами. На кислых почвах идет более интенсивное накопление ТМ, чем на почвах с нейтральной или близкой к нейтральной реакцией среды. Мерой реального участия ионов ТМ в химических реакциях является их активность. Токсическое действие высоких концентраций ТМ на растения может проявляться в нарушении поступления и распределения других химических элементов. Характер взаимодействия ТМ с другими элементами изменяется в зависимости от их концентраций. Миграция и поступление в растение осуществляется в виде комплексных соединений.

В начальный период загрязнения среды тяжелыми металлами, благодаря буферным свойствам почвы, приводящим к инактивации токсикантов, растения практически не будут испытывать неблагоприятного воздействия. Однако защитные функции почвы небезграничны. При повышении уровня загрязнения тяжелыми металлами их инактивация становится неполной и поток ионов атакует корни. Часть ионов растение способно перевести в менее активное состояние еще до проникновения их в корневую систему растений. Это, например, хелатирование с помощью корневых выделений или адсорбирование на внешней поверхности корней с образованием комплексных соединений. Кроме того, как показали вегетационные опыты с заведомо токсичными дозами цинка, никеля, кадмия, кобальта, меди, свинца, корни располагаются в слоях не загрязненные ТМ почвы и в этих вариантах отсутствуют симптомы фототоксичности.

Несмотря на защитные функции корневой системы, ТМ в условиях загрязнения поступают в корень. В этом случае в действие вступают механизмы защиты, благодаря которым происходит специфическое распределение ТМ по органам растений, позволяющее как можно полнее обезопасить их рост и развитие. При этом содержание, например, ТМ в тканях корня и семян в условиях сильно загрязненной среды может различаться в 500-600 раз, что свидетельствует о больших защитных возможностях этого подземного органа растений.

Избыток химических элементов вызывает токсикозы у растений. По мере возрастания концентрации ТМ вначале задерживается рост растений, затем наступает хлороз листьев, который сменяется некрозами, и, наконец, повреждается корневая система. Токсическое действие ТМ может проявляться непосредственно и косвенно. Прямое воздействие избытка ТМ в растительных клетках обусловлено реакциями комплексообразования, в результате которых происходит блокировка ферментов или осаждение белков. Дезактивация ферментативных систем происходит в результате замены металла фермента на металл-загрязнитель. При критическом содержании токсиканта каталитическая способность фермента значительно снижается или полностью блокируется.

Растения - гипераккумуляторы тяжелых металлов

А. П. Виноградов (1952) выделил растения, которые способны концентрировать элементы. Он указал на два типа растений - концентраторов:

1) растения, концентрирующие элементы в массовом масштабе;

2) растения с селективным (видовым) концентрированием.

Растения первого типа обогащаются химическими элементами, если последние содержатся в почве в повышенном количестве. Концентрирование в данном случае вызвано экологическим фактором.

Растениям второго типа свойственно постоянно высокое количество того или иного химического элемента независимо от его содержания в среде. Оно обусловлено генетически закрепленной потребностью.

Рассматривая механизм поглощения тяжелых металлов из почвы в растения, можно говорить о барьерном (не концентрирующем) и безбарьерном (концентрирующем) типах накопления элементов. Барьерное накопление характерно для большинства высших растений и не характерно для мохообразных и лишайниковых. Так, в работе М. А. Тойкка и Л. Н. Потехиной (1980) в качестве растения-концентратора кобальта назван сфагнум (2,66 мг/кг); меди (10,0 мг/кг)- береза, костяника, ландыш; марганца (1100 мг/кг) - черника. Lepp и соавт. (1987) выявили высокие концентрации кадмия в спорофорах гриба Amanita muscaria, растущего в березовых лесах. В спорофорах гриба содержание кадмия составляло 29,9 мг/кг сухой массы, а в почве, на которой они выросли, - 0,4 мг/кг. Существует мнение, что растения, которые являются концентраторами кобальта, отличаются также высокой толерантностью к никелю и способны его накапливать в больших количествах. К ним, в частности, относятся растения семейств Boraginaceae, Brassicaceae, Myrtaceae, Fabaceae, Caryophyllaceae. Концентраторы и сверхконцентраторы никеля обнаружены также среди лекарственных растений. К сверхконцентраторам относятся дынное дерево, красавка беладонна, мачок желтый, пустырник сердечный, страстоцвет мясокрасный и термопсис ланцетовидный. Тип накопления химических элементов, находящихся в больших концентрациях в питающей среде, зависит от фаз вегетации растений. Безбарьерное накопление характерно для фазы проростков, когда у растений нет дифференциации надземных частей на различные органы и в заключительные фазы вегетации - после созревания, а так же в период зимнего покоя, когда безбарьерное накопление может сопровождаться выделением избыточных количеств химических элементов в твердой фазе (Ковалевский, 1991).

