Макияж. Уход за волосами. Уход за кожей

Макияж. Уход за волосами. Уход за кожей

» » Вычислить приближенное значение с помощью рядов. Приближенные вычисления значений функций с помощью степенных рядов

Вычислить приближенное значение с помощью рядов. Приближенные вычисления значений функций с помощью степенных рядов

Разложение функции в ряд Тейлора, Маклорена и Лорана на сайт для тренировки практических навыков. Это разложение функции в ряд дает представление математикам оценить приближенное значение функции в некоторой точки области ее определения. Намного проще вычислить такое значение функции, по сравнению с применением таблицы Бредиса, так неактуальной в век вычислительной техники. В ряд Тейлора разложить функцию означает вычислить коэффициенты перед линейными функциями этого ряда и записать это в правильном виде. Путают студенты эти два ряда, не понимая, что является общим случаем, а что частным случаем второго. Напоминаем раз и навсегда, ряд Маклорена - частный случай Тейлоровского ряда, то есть это и есть ряд Тейлора, но в точке x = 0. Все краткие записи разложения известных функций, таких как e^x, Sin(x), Cos(x) и другие, это и есть разложения в ряд Тейлора, но в точке 0 для аргумента. Для функций комплексного аргумента ряд Лорана является наиболее частой задачей в ТФКП, так как представляет двусторонний бесконечный ряд. Он и является суммой двух рядов. Мы предлагаем вам посмотреть пример разложения прямо на сайте сайт, это сделать очень просто, нажав на "Пример" с любым номером, а затем кнопку "Решение". Именно такому разложению функции в ряд сопоставлен мажорирующий ряд, ограничивающий функцию исходную в некоторой области по оси ординат, если переменная принадлежит области абсцисс. Векторному анализу поставляется в сравнение другая интересная дисциплина в математике. Поскольку исследовать нужно каждое слагаемое, то необходимо достаточно много времени на процесс. Всякому ряду Тейлора можно сопоставить ряд Маклорена, заменив x0 на нуль, а вот по ряду Маклорена порой не очевидно представление ряда Тейлора обратно. Как бы это и не требуется делать в чистом виде, но интересно для общего саморазвития. Всякому ряду Лорана соответствует двусторонний бесконечный степенной ряд по целым степеням z-a, другими словами ряд вида того же Тейлора, но немного отличающегося вычислением коэффициентов. Про область сходимости ряда Лорана расскажем чуть позже, после нескольких теоретических выкладок. Как и в прошлом веке, поэтапного разложения функции в ряд вряд ли можно достичь только лишь приведением слагаемых к общему знаменателю, так как функции в знаменателях нелинейные. Приближенное вычисление функционального значения требует постановка задач. Задумайтесь над тем, что когда аргумент ряда Тейлора есть линейная переменная, то разложение происходит в несколько действий, но совсем другая картина, когда в качестве аргумента раскладываемой функции выступает сложная или нелинейная функция, тогда очевиден процесс представления такой функции в степенной ряд, поскольку, таким образом, легко вычислить, пусть и приближенное, но значение в любой точке области определения, с минимальной погрешностью, мало влияющей на дальнейшие расчеты. Это касается и ряда Маклорена. когда необходимо вычислить функция в нулевой точке. Однако сам ряд Лорана здесь представлен разложением на плоскости с мнимыми единицами. Также не без успеха будет правильное решение задачи в ходе общего процесса. В математике такого подхода не знают, но он объективно существует. В результате вы можете прийти к выводу так называемых поточечных подмножеств, и в разложении функции в ряд нужно применять известные для этого процесса методы, таких как применение теории производных. Лишний раз убеждаемся в правоте учителя, который сделал свои предположения на счет итогов пост вычислительных выкладок. Давайте отметим, что ряд Тейлора, полученный по всем канонам математики, существует и определен на всей числовой оси, однако, уважаемые пользователи сервиса сайт, не забывайте вид исходной функции, ведь может получиться так, что изначально необходимо установит область определения функции, то есть выписать и исключить из дальнейших рассмотрений те точки, при которых функция не определена в области действительных чисел. Так сказать это покажет вашу расторопность при решении задачи. Не исключением высказанного будет и построение ряда Маклорена с нулевым значением аргумента. Процесс нахождения области определения функции никто при этом не отменял, и вы обязаны подойти со всей серьезностью к этому математическому действию. В случае содержания рядом Лорана главной части, параметр "a" будет называться изолированной особой точкой, и ряд Лорана будет разложен в кольце - это пересечение областей сходимости его частей, отсюда будет следовать соответствующая теорема. Но не все так сложно как может показаться на первый взгляд неопытному студенту. Изучив как раз ряд Тейлора, можно с легкостью понять ряд Лорана - обобщенный случай на расширение пространства чисел. Любое разложение функции в ряд можно производить только в точке области определения функции. Следует учитывать свойства таких функций, например, как периодичность или бесконечная дифференцируемость. Также предлагаем вам воспользоваться таблицей готовых разложений в ряд Тейлора элементарных функций, поскольку одна функция может быть представлена до десятков отличных от друг друга степенных рядов, что можно видеть из применения нашего калькулятора онлайн. Онлайн ряд Маклорена проще простого определить, если воспользоваться уникальным сервисом сайт, вам достаточно только ввести правильную записанную функцию и представленный ответ получите в считанные секунды, он будет гарантированно точным и в стандартно записанном виде. Можете переписать результат сразу в чистовик на сдачу преподавателю. Правильно бы сначала определить аналитичность рассматриваемой функции в кольцах, а затем однозначно утверждать, что она разложима в ряд Лорана во всех таких кольцах. Важен момент чтобы не упустить из вида содержащие отрицательных степеней членов ряда Лорана. На этом сосредоточьтесь как можно сильнее. Применяйте с пользой теорему Лорана о разложении функции в ряд по целым степеням.

На примере полученных нами конкретных разложений мы разъясним, как бесконечные ряды могут быть использованы для целей приближенных вычислений. Предпошлем ряд общих замечаний.

Если неизвестное нам число А разложено в ряд:

где - легко вычисляемые (обыкновенно рациональные) числа, и мы положим приближенно:

то поправка на отбрасывание всех остальных членов выразится остатком

При достаточно большом и эта погрешность станет сколь угодно малой, так что воспроизведет А с любой наперед заданной точностью.

Мы заинтересованы в возможности просто производить оценку остатка это позволило бы нам и вовремя остановиться при вычислении последовательных частичных сумм, когда уже будет получено приближение требуемой точности.

Если рассматриваемый ряд оказывается знакопеременным и притом с монотонно убывающими по абсолютной величине членами («цейбницевского типа»), то, как мы видели , остаток имеет знак своего первого члена и по абсолютной величине меньше его. Эта оценка в смысле простоты не оставляет желать лучшего.

Несколько сложнее обстоит дело в случае положительного ряда.

Тогда обыкновенно стараются найти легко суммируемый положительный же ряд, члены которого были бы больше членов интересующего нас остатка, и оценивают остаток суммой этого ряда.

Например, для ряда - можно получить:

[эта оценка совпадает с оценкой сверху, полученной в 373 (11) с помощью интегрирования], а для ряда

[этой оценкой мы фактически и пользовались при вычислении числа в 37].

Обыкновенно ищется десятичное приближение числа А, в то время как члены ряда могут и не быть выражены десятичными дробями. При обращении их в десятичную дробь, округление их служит источником новой погрешности, которую также следует учесть.

Наконец, отметим, что далеко не всякий ряд, имеющий суммой интересующее нас число А, пригоден для фактического вычисления этого числа (даже если его члены просты, и оценка остатка производится легко). Вопрос - в быстроте сходимости, т. е. в быстроте приближения частичной суммы к числу А.

Возьмем для примера ряды [см. 404 (16) и 405 (18)]:

дающие соответственно разложение чисел - и Для того чтобы с их помощью вычислить эти числа, скажем, с точностью до нужно было бы сложить пятьдесят тысяч членов в первом случае и сто тысяч - во втором; это, конечно, осуществимо лишь с помощью быстродействующих вычислительных машин.

Ниже мы без особого труда вычислим упомянутые числа даже с большей точностью, но использовав более подходящие рады.

Рассмотрим задачу разложения некоторой функции в степенной ряд.

Пусть задана функция, имеющая на некотором отрезке производные всех порядков, тогда она разлагается на этом отрезке в ряд вида

который называется рядом Тейлора. Здесь-- заданное число.

Формально ряд Тейлора можно написать для всякой функции, которая в окрестности точки имеет производные любого порядка. Однако этот ряд будет сходиться к породившей ее функции только при тех значениях, при которых остаток ряда стремиться к нулю:

.

Остаток ряда Тейлора записывается в форме Лагранжа следующим образом:

,

где заключено междуи.

Если
, то получаем частный случай ряда Тейлора, который называетсярядом Маклорена:

Рассмотрим ряды Маклорена для некоторых элементарных функций.

данный ряд называется биномиальным, поскольку при натуральном
из него получается бином Ньютона.

Подчеркнем, что степенные ряды для функций сходятся к соответствующим функциям при
, а степенные ряды для функций
и
сходятся лишь при
.

Задача №1.
.

Решение. В качестве исходной формулы возьмем разложение в ряд Маклорена

функции
:

.

Заменим на:

Ответ:

Задача №2. Написать разложение в степенной ряд функции
.

Решение. Запишем биномиальный ряд

и сделаем в нем замену
:

По условию
, подставим это значение в предыдущую формулу:

Степенные ряды широко используются в приближенных вычислениях. Рассмотрим применение рядов Тейлора для приближенного вычисления значений функций, значений определенных интегралов и приближенного решения дифференциальных уравнений.

Задача №3. Вычислить

Решение . Для любогоимеет место формула:

.

При получим

Оценим погрешность вычислений с помощью остаточного члена в форме Лагранжа:

.

,

где лежит междуи.

При имеем

,

где
.

Учитывая, что
, получим

.

При

При

Таким образом, для достижения требуемой точности достаточно взять
(или более):

.

Каждое слагаемое вычислим с одним дополнительным знаком после запятой, чтобы к нашей ошибке не добавлялись ошибки от округления:

Ответ: с точностью 0,0001
.

Задача №4. Вычислить
приближенно с точностью 0,0001.

Решение. Для вычисления
будем использовать биномиальный ряд, который сходится только при
, поэтому сначала преобразуем данный корень:

.

В биномиальном ряде положим
:

Данный знакочередующийся числовой ряд является рядом Лейбница. Чтобы определить, сколько взять первых членов ряда для вычисления
с точностью 0,0001, вычислим последовательно несколько первых членов ряда:

Согласно свойству ряда Лейбница, если оставить первые три слагаемые, то ошибка искомого приближенного значения корня будет меньше
:

следовательно,

Ответ: с точностью 0,0001

от некоторой функции
, первообразная которой не вычисляется в элементарных функциях. Следовательно, формулу Ньютона-Лейбница применить не удается. Если
разложима в степенной ряд на отрезке
, принадлежащем области сходимости ряда, то интеграл может быть вычислен приближенно. Иногда приближенного вычисления бывает достаточно и при наличии первообразной функции. Для решения такой задачи используются ряды Тейлора. Рассмотрим примеры.

Задача №5.
с точностью 0,01.

Решение. Заметим, что этот широко используемый интеграл не выражается в элементарных функциях.

В ряде Маклорена для функции
сделаем замену
:

Теперь воспользуемся теоремой о том, что степенной ряд можно почленно интегрировать по любому отрезку, принадлежащему интервалу сходимости. Данный ряд сходится на всей числовой прямой, следовательно, его можно интегрировать по любому отрезку, в том числе по отрезку
:

Мы получили числовой ряд, который равен значению определенного интеграла.

Оценим погрешность вычислений. Данный ряд – это ряд Лейбница, следовательно, погрешность вычислений не превосходит по модулю первого отброшенного члена ряда. Поэтому, вычисляя по порядку члены ряда, первым отбросим тот, который окажется по модулю меньше заданной точности:

,

.

Тогда 024=0,743.

Ответ:
0,743.

Задача №6. Вычислить определенный интеграл
с точностью 0,001.

Решение. Вычислить этот интеграл по формуле Ньютона-Лейбница нельзя, поскольку первообразная функции
не выражается в элементарных функциях. Используем для решения задачи степенной ряд. Запишем разложение в ряд Маклорена функции
:

.

Сделаем в этой формуле замену
:

Данный ряд можно почленно проинтегрировать по отрезку
:

Таким образом, вычисляемый определенный интеграл равен сумме знакочередующегося числового ряда, который удовлетворяет условиям признака Лейбница, следовательно, погрешность вычислений не превосходит модуля первого из отброшенных членов ряда.

,
.

Поэтому для достижения заданной точности необходимо оставить первые 3 слагаемые.

Ответ:
.

Задача №7. . Вычислить определенный интеграл
с точностью 0,001.

Решение. Распишем ряд Маклорена для функции
.

.

Поделим левую и правую часть формулы на :

. Полученный степенной ряд можно почленно проинтегрировать по отрезку
.

Получившийся числовой ряд сходится по признаку Лейбница, поэтому отбрасываем первым слагаемое, которое меньше объявленной точности:

,
.

Ответ:
.

Рассмотрим еще одно приложение степенных рядов, к приближенному решