Макияж. Уход за волосами. Уход за кожей

Макияж. Уход за волосами. Уход за кожей

» » Парадокс Монти Холла. Самая неточная математика

Парадокс Монти Холла. Самая неточная математика

Решение которой, на первый взгляд, противоречит здравому смыслу.

Энциклопедичный YouTube

  • 1 / 5

    Задача формулируется как описание игры , основанной на американской телеигре «Let’s Make a Deal», и названа в честь ведущего этой передачи. Наиболее распространённая формулировка этой задачи, опубликованная в 1990 году в журнале Parade Magazine , звучит следующим образом:

    Представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трёх дверей. За одной из дверей находится автомобиль , за двумя другими дверями - козы . Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где - козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза. После этого он спрашивает вас - не желаете ли вы изменить свой выбор и выбрать дверь номер 2? Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор?

    После публикации немедленно выяснилось, что задача сформулирована некорректно: не все условия оговорены. Например, ведущий может придерживаться стратегии «адский Монти»: предлагать сменить выбор тогда и только тогда, когда игрок первым ходом выбрал автомобиль. Очевидно, что смена первоначального выбора будет вести в такой ситуации к гарантированному проигрышу (см. ниже).

    Наиболее популярной является задача с дополнительным условием - участнику игры заранее известны следующие правила:

    • автомобиль равновероятно размещён за любой из трёх дверей;
    • ведущий в любом случае обязан открыть дверь с козой (но не ту, которую выбрал игрок) и предложить игроку изменить выбор;
    • если у ведущего есть выбор, какую из двух дверей открыть, он выбирает любую из них с одинаковой вероятностью.

    В нижеследующем тексте обсуждается задача Монти Холла именно в этой формулировке.

    Разбор

    Для стратегии выигрыша важно следующее: если вы меняете выбор двери после действий ведущего, то вы выигрываете, если изначально выбрали проигрышную дверь. Это произойдёт с вероятностью 2 ⁄ 3 , так как изначально выбрать проигрышную дверь можно 2 способами из 3.

    Но часто при решении этой задачи рассуждают примерно так: ведущий всегда в итоге убирает одну проигрышную дверь, и тогда вероятности появления автомобиля за двумя не открытыми становятся равны ½ , вне зависимости от первоначального выбора. Но это неверно: хотя возможностей выбора действительно остаётся две, эти возможности (с учётом предыстории) не являются равновероятными! Это так, поскольку изначально все двери имели равные шансы быть выигрышными, но затем имели разные вероятности быть исключёнными.

    Для большинства людей этот вывод противоречит интуитивному восприятию ситуации, и благодаря возникающему несоответствию между логическим выводом и ответом, к которому склоняет интуитивное мнение, задача и называется парадоксом Монти Холла .

    Ещё более наглядной ситуация с дверями становится, если представить что дверей не 3 а, скажем 1000, и после выбора игрока ведущий убирает 998 лишних, оставляя 2 двери: ту, которую выбрал игрок и ещё одну. Представляется более очевидным, что вероятности нахождения приза за этими дверьми различны, и не равны ½ . Если мы меняем дверь, то проигрываем только в том случае, если сначала выбрали призовую дверь, вероятность чего 1:1000. Выигрываем же мы в том случае, если наш изначальный выбор был не правильным, а вероятность этого - 999 из 1000. В случае с 3 дверьми логика сохраняется, но вероятность выигрыша при смене решения соответственно ниже, а именно 2 ⁄ 3 .

    Другой способ рассуждения - замена условия эквивалентным. Представим, что вместо осуществления игроком первоначального выбора (пусть это будет всегда дверь № 1) и последующего открытия ведущим двери с козой среди оставшихся (то есть всегда среди № 2 и № 3), представим, что игроку нужно угадать дверь с первой попытки, но ему предварительно сообщается, что за дверью № 1 автомобиль может быть с исходной вероятностью (33 %), а среди оставшихся дверей указывается за какой из дверей автомобиля точно нет (0 %). Соответственно, на последнюю дверь всегда будет приходиться 67 %, и стратегия её выбора предпочтительна.

    Другое поведение ведущего

    Классическая версия парадокса Монти Холла утверждает, что ведущий обязательно предложит игроку сменить дверь, независимо от того, выбрал тот машину или нет. Но возможно и более сложное поведение ведущего. В этой таблице кратко описаны несколько вариантов поведения.

    Возможное поведение ведущего
    Поведение ведущего Результат
    «Адский Монти»: ведущий предлагает сменить, если дверь правильная . Смена всегда даст козу.
    «Ангельский Монти»: ведущий предлагает сменить, если дверь неправильная . Смена всегда даст автомобиль.
    «Несведущий Монти» или «Монти Бух»: ведущий нечаянно падает, открывается дверь, и оказывается, что за ней не машина. Другими словами, ведущий сам не знает, что за дверями, открывает дверь полностью наугад, и только случайно за ней не оказалось автомобиля . Смена даёт выигрыш в ½ случаев.
    Именно так устроено американское шоу «Deal or No Deal» - правда, случайную дверь открывает сам игрок, и если за ней нет автомобиля, ведущий предлагает сменить.
    Ведущий выбирает одну из коз и открывает её, если игрок выбрал другую дверь. Смена даёт выигрыш в ½ случаев.
    Ведущий всегда открывает козу. Если выбран автомобиль, левая коза открывается с вероятностью p и правая с вероятностью q =1−p . Если ведущий открыл левую дверь, смена даёт выигрыш с вероятностью 1 1 + p {\displaystyle {\frac {1}{1+p}}} . Если правую - 1 1 + q {\displaystyle {\frac {1}{1+q}}} . Однако испытуемый никак не может повлиять на вероятность того, что будет открыта правая дверь - независимо от его выбора это произойдёт с вероятностью 1 + q 3 {\displaystyle {\frac {1+q}{3}}} .
    То же самое, p =q = ½ (классический случай). Смена даёт выигрыш с вероятностью 2 ⁄ 3 .
    То же самое, p =1, q =0 («бессильный Монти» - усталый ведущий стоит у левой двери и открывает ту козу, которая ближе). Если ведущий открыл правую дверь, смена даёт гарантированный выигрыш. Если левую - вероятность ½ .
    Ведущий открывает козу всегда, если выбран автомобиль, и с вероятностью ½ в противном случае. Смена даёт выигрыш с вероятностью ½ .
    Общий случай: игра повторяется многократно, вероятность спрятать автомобиль за той или иной дверью, а также открыть ту или иную дверь произвольная, однако ведущий знает, где автомобиль, и всегда предлагает смену, открывая одну из коз. Равновесие Нэша : ведущему выгоднее всего именно парадокс Монти Холла в классическом виде (вероятность выигрыша 2 ⁄ 3 ). Машина прячется за любой из дверей с вероятностью ⅓ ; если есть выбор, открываем любую козу наугад.
    То же самое, но ведущий может не открывать дверь вообще. Равновесие Нэша : ведущему выгодно не открывать дверь, вероятность выигрыша ⅓ .

    См. также

    Примечания

    1. Tierney, John (July 21, 1991), "Behind Monty Hall"s Doors: Puzzle, Debate and Answer? ", The New York Times , . Проверено 18 января 2008.

    Встретил её под названием "Парадокс Монти Холла" , и надо же, решил её иначе, а именно: доказал, что это псевдопарадокс .

    Друзья, буду рад выслушать критику моему опровержению данного пародокса (псевдопарадокса, если я прав). И тогда я воочию убежусь, что логика моя хромает, перестану мнить себя мыслителем и задумаюсь о смене вида деятельности на более лирический:о). Итак, вот содержание задачи. Предлагаемое решение и моё опровержение ниже.

    Представьте, что вы стали участником игры, в которой вы находитесь перед тремя дверями. Ведущий, о котором известно, что он честен, поместил за одной из дверей автомобиль, а за двумя другими дверями - по козе. У вас нет никакой информации о том, что за какой дверью находится.

    Ведущий говорит вам: «Сначала вы должны выбрать одну из дверей. После этого я открою одну из оставшихся дверей, за которой находится коза. Затем я предложу вам изменить свой первоначальный выбор и выбрать оставшуюся закрытую дверь вместо той, которую вы выбрали вначале. Вы можете последовать моему совету и выбрать другую дверь, либо подтвердить свой первоначальный выбор. После этого я открою дверь, которую вы выбрали, и вы выиграете то, что находится за этой дверью.»

    Вы выбираете дверь номер 3. Ведущий открывает дверь номер 1 и показывает, что за ней находится коза. Затем ведущий предлагает вам выбрать дверь номер 2.

    Увеличатся ли ваши шансы выиграть автомобиль, если вы последуете его совету?
    Парадокс Монти Холла - одна из известных задач теории вероятностей, решение которой, на первый взгляд, противоречит здравому смыслу.
    При решении этой задачи обычно рассуждают примерно так: после того, как ведущий открыл дверь, за которой находится коза, автомобиль может быть только за одной из двух оставшихся дверей. Поскольку игрок не может получить никакой дополнительной информации о том, за какой дверью находится автомобиль, то вероятность нахождения автомобиля за каждой из дверей одинакова, и изменение первоначального выбора двери не дает игроку никаких преимуществ. Однако такой ход рассуждений неверен.
    Если ведущий всегда знает, за какой дверью что находится, всегда открывает ту из оставшихся дверей, за которой находится коза, и всегда предлагает игроку изменить свой выбор, то вероятность того, что автомобиль находится за выбранной игроком дверью, равна 1/3, и, соответственно, вероятность того, что автомобиль находится за оставшейся дверью, равна 2/3. Таким образом, изменение первоначального выбора увеличивает шансы игрока выиграть автомобиль в 2 раза. Этот вывод противоречит интуитивному восприятию ситуации большинством людей, поэтому описанная задача и называется парадоксом Монти Холла.

    Мне кажется, что шансы не изменятся, т.е. никакого парадокса нет.

    И вот почему: первый и второй выборы дверей - это независимые события. Всё равно что кидать монетку 2 раза: то, что выпадет во 2-й раз, никак не зависит от того, что выпало в 1-й.

    Так и здесь: после открытия двери с козой игрок оказывается в новой ситуации , когда у него 2 двери и вероятность выбора машины или козы 1/2.

    Ещё раз: после открытия одной двери из трёх вероятность того, что автомобиль находится за оставшейся дверью, не равна 2/3 , т.к. 2/3 -- это вероятность того, что авто находится за какими-либо 2-мя дверьми. Неверно приписывать эту вероятность неоткрытой дверьи и открытой. До открытия дверей был такой расклад вероятностей, но после открытия одной двери, все эти вероятности становятся ничтожными, т.к. ситуация изменилась, а потому нужен новый подсчёт вероятности , который обычные люди правильно проводят, отвечая, что ничего от перемены выбора не изменится.

    Добавление: 1) рассуждение, что:

    а) вероятность найти машину за выбранной дверью составляет 1/3,

    б) вероятность, что машина за двумя другими невыбранными дверьми, 2/3,

    в) т.к. ведущий открыл дверь с козой, то вероятность 2/3 целиком переходит на одну невыбранную (и неоткрытую) дверь,

    а потому надо менять выбор на другую дверь, чтобы вероятность с 1/3 стала 2/3, не верно, но ложно, а именно: в пункте "в" , ибо изначально вероятность 2/3 касается любых двух дверей, включая 2 оставшиеся не открытыми, а раз одну дверь открыли, то эта вероятность поделится поровну между 2 не открытыми, т.е. вероятность будет равная, а выбор другой двери её не увеличит.

    2) условные вероятности рассчитывают, если есть 2 и более случайных событий, и для каждого события отдельно рассчитывают вероятность, а уже затем высчитывают вероятность совместного наступления 2 и более событий. Тут сначала вероятность угадать была 1/3, но чтобы рассчитать вероятность того, что машина не за той дверью, которая была выбрана, но за другой не открытой, не нужно рассчитывают условную вероятность, а нужно вычислить простую вероятность, которая равна 1 из 2, т.е. 1/2.

    3) Таким образом, это не парадокс, а заблуждение! (19.11.2009)

    Добавление 2 : Вчера додумался до простейшего объяснения, что стратегия перевыбора всё же является более выигрышной (парадокс верен!): при первом выборе попасть в козу в 2 раза более вероятно, чем в авто, ведь коз две, а потому при втором выборе надо менять выбор. Это же так очевидно:о)

    Или иначе: надо не метить в авто, но отбраковать коз, и в этом помогает даже ведущий, открывая козу. А в начале игры с вероятность 2 из 3 это получится и у играющего, так что, отбраковав коз, надо менять выбор. И это тоже очень очевидно вдруг стало:о)

    Так что всё, что я писал до сих пор, было псевдоопровержением. Что ж, вот ещё одна иллюстрация к тому, что надо быть скромнее, уважать чужую точку зрения и не доверять уверениям своей логики, что её решения кристалльно логичны .

    В декабре 1963 года на американском телеканале NBC впервые вышла программа Let’s Make a Deal («Заключим сделку!»), в которой участники, выбранные из зрителей в студии, торговались друг с другом и с ведущим, играли в небольшие игры или просто угадывали ответ на вопрос. В конце передачи участники могли сыграть в «сделку дня». Перед ними было три двери, про которые было известно, что за одной из них - Главный Приз (например, автомобиль), а за двумя другими - менее ценные или вовсе абсурдные подарки (например, живые козы). После того как игрок делал свой выбор, ведущий программы Монти Холл (Monty Hall) открывал одну из двух оставшихся дверей, показывая, что за ней Приза нет и давая участнику порадоваться тому, что он сохраняет шансы на выигрыш.

    В 1975 году учёный из Калифорнийского университета Стив Селвин (Steve Selvin) задался вопросом о том, что будет, если в этот момент, после открытия двери без Приза, предложить участнику поменять свой выбор. Изменятся ли в этом случае шансы игрока получить Приз, а если да, то в какую сторону? Он отправил соответствующий вопрос в виде задачи в журнал The American Statistician («Американский статистик»), а также - самому Монти Холлу, который дал на него довольно любопытный ответ. Несмотря на этот ответ (а может, и благодаря ему) задача получила распространение под именем «задача Монти Холла».

    Наиболее распространённая формулировка этой задачи, опубликованная в 1990 году в журнале Parade Magazine, звучит следующим образом:

    «Представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трёх дверей. За одной из дверей находится автомобиль, за двумя другими дверями - козы. Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где - козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза. После этого он спрашивает вас, не желаете ли вы изменить свой выбор и выбрать дверь номер 2. Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор?»


    После публикации немедленно выяснилось, что задача сформулирована некорректно: не все условия оговорены. Например, ведущий может придерживаться стратегии «адский Монти»: предлагать сменить выбор тогда и только тогда, когда игрок первым ходом выбрал автомобиль. Очевидно, что смена первоначального выбора будет вести в такой ситуации к гарантированному проигрышу.

    Наиболее популярной является задача с дополнительным условием - участнику игры заранее известны следующие правила:

    1. автомобиль равновероятно размещён за любой из 3 дверей;
    2. ведущий в любом случае обязан открыть дверь с козой (но не ту, которую выбрал игрок) и предложить игроку изменить выбор;
    3. если у ведущего есть выбор, какую из двух дверей открыть, он выбирает любую из них с одинаковой вероятностью.
    Подсказка

    Попробуйте рассмотреть людей, выбравших в одном и том же случае (то есть когда Приз находится, например, за дверью №1) разные двери. Кто будет в выигрыше от изменения своего выбора, а кто - нет?

    Решение

    Как и было предложено в подсказке, рассмотрим людей, сделавших разный выбор. Предположим, что Приз находится за дверью №1, а за дверями №2 и №3 - козы. Пусть у нас есть шесть человек, причём каждую дверь выбрали по два человека, и из каждой пары один впоследствии изменил решение, а другой - нет.

    Заметим, что выбравшим дверь №1 Ведущий откроет одну из двух дверей на свой вкус, при этом, независимо от этого, Автомобиль получит тот, кто не изменит своего выбора, изменивший же свой первоначальный выбор останется без Приза. Теперь посмотрим на выбравших двери №2 и №3. Поскольку за дверью №1 стоит Автомобиль, открыть её Ведущий не может, что не оставляет ему выбора - он открывает им двери №3 и №2 соответственно. При этом изменивший решение в каждой паре в результате выберет Приз, а не изменивший - останется ни с чем. Таким образом, из троих людей, изменивших решения, двое получат Приз, а один - козу, в то время как из троих, оставивших свой изначальный выбор неизменным, Приз достанется лишь одному.

    Необходимо отметить, что если бы Автомобиль оказался за дверью №2 или №3, результат был бы тем же, изменились бы лишь конкретные победители. Таким образом, предполагая, что изначально каждая дверь выбирается с равной вероятностью, мы получаем, что меняющие свой выбор выигрывают Приз в два раза чаще, то есть вероятность выигрыша в этом случае больше.

    Посмотрим на эту задачу с точки зрения математической теории вероятностей. Будем предполагать, что вероятность изначального выбора каждой из дверей одинакова, равно как и вероятность нахождения за каждой из дверей Автомобиля. Кроме того, полезно сделать оговорку, что Ведущий, когда он может открыть две двери, выбирает каждую из них с равной вероятностью. Тогда окажется, что после первого принятия решения вероятность того, что Приз за выбранной дверью, равна 1/3, в то время как вероятность того, что он - за одной из двух других дверей, равна 2/3. При этом, после того как Ведущий открыл одну из двух «невыбранных» дверей, вся вероятность 2/3 приходится лишь на одну из оставшихся дверей, создавая тем самым основание для смены решения, которая увеличит вероятность выигрыша в 2 раза. Что, конечно, его нисколько не гарантирует в одном конкретном случае, но приведёт к более удачным результатам в случае многократного повторения эксперимента.

    Послесловие

    Задача Монти Холла - это не первая из известных формулировок данной проблемы. В частности, в 1959 году Мартин Гарднер опубликовал в журнале Scientific American аналогичную задачу «о трёх узниках» (Three Prisoners problem) со следующей формулировкой: «Из трёх узников одного должны помиловать, а двоих - казнить. Узник A уговаривает стражника назвать ему имя того из двух других, которого казнят (любого, если казнят обоих), после чего, получив имя B, считает, что вероятность его собственного спасения стала не 1/3, а 1/2. В то же время, узник C утверждает, что это вероятность его спасения стала 2/3, а для A ничего не изменилось. Кто из них прав?»

    Однако и Гарднер был не первым, так как ещё в 1889 году в своём «Исчислении вероятностей» французский математик Жозеф Бертран (не путать с англичанином Бертраном Расселом!) предлагает похожую задачу (см. Bertrand"s box paradox): «Есть три ящика, в каждом из которых лежат две монеты: две золотых в первом, две серебряных во втором, и две разных - в третьем. Из наугад выбранного ящика наугад вытащили монету, которая оказалась золотой. Какова вероятность того, что оставшаяся монета в ящике - золотая?»

    Если понять решения всех трёх задач, легко заметить схожесть их идей; математически же все их объединяет понятие условной вероятности, то есть вероятности события A, если известно, что событие B произошло. Простейший пример: вероятность того, что на обычном игральном кубике выпала единица, равна 1/6; однако если известно, что выпавшее число - нечётно, то вероятность того, что это - единица, будет уже 1/3. Задача Монти Холла, как и две другие приведённые задачи, показывают, что обращаться с условными вероятностями нужно аккуратно.

    Эти задачи также нередко называют парадоксами: парадокс Монти Холла, парадокс ящиков Бертрана (последний не следует путать с настоящим парадоксом Бертрана, приведённым в той же книге, который доказывал неоднозначность существовавшего на тот момент понятия вероятности) - что подразумевает некоторое противоречие (например, в «парадоксе Лжеца» фраза «это утверждение - ложно» противоречит закону исключённого третьего). В данном случае, однако, никакого противоречия со строгими утверждениями нет. Зато есть явное противоречие с «общественным мнением» или просто «очевидным решением» задачи. Действительно, большинство людей, глядя на задачу, полагают, что после открытия одной из дверей вероятность нахождения Приза за любой из двух оставшихся закрытыми равна 1/2. Тем самым они утверждают, что нет разницы, соглашаться или не соглашаться изменить своё решение. Более того, многие люди с трудом осознают ответ, отличный от этого, даже после того, как им было рассказано подробное решение.

    Ответ Монти Холла Стиву Селвину

    Г-ну Стиву Селвину,
    доценту биостатистики,
    Калифорнийский университет, Беркли.

    Уважаемый Стив,

    Благодарю Вас за то, что прислали мне задачу из «Американского статистика».

    Хотя я и не изучал статистику в университете, я знаю, что цифры всегда можно использовать в свою пользу, если бы я хотел ими манипулировать. Ваши рассуждения не учитывают одного существенного обстоятельства: после того как первый ящик оказывается пустым, участник уже не может поменять свой выбор. Так что вероятности остаются теми же: один из трёх, не так ли? Ну и, конечно, после того как один из ящиков оказывается пустым, шансы не становятся 50 на 50, а остаются теми же - один из трёх. Участнику только кажется, что, избавившись от одного ящика, он получает больше шансов. Вовсе нет. Два к одному против него, как было, так и осталось. И если Вы вдруг придёте ко мне на шоу, правила останутся теми же и для Вас: никакой смены ящиков после выбора.


    Представьте, что некий банкир предлагает вам выбрать одну из трёх закрытых коробочек. В одной из них 50 центов, в другой - один доллар, в третьей - 10 тысяч долларов. Какую выберете, та вам и достанется в качестве приза.

    Вы выбираете наугад, скажем, коробочку №1. И тут банкир (который, естественно, знает, где что) прямо на ваших глазах открывает коробочку с одним долларом (допустим, это №2), после чего предлагает вам поменять изначально выбранную коробочку №1 на коробочку №3.

    Стоит ли вам менять своё решение? Увеличатся ли при этом ваши шансы получить 10 тысяч?

    Это и есть парадокс Монти Холла — задача теории вероятности, решение которой, на первый взгляд, противоречит здравому смыслу. Над этой задачей люди ломают головы с 1975 года.

    Парадокс получил название в честь ведущего популярного американского телешоу «Let’s Make a Deal». В этом телешоу были похожие правила, только участники выбирали двери, за двумя из которых прятались козы, за третьей - Кадиллак.

    Большинство игроков рассуждали, что после того, как закрытых дверей осталось две и за одной из них находится Кадиллак, то шансы его получить 50-50.Очевидно, что когда ведущий открывает одну дверь и предлагает вам поменять своё решение, он начинает новую игру. Поменяете вы решение или не поменяете, ваши шансы всё равно будут равны 50 процентам. Так ведь?

    Оказывается, что нет. На самом деле, поменяв решение, вы удвоите шансы на успех. Почему?

    Наиболее простое объяснение этого ответа состоит в следующем соображении. Для того, чтобы выиграть автомобиль без изменения выбора, игрок должен сразу угадать дверь, за которой стоит автомобиль. Вероятность этого равна 1/3. Если же игрок первоначально попадает на дверь, за которой стоит коза (а вероятность этого события 2/3, поскольку есть две козы и лишь один автомобиль), то он может однозначно выиграть автомобиль, изменив своё решение, так как остаются автомобиль и одна коза, а дверь с козой ведущий уже открыл.

    Таким образом, без смены выбора игрок остаётся при своей первоначальной вероятности выигрыша 1/3, а при смене первоначального выбора, игрок оборачивает себе на пользу в два раза большую оставшуюся вероятность того, что в начале он не угадал.

    Также интуитивно понятное объяснение можно сделать, поменяв местами два события. Первое событие — принятие решения игроком о смене двери, второе событие — открытие лишней двери. Это допустимо, так как открытие лишней двери не дает игроку никакой новой информации (док-во см. в этой статье). Тогда задачу можно свести к следующей формулировке. В первый момент времени игрок делит двери на две группы: в первой группе одна дверь (та что он выбрал), во второй группе две оставшиеся двери. В следующий момент времени игрок делает выбор между группами. Очевидно, что для первой группы вероятность выигрыша 1/3, для второй группы 2/3. Игрок выбирает вторую группу. Во второй группе он может открыть обе двери. Одну открывает ведущий, а вторую сам игрок.

    Попробуем дать «самое понятное» объяснение. Переформулируем задачу: Честный ведущий объявляет игроку, что за одной из трех дверей — автомобиль, и предлагает ему сначала указать на одну из дверей, а после этого выбрать одно из двух действий: открыть указанную дверь (в старой формулировке это называется «не изменять своего выбора») или открыть две другие (в старой формулировке это как раз и будет «изменить выбор». Подумайте, здесь и заключен ключ к пониманию!). Ясно, что игрок выберет второе из двух действий, так как вероятность получения автомобиля в этом случае в два раза выше. А та мелочь, что ведущий ещё до выбора действия «показал козу», никак не помогает и не мешает выбору, ведь за одной из двух дверей всегда найдется коза и ведущий обязательно её покажет при любом ходе игры, так что игрок может на эту козу и не смотреть. Дело игрока, если он выбрал второе действие — сказать «спасибо» ведущему за то, что он избавил его от труда самому открывать одну из двух дверей, и открыть другую. Ну, или ещё проще. Представим себе эту ситуацию с точки зрения ведущего, который проделывает подобную процедуру с десятками игроков. Поскольку он прекрасно знает, что находится за дверями, то, в среднем, в двух случаях из трёх, он заранее видит, что игрок выбрал «не ту» дверь. Поэтому уж для него точно нет никакого парадокса в том, что, правильная стратегия состоит в изменении выбора после открытия первой двери: ведь тогда в тех же двух случаях из трёх игрок будет уезжать со студии на новой машине.

    Наконец, самое «наивное» доказательство. Пусть тот, кто стоит на своем выборе, называется «Упрямым», а тот, кто следует указаниям ведущего, зовется «Внимательным». Тогда Упрямый выигрывает, если он изначально угадал автомобиль (1/3), а Внимательный — если он вначале промахнулся и попал на козу (2/3). Ведь только в этом случае он потом укажет на дверь с автомобилем.

    Монти Холл, продюсер и ведущий шоу Let’s Make a Deal с 1963-го по 1991 год.

    В 1990 году эта задача и её решение были опубликованы в американском журнале “Parade”. Публикация вызвала шквал возмущённых отзывов читателей, многие из которых обладали научными степенями.

    Главная претензия заключалась в том, что не все условия задачи были оговорены, и любой нюанс мог повлиять на результат. Например, ведущий мог предложить поменять решение только в том случае, если игрок первым ходом выбрал автомобиль. Очевидно, что смена первоначального выбора в такой ситуации приведёт к гарантированному проигрышу.

    Однако за всё время существования телешоу Монти Холла люди, менявшие решение, действительно выигрывали вдвое чаще:

    Из 30 игроков, поменявших первоначальное решение, Кадиллак выиграли 18 - то есть 60%

    Из 30 игроков, которые остались при своём выборе, Кадиллак выиграли 11 - то есть примерно 36%

    Так что приведённые в решении рассуждения, какими бы нелогичными они не казались, подтверждаются практикой.

    Увеличение количества дверей

    Для того, чтобы легче понять суть происходящего, можно рассмотреть случай, когда игрок видит перед собой не три двери, а, например, сто. При этом за одной из дверей находится автомобиль, а за остальными 99 — козы. Игрок выбирает одну из дверей, при этом в 99 % случаев он выберет дверь с козой, а шансы сразу выбрать дверь с автомобилем очень малы — они составляют 1 %. После этого ведущий открывает 98 дверей с козами и предлагает игроку выбрать оставшуюся дверь. При этом в 99 % случаев автомобиль будет находиться за этой оставшейся дверью, поскольку шансы на то, что игрок сразу выбрал правильную дверь, очень малы. Понятно, что в этой ситуации рационально мыслящий игрок должен всегда принимать предложение ведущего.

    При рассмотрении увеличенного количества дверей нередко возникает вопрос: если в оригинальной задаче ведущий открывает одну дверь из трёх (то есть 1/3 от общего количества дверей), то почему нужно предполагать, что в случае 100 дверей ведущий откроет 98 дверей с козами, а не 33 ? Это соображение является обычно одной из существенных причин того, почему парадокс Монти Холла входит в противоречие с интуитивным восприятием ситуации. Предполагать открытие 98 дверей будет правильным потому, что существенным условием задачи является наличие только одного альтернативного варианта выбора для игрока, который и предлагается ведущим. Поэтому для того, чтобы задачи были аналогичными, в случае 4 дверей ведущий должен открывать 2 двери, в случае 5 дверей — 3, и так далее, чтобы всегда оставалась одна неоткрытая дверь кроме той, которую изначально выбрал игрок. Если ведущий будет открывать меньшее количество дверей, то задача уже не будет аналогична оригинальной задаче Монти Холла.

    Следует отметить, что в случае множества дверей, даже если ведущий будет оставлять закрытой не одну дверь, а несколько, и предлагать игроку выбрать одну из них, то при смене первоначального выбора шансы игрока выиграть автомобиль всё равно будут увеличиваться, хотя и не столь значительно. Например, рассмотрим ситуацию, когда игрок выбирает одну дверь из ста, и затем ведущий открывает только одну дверь из оставшихся, предлагая игроку изменить свой выбор. При этом шансы на то, что автомобиль находится за первоначально выбранной игроком дверью, остаются прежними — 1/100, а для остальных дверей шансы изменяются: суммарная вероятность того, что автомобиль находится за одной из оставшихся дверей (99/100) распределяется теперь не на 99 дверей, а на 98. Поэтому вероятность нахождения автомобиля за каждой из этих дверей будет равна не 1/100, а 99/9800. Прирост вероятности составит примерно 1 %.

    Дерево возможных решений игрока и ведущего, показывающее вероятность каждого исхода Более формально сценарий игры может быть описан c помощью дерева принятия решений. В первых двух случаях, когда игрок сначала выбрал дверь, за которой находится коза, изменение выбора приводит к выигрышу. В двух последних случаях, когда игрок сначала выбрал дверь с автомобилем, изменение выбора приводит к проигрышу.

    Если же вам непонятно все равно, плюньте на формулы и просто проверьте всё статистически . Еще один вариант объяснения:

    • Игрок, чья стратегия заключалась бы в том, чтобы каждый раз менять выбранную дверь, будет проигрывать только в том случае, если он изначально выбирает дверь, за которой находится автомобиль.
    • Поскольку вероятность выбрать автомобиль с первой попытки составляет один к трём (или 33%), то шанс не выбрать автомобиль, если игрок будет менять свой выбор, также равен один к трём (или 33%).
    • Это означает, что игрок, который использовал стратегию менять дверь, выиграет с вероятностью 66 % или два к трём.
    • Это удвоит шансы на выигрыш игрока, чья стратегия - каждый раз не менять свой выбор.

    Всё ещё не верите? Предположим, что вы выбрали дверь №1. Здесь представлены все возможные варианты того, что может произойти в этом случае.