Гипераккумулирующие растения обнаружены в семействах Brassicaceae, Euphorbiaceae, Asteraceae, Lamiaceae и Scrophulariaceae (Baker 1995). Наиболее известным и изученным среди них является Brassica juncea (Индийская горчица) - растение, развивающее большую биомассу и способное к аккумуляции Pb, Cr (VI), Cd, Cu, Ni, Zn, 90Sr, B и Se (Nanda Kumar et al. 1995; Salt et al. 1995; Raskin et al. 1994). Из различных видов протестированных растений B. juncea имела наиболее выраженную способность транспортировать свинец в надземную часть, аккумулируя при этом более 1,8% данного элемента в надземных органах (в пересчете на сухую массу). За исключением подсолнечника (Helianthus annuus) и табака (Nicotiana tabacum), другие виды растений, не относящиеся к семейству Brassicaceae, имели коэффициент биологического поглощения менее 1.

Согласно классификации растений по ответной реакции на присутствие в среде произрастания тяжелых металлов, используемой многими зарубежными авторами, растения имеют три основные стратегии для роста на загрязненных металлами почвах:

Исключатели металлов.

Такие растения сохраняют постоянную низкую концентрацию металла несмотря на широкое варьирование его концентраций в почве, удерживая главным образом металл в корнях. Растения-исключатели способны изменять проницаемость мембран и металл-связывающую способность клеточных стенок или выделять большое количество хелатирующих веществ.

Металл-индикаторы.

К ним относятся виды растений, которые активно аккумулируют металл в надземных частях и в целом отражают уровень содержания металла в почве. Они толерантны к существующему уровню концентрации металла благодаря образованию внеклеточных металл-связывающих соединений (хелаторов), или меняют характер компартментации металла путем его запасания в нечувствительных к металлу участках. Аккумулирующие металлы виды растений. Относящиеся к этой группе растения могут накапливать металл в надземной биомассе в концентрациях, намного превышающих таковые в почве. Baker и Brooks дали определение гипераккумуляторам металлов как растениям, содержащим свыше 0,1%, т.е. более чем 1000 мг/г меди, кадмия, хрома, свинца, никеля, кобальта или 1% (более 10 000 мг/г) цинка и марганца в сухой массе. Для редких металлов эта величина составляет более 0,01% в пересчете на сухую массу. Исследователи идентифицируют гипераккумулирующие виды путем сбора растений в областях, где почвы содержат металлы в концентрациях, превышающих фоновые, как в случае с загрязненными районами или в местах выхода рудных тел. Феномен гипераккумуляции ставит перед исследователями много вопросов. Например, какое значение имеет для растений накопление металла в высокотоксичных концентрациях. Окончательного ответа на этот вопрос еще не получено, однако существует несколько основных гипотез. Предполагают, что такие растения обладают усиленной системой поглощения ионов (гипотеза "неумышленного" поглощения) для осуществления определенных физиологических функций, которые еще не исследованы. Считают также, что гипераккумуляция – это один из видов толерантности растений к высокому содержанию металлов в среде произрастания.

Фиторемедиация почв, загрязненных тяжелыми металлами

Наличие повышенных концентраций металлов в почве приводит к их накоплению в дикорастущей флоре и сельскохозяйственных культурах, что сопровождается загрязнением пищевых цепей. Высокие концентрации металлов делают почву неподходящей для роста растений, в связи с чем нарушается биоразнообразие. Загрязненные тяжелыми металлами почвы могут быть восстановлены химическими, физическими и биологическими способами. В целом их можно отнести к двум категориям.

Метод еx-situ требует удаления загрязненной почвы для обработки на или вне участка, и возвращения обработанной почвы на первоначальное место. Последовательность методов ex-situ, используемых для очистки загрязненных почв, включает экскавацию, детоксификацию и/или разложение контаминанта физическими или химическими способами, в результате чего контаминант подвергается стабилизации, осаждению, иммобилизации, сжиганию или разложению.

Метод in-situ предполагает очищение загрязненной почвы без ее экскавации. Reed et al. определили технологии ремедиации in-situ как разложение или трансформацию контаминанта, иммобилизацию для снижения биодоступности и отделение контаминанта от почвы. Метод in-situ предпочтительнее, чем ex-situ, вследствие его низкой стоимости и щадящего влияния на экосистему. Традиционно метод ex-situ предполагает удаление загрязненной тяжелыми металлами почвы и ее захоронение, что не является оптимальным выбором, поскольку захоронение загрязненной почвы вне участка просто переносит проблему загрязнения в другое место; при этом существует определенный риск, связанный с транспортом загрязненной почвы. Разбавление тяжелых металлов до приемлемого уровня путем добавления в загрязненную почву чистой почвы и их смешивания, покрытие почвы инертным материалом может быть альтернативой очистке почвы в пределах загрязненного участка.

Иммобилизация неорганического контаминанта может быть использована в качестве ремедиационного метода для загрязненных тяжелыми металлами почв. Она может достигаться путем коплексации контаминантов, или повышением рН почвы путем известкования. Повышение рН снижает растворимость тяжелых металлов, таких как Cd, Cu, Ni и Zn, в почве. Хотя риск быть поглощенными растениями снижается, концентрация металлов в почве остается неизменной. Большинство из этих традиционных технологий очистки дороги и являются причиной дальнейшего нарушения уже поврежденной окружающей среды. Биоремедиационные технологии, получившие название "фиторемедиация", предполагают использование зеленых растений и ассоциированной с ней микробиоты для in-situ очистки загрязненных почв и подземных вод. Идея использования металлаккумулирующих растений для удаления тяжелых металлов и других соединений была впервые высказана в 1983 году. Термин "фиторемедиация" состоит из греческой приставки фито- (растение), присоединенного к латинскому корню remedium (восстановление).

Ризофильтрация подразумевает использование растений (как наземных, так и водных) для адсорбции, концентрирования и осаждения контаминантов в корнях из загрязненных водных источников с низкой концентрацией контаминанта. Этим способом можно частично обработать промышленные стоки, поверхностные стоки сельскохозяйственных угодий и объектов или кислые дренажные стоки рудников и шахт. Ризофильтрация может быть применена в отношении свинца, кадмия, меди, никеля, цинка и хрома, которые в основном удерживаются корнями. Преимущества ризофильтрации включают ее способность быть использованной как "in-situ", так и "ex-situ" и использовать при этом виды растений, которые не являются гипераккумуляторами. Была изучена способность подсолнечника, индийской горчицы, табака, ржи, шпината и кукурузы удалять свинец из сточных вод, при этом подсолнечник показал наибольшую эффективность очистки.

Фитостабилизация используется, главным образом, для очистки почв, седиментов и осадков сточных вод и зависит от способности корней растений ограничивать подвижность и биодоступность контаминантов в почве. Фитостабилизация осуществляется посредством сорбции, осаждения и комплексации металлов. Растения снижают количество воды, просачивающейся через загрязненную почву, что предотвращает эрозионные процессы, проникновение растворенных контаминантов в поверхностные и грунтовые воды и их распространение в незагрязненные районы. Преимущество фитостабилизации заключается в том, что этот метод не требует удаления загрязненной растительной биомассы. Однако и главным его недостатком является сохранение контаминанта в почве, в связи с чем применение данного способа очистки должно сопровождаться постоянным мониторингом за содержанием и биодоступностью контаминантов.

Фитоэкстракция - наиболее подходящий способ удаления солей тяжелых металлов почв без разрушения почвенной структуры и плодородия. Некоторые авторы называют этот метод фитоаккумуляцией. Так как растение абсорбирует, концентрирует и осаждает токсичные металлы и радионуклиды из загрязненных почв в биомассе, это лучший способ очистки территорий с рассеянным поверхностным загрязнением и относительно низкой концентрацией контаминантов. Существует две основные стратегии фитоэкстракции:

Фитоэкстракция в присутствии хелатов, или индуцированная фитоэкстракция, в которой добавление искусственных хелатов увеличивает подвижность и поглощение металла – контаминанта;

Последовательная фитоэкстракция, в которой удаление металла зависит от естественной способности растений очищать; при этом под контролем находится только число высева (посадки) растений. Открытие гипераккумулирующих видов еще больше содействовало развитию данной технологии. Для того, чтобы сделать эту технологию реально выполнимой, растения должны извлекать большие концентрации тяжелых металлов корнями, перемещать их в надземную биомассу и продуцировать большое количество растительной биомассы. При этом важны такие факторы, как скорость роста, избирательность к элементу, устойчивость к болезням, метод уборки. Однако медленный рост, поверхностно распространяющаяся корневая система, низкая продуктивность биомассы ограничивают применение гипераккумулирующих видов для очистки загрязненных тяжелыми металлами территорий.

Фитоиспарение включает использование растений для выноса контаминантов из почвы, трансформации их в летучую форму и транспирации в атмосферу. Фитоиспарение используется в основном для удаления ртути, при этом ион ртути трансформируется в менее токсичную элементарную ртуть. Недостатком является то, что ртуть выброшенная в атмосферу, вероятнее всего повторно возвращается путем осаждения и затем вновь попадает в экосистему. Американские исследователи обнаружили, что некоторые растения, произрастающие на субстрате, богатом селеном, продуцируют летучий селен в форме диметилселенида и диметидиселенида. Есть сообщения, что фитоиспарение было успешно применено для трития, радиоактивного изотопа водорода), который распадался до стабильного гелия с периодом полураспада около 12 лет. Фитодеградация. В фиторемедиации органических веществ растительный метаболизм участвует в восстановлении контаминанта путем трансформации, разложения, стабилизации или испарения загрязняющих веществ из почвы и подземных вод. Фитодеградация представляет собой разложение органических веществ, поглощенных растением, до более простых молекул, которые включаются в состав растительных тканей.

Растения содержат ферменты, которые могут подвергнуть распаду и конвертировать оружейные отходы, хлорсодержащие растворители, такие как трихлорэтилен и другие гербициды. Ферментами обычно выступают дегалогеназы, оксигеназы и редуктазы. Ризодеградация – это разложение органических соединений в почве посредством микробиальной деятельности в корневой зоне (ризосфере) и является намного более медленным процессом, чем фитодеградация. Приведенные методы фиторемедиации могут быть использованы комплексно. Итак, из обзора литературы видно, что в настоящее время фиторемедиация – это быстро развивающаяся область исследований. За последние десять лет исследователями из многих стран мира получено экспериментальное подтверждение, в том числе в полевых условиях, перспективности данного метода для очистки загрязненных сред от органических, неорганических контаминантов и радионуклидов.

Этот экологичный и недорогой способ очистки загрязненных территорий является реальной альтернативой традиционным способам восстановления нарушенных и загрязненных земель. В России коммерческое применение фиторемедиации для почв, загрязненных тяжелыми металлами и различными органическими соединениями, такими, как нефтепродукты, находится в начальной стадии. Необходимы масштабные исследования, направленные на поиск быстрорастущих и обладающих выраженной способностью к накоплению контаминантов растений из числа культурных и дикорастущих видов, характерных для того или иного региона, экспериментальное подтверждение их высокого фиторемедиационного потенциала, изучение способов его повышения. Отдельным важным направлением исследований является изучение вопроса утилизации загрязненной растительной биомассы с целью предотвращения повторного загрязнения различных компонентов экосистемы и попадания контаминантов в пищевые цепи



Общую загрязненность почвы характеризует валовое количество тяжелого металла. Доступность же элементов для растений определяется их подвижными формами. Поэтому содержание в почве подвижных форм тяжелых металлов - важнейший показатель, характеризующий санитарно-гигиеническую обстановку и определяющий необходимость проведения мелиоративных детоксикационных мероприятий.
В зависимости от применяемого экстрагента извлекается различное количество подвижной формы тяжелого металла, которое с определенной условностью можно считать доступным для растений. Для экстракции подвижных форм тяжелых металлов используются различные химические соединения, обладающие неодинаковой экстрагирующей силой: кислоты, соли, буферные растворы и вода. Наиболее распространенными экстрагентами являются 1н HCl и ацетатно-аммонийный буфер с pH 4.8. В настоящее время еще накоплено недостаточно экспериментального материала, характеризующего зависимость содержания в растениях тяжелых металлов, экстрагируемых различными химическими растворами, от их концентрации в почве. Сложность этого положения обусловливается еще и тем, что доступность для растений подвижной формы тяжелого металла зависит во многом от свойств почвы и специфических особенностей растений. При этом поведение в почве каждого элемента имеет свои конкретные, присущие ему закономерности.
Для изучения влияния свойств почв на трансформацию соединений тяжелых металлов провели модельные опыты с резко различающимися по свойствам почвами (табл. 8). В качестве экстрагентов использовали сильную кислоту - 1н HNO3, нейтральную соль Ca(NO3)2, ацетатно-аммонийный буферный раствор и воду.


Аналитические данные, приведенные в таблицах 9-12 свидетельствуют о том. что содержание кислотно-растворимых соединений цинка, свинца и кадмия, переходящих в вытяжку 1н HNO3, близко к их количеству, внесенному в почву Этот экстрагент извлекал 78-90% Pb, 88-100% Cd и 78-96% Zn, поступивших в почву. Количество прочно фиксированных соединений этих элементов зависело от уровня плодородия почвы. Их содержание в слабоокультуренной дерново-подзолистой почве было ниже, чем в дерново-подзолистой среднеокультуренной и типичном черноземе.
Количество обменных соединений Cd, Pb и Zn, извлекаемых 1-н раствором нейтральной соли Ca(NO3)2, было в несколько раз меньше, внесенной в почву их массы и также зависело от уровня плодородия почвы. Наименьшее содержание экстрагируемых раствором Ca(NO3)2 элементов получено на черноземе. С ростом окультуренности дерново-подзолистой почвы подвижность тяжелых металлов также снижалась. Судя по солевой вытяжке, наиболее подвижны соединения кадмия, несколько меньше - цинка. Экстрагируемые нейтральной солью соединения свинца отличались наименьшей подвижностью.
Содержание подвижных форм металлов, извлекаемых ацетатно-аммонийным буферным раствором с pH 4,8, также определялось в первую очередь типом почвы, ее составом и физико-химическими свойствами.
Как и для обменных (извлекаемых 1 н Ca(NO3)2) форм этих элементов сохраняется закономерность, выражающаяся в увеличении количества подвижных соединений Cd, Pb и Zn в кислой почве, причем подвижность Cd и Zn выше, чем Pb. Количество кадмия, извлекаемого данной вытяжкой составляло для слабоокультуренной почвы 90-96% от внесенной дозы, для дерново-подзолистой среднеокультуренной 70-76%, чернозема - 44-48%. Количество цинка и свинца, переходящего в буферный раствор CH3COONH4, равны соответственно: 57-71 и 42-67% для дерново-подзолистой слабоокультуренной почвы, 49-70 и 37-48% для среднеокультуренной; 46-65 и 20-42% для чернозема. Снижение экстракционной способности CH3COONH4 для свинца на черноземе можно объяснить образованием более устойчивых его комплексов и соединений со стабильными гумусовыми соединениями.
Используемые в модельном эксперименте почвы отличались по многим параметрам почвенного плодородия, но в наибольшей степени по кислотной характеристике и количеству обменных оснований. Имеющиеся в литературе и полученные нами экспериментальные данные свидетельствуют о том, что реакция среды в почве сильно влияет на подвижность элементов.
Увеличение концентрации ионов водорода в почвенном растворе приводило к переходу слаборастворимых солей свинца в более растворимые соли (особенно характерен переход PbCO3 в Pb(HCO3)2 (Б.В. Некрасов, 1974). Кроме того, при подкислении уменьшается устойчивость свинцово-гумусных комплексов. Значение pH почвенного раствора - один из наиболее важных параметров, определяющих величину сорбции ионов тяжелых металлов почвой. При уменьшении pH увеличивается растворимость большинства тяжелых металлов и, следовательно, их мобильность в системе твердая фаза почвы - раствор. J. Esser, N. Bassam (1981), исследуя подвижность кадмия в аэробных почвенных условиях, установили, что в интервале pH 4-6 подвижность кадмия определяется ионной силой раствора, при pH более 6 ведущее значение приобретает сорбция окислами марганца. Растворимые органические соединения, по мнению авторов, формируют только слабые комплексы с кадмием и влияют на его сорбцию только при pH 8.
Наиболее подвижная и доступная для растений часть соединений тяжелых металлов в почве - это их содержание в почвенном растворе. Количество поступивших в почвенный раствор ионов металлов определяет токсичность конкретного элемента в почве. Состояние равновесия в системе твердая фаза -раствор определяет сорбционные процессы, характер и направленность которых зависит от свойств и состава почвы. Влияние свойств почвы на подвижность тяжелых металлов и их переход в водную вытяжку подтверждают данные о разном количестве воднорастворимых соединений Zn, Pb и Cd, переходящих из почв с различного уровня плодородия при одинаковых дозах внесенных металлов (табл. 13). По сравнению с черноземом больше воднорастворимых соединений металлов содержалось в дерново-подзолистой среднеокультуренной почве. Самое высокое содержание воднорастворимых соединений Zn, Pb и Cd было в слабоокультуренной почве. Окультуренность почв уменьшала подвижность тяжелых металлов. В дерново-подзолистой слабоокультуренной почве содержание воднорастворимых форм Zn. Pb и Cd было на 20-35% выше, чем на среднеокультуренной и в 1.5-2,0 раза выше, чем в типичном черноземе. Рост плодородия почвы, сопровождающийся увеличением содержания гумуса, фосфатов, нейтрализацией избыточной кислотности и повышением буферных свойств приводит к снижению содержания наиболее агрессивной воднорастворимой формы тяжелых металлов.

Решающую роль в распределении тяжелых металлов в системе почва-раствор играют процессы сорбции-десорбции на твердой фазе почвы, определяемые свойствами почвы и не зависящие от формы внесенного соединения. Образующиеся соединения тяжелых металлов с твердой фазой почвы термодинамически более устойчивы, чем внесенные соединения, и они определяют концентрацию элементов в почвенном растворе (Р.И. Первунина. 1983).
Почва мощный и активный поглотитель тяжелых металлов, она способна прочно связывать и тем самым снижать поступление токсикантов в растения. Активно инактивируют соединения металлов минеральные и органические компоненты почвы, но количественные выражения их действия зависят от типа почв (B A. Большаков и др., 1978, В.Б. Ильин, 1987).
Накопленный экспериментальный материал свидетельствует о том. что наибольшее количество тяжелых металлов из почвы извлекается 1 н кислотной вытяжкой. При этом данные близки к валовому содержанию элементов в почве. Эту форму элементов можно считать общим запасным количеством, способным переходить в мобильную подвижную форму. Содержание тяжелого металла при извлечении из почвы ацетатно-аммонийным буфером характеризует уже более мобильную подвижную часть. Еще более мобильной является обменная форма тяжелого металла. экстрагируемая нейтральным солевым раствором. В.С. Горбатов и Н.Г. Зырин (1987) считают, что наиболее доступной для растений является обменная форма тяжелых металлов, селективно извлекаемая растворами солей, анион которых не образует комплексов с тяжелыми металлами, а катион обладает высокой вытесняющей силой. Именно такими свойствами обладает Ca(NO3)2, используемый в нашем эксперименте. Наиболее же агрессивные растворители - кислоты, чаще всего используемые 1н HCl и 1н HNO3, извлекают из почвы не только усвояемые растениями формы, но и часть валового элемента, которые являются ближайшим резервом, для перехода в подвижные соединения.
Концентрация в почвенном растворе тяжелых металлов, извлекаемых водной вытяжкой, характеризует наиболее активную часть их соединений. Это самая агрессивная и динамичная фракция тяжелых металлов, характеризующая степень подвижности элементов в почве. Высокое содержание воднорастворимых форм TM может приводить не только к загрязнению растительной продукции, но и к резкому снижению урожая вплоть до его гибели. При очень высоком содержании в почве водно-растворимой формы тяжелого металла, она становиться самостоятельным фактором, определяющим величину урожая и степень его загрязненности.
В нашей стране накоплена информация о содержании в незагрязненных почвах подвижной формы TM, главным образом тех из них, которые известны как микроэлементы - Mn, Zn, Cu, Mo. Co (табл. 14). Для определения подвижной формы чаще всего использовались индивидуальные экстрагенты (по Пейве Я.В. и Ринькису Г.Я.). Как видно из таблицы 14, почвы отдельных регионов значительно различались по количеству подвижной формы одного и того же металла.


Причиной могли быть, как считает В.Б. Ильин (1991 г.), генетические особенности почв, прежде всего специфика гранулометрического и минералогического составов, уровень гумусированности, реакция среды. По этой причине могут сильно различаться почвы одного природного региона и более того, даже одного генетического типа в пределах этого региона.
Различие между встреченным минимальным и максимальным количеством подвижной формы может находиться в пределах математического порядка. Совершенно недостаточно сведений о содержании в почвах подвижной формы Pb, Cd, Cr, Hg и других наиболее токсичных элементов. Правильно оценить подвижность TM в почвах затрудняет использование в качестве экстрагента химических веществ, сильно различающихся по своей растворяющей способности. Так, например, 1 н HCl извлекала из пахотного горизонта подвижных форм в мг/кг: Mn - 414, Zn - 7,8 Ni - 8,3, Cu - 3,5, Pb - 6,8, Co - 5,3 (почвы Западной Сибири), тогда как 2,5% CH3COOH извлекала соответственно 76; 0,8; 1,2; 1,3; 0,3; 0,7 (почвы Томского Приобья, данные Ильина. 1991). Эти материалы свидетельствуют о том, что 1 н HCl извлекала из почвы за исключением цинка около 30% металлов от валового количества, а 2,5% CH3COOH - менее 10%. Поэтому экстрагент 1н HCl, широко используемый в агрохимических исследованиях и при характеристике почв, обладает высокой мобилизующей способностью в отношении запасов тяжелых металлов.
Основная часть подвижных соединений тяжелых металлов приурочена к гумусовому или корнеобитаемому горизонтам почвы, в которых активно происходят биохимические процессы и содержится много органических веществ. Тяжелые металлы. входящие в состав органических комплексов, обладают высокой мобильностью. В.Б. Ильин (1991) указывает на возможность накопления тяжелых металлов в иллювиальном и карбонатном горизонтах, в которые попадают мигрирующие из вышележащего слоя тонкодисперсные частицы, насыщенные тяжелыми металлами, и воднорастворимые формы элементов. В иллювиальном и карбонатном горизонтах металлосодержащие соединения выпадают в осадок. Этому в наибольшей степени способствует резкое повышение pH среды в почве указанных горизонтов, обусловленное наличием карбонатов.
Способность тяжелых металлов накапливаться в нижних горизонтах почв, хорошо иллюстрируют данные по профилям почв Сибири (табл. 15). В гумусовом горизонте отмечается повышенное содержание многих элементов (Sr, Mn, Zn, Ni и др.) независимо от их генезиса. Во многих случаях четко прослеживается увеличение содержания подвижного Sr в карбонатном горизонте. Общее содержание подвижных форм в меньшем количестве характерно для песчаных почв, в значительно большем - для суглинистых. То есть, имеется тесная связь между содержанием подвижных форм элементов и гранулометрическим составом почв. Аналогичная положительная зависимость прослеживается между содержанием подвижных форм тяжелых металлов и содержанием гумуса.

Содержание подвижных форм тяжелых металлов подвержено сильным колебаниям, что связано с изменяющейся биологической активностью почв и влиянием растений. Так, по данным исследований, проведенных В.Б. Ильиным, содержание подвижного молибдена в дерново-подзолистой почве и южном черноземе в течение вегетационного периода изменялось в 5 раз.
В некоторых научно-исследовательских учреждениях в последние годы изучаюсь влияние длительного применения минеральных, органических и известковых удобрений на содержание в почве подвижных форм тяжелых металлов.
На Долгопрудной агрохимической опытной станции (ДАОС, Московская область) проведено изучение накопления в почве тяжелых металлов, токсичных элементов и их подвижности в условиях длительного применения фосфорных удобрений на известкованной дерново-подзолистой тяжелосуглинистой почве (Ю.А. Потатуева и др., 1994 г.). Систематическое применение балластных и концентрированных удобрений в течение 60 лет, разных форм фосфатов в течение 20 лет и фосфоритной муки различных месторождений в течение 8 лет не оказало существенного влияния на валовое содержание в почве тяжелых металлов и токсических элементов (ТЭ), но привело к увеличению подвижности в ней некоторых TM и ТЭ. Содержание подвижных и водорастворимых форм в почве возрастало примерно в 2 раза при систематическом применении всех изученных форм фосфорных удобрений, составляя, однако, только 1/3 ПДК. Количество подвижного стронция возрастало в 4,5 раза в почве, получившей простой суперфосфат. Внесение сырых фосфоритов Кингисепского месторождения привело к увеличению содержания в почве подвижных форм (ААБ pH 4,8): свинца в 2 раза, никеля - на 20% и хрома на 17%, что составило соответственно 1/4 и 1/10 ПДК. Увеличение содержания подвижного хрома на 17% отмечено в почве, получавшей сырые фосфориты Чилисайского месторождения (табл. 16).



Сопоставление экспериментальных данных длительных полевых опытов ДАОС с санитарно-гигиеническими нормативами по содержанию подвижных форм тяжелых металлов в почве, а при их отсутствии с предлагаемыми в литературе рекомендациями, свидетельствует о том, что содержание подвижных форм этих элементов в почве было ниже допустимых уровней. Эти эксперементальные данные свидетельствуют о том, что даже очень длительное - в течение 60 лет применение фосфорных удобрений не привело к превышению уровня ПДК в почве ни в отношении валовых ни по подвижным формам тяжелых металлов. В то же время эти данные свидетельствуют о том, что нормирование тяжелых металлов в почве только по валовым формам недостаточно обосновано и должно быть дополнено содержанием подвижной формы, которая отражает как химические свойства самих металлов, так и свойства почвы, на которой выращиваются растения.
На базе длительного полевого опыта, заложенного под руководством академика Н.С. Авдонина на экспериментальной базе МГУ "Чашниково", проведено исследование влияния длительного в течение 41 года применения минеральных, органических, известковых удобрений и их сочетания на содержание подвижных форм тяжелых металлов в почве (В.Г. Минеев и др., 1994). Результаты исследований, проведенные в таблице 17, показали, что создание оптимальных условий для роста и развития растений существенно снижало содержание подвижных форм свинца и кадмия в почве. Систематическое же внесение азотно-калийных удобрений, подкисляя почвенный раствор и снижая содержание подвижного фосфора, удваивало коцентрацию подвижных соединений свинца и никеля и в 1,5 раза увеличивало содержание кадмия в почве.


Содержание валовых и подвижных форм TM в дерново-подзолистой легкосуглинистой почве Беларуси, изучалось при длительном применении осадков городских сточных вод: термофильно-сброженных с иловых полей (ТИП) и термофильно-сброженных с последующим механическим обезвоживанием (ТМО).
За 8 лет исследований насыщенность севооборота OCB составило 6,25 т/га (одинарная доза) и 12,5 т/га (двойная доза), что приблизительно в 2-3 раза выше рекомендуемых доз.
Как видно из таблицы 18, четко прослеживается закономерность повышения содержания валовых и подвижных форм TM в результате трехразового внесения ОСВ. Причем наибольшей подвижностью отличается цинк, количество которого в подвижной форме возросло в 3-4 раза по сравнению с контрольной почвой (Н.П. Решецкий, 1994 г.). При этом содержание подвижных соединений кадмия, меди, свинца и хрома изменялось не существенно.


Исследования ученых Белорусской с.-х. академии показали, что при внесении осадков сточных вод (СИП-осадок сырой с иловых полей, ТИП, ТМО) происходило заметное повышение содержания в почве подвижных форм элементов, но наиболее сильно кадмия, цинка, меди (табл. 19). Известкование практически не повлияло на подвижность металлов. По мнению авторов. использование вытяжки в 1 н HNO3 для характеристики степени подвижности металлов не является удачным, так как в нее переходит свыше 80%, от общего содержания элемента (А.И. Горбылева и др., 1994).


Установление определенных зависимостей изменения подвижности TM в почве от уровня кислотности проводились в микрополевых опытах на выщелоченный черноземах ЦЧЗ РФ. При этом проводилось определение кадмия, цинка, свинца в следующих вытяжках: соляной, азотной, серной кислот, аммонийно-ацетатном буфере при pH 4,8 и pH 3,5, азотнокислом аммонии, дистиллированной воде. Установлена тесная зависимость между валовым содержанием цинка и его подвижными формами, извлекаемыми кислотами R=0,924-0,948. При использовании ААБ pH 4.8 R=0,784, ААБ pH 3,5=0,721. Извлекаемый свинец соляной и азотной кислотой менее тесно коррелировал с валовым содержанием: R=0,64-0,66. Другие вытяжки имели значения коэффициентов корреляции намного ниже. Корреляции между извлекаемыми кислотами соединениями кадмия и валовыми запасами была очень высокая (R=0,98-0.99). при извлечении ААБ pH 4,8-R=0,92. Использование других вытяжек давало результаты, свидетельствующие о слабой связи между валовой и подвижной формами тяжелых металлов в почве (Н.П. Богомазов, П.Г. Акулов, 1994).
В многолетнем полевом опыте (ВНИИ льна, Тверская область), при длительном применении удобрений на дерново-подзолистой почве доля подвижных соединений металлов от содержания их потенциально доступных форм уменьшалась особенно это заметно на 3-й год последействия известь в дозе 2 г к. (табл. 20). На 13-й год последействия извести в той же дозе снижала в почве лишь содержание подвижного железа и алюминия. на 15-й год - железа, алюминия и марганца (Л.И. Петрова. 1994).


Следовательно, для снижения содержания в почве подвижных форм свинца и меди необходимо проводить повторное известкование почв.
Изучение подвижности тяжелых металлов в черноземах Ростовской области показало, что в метровом слое обыкновенных черноземов количество цинка, извлекаемого ацетатноаммонийной буферной вытяжкой с pH 4,8, колебалось в пределах 0.26-0,54 мг/кг. марганца 23,1-35,7 мг/кг, меди 0,24-0,42 (Г.В Агафонов, 1994), Сопоставление этих цифр с валовыми запасами микроэлементов в почве тех же участков показало, что подвижность различных элементов существенно различается. Цинк на карбонатном черноземе в 2,5-4,0 раза менее доступен растениям, чем медь и в 5-8 раз, чем марганец (табл. 21).


Таким образом, результаты проведенных исследований показывают. что проблема подвижности тяжелых металлов в почве является сложной и многофакторной. Содержание подвижных форм тяжелых металлов в почве зависит от многих условий. Главный прием, приводящий к уменьшению содержания этой формы тяжелых металлов - это повышение плодородия почв (известкование, увеличение содержания гумуса и фосфора и др.). В то же время общепринятой формулировки по подвижным металлам пока нет. Мы в этом разделе предложили наше представление о различных фракциях подвижных металлов в почве:
1) общий запас подвижных форм (извлекаемые кислотами);
2) мобильная подвижная форма (извлекаемая буферными растворами):
3) обменная (извлекаемая нейтральными солями);
4) воднорасторимая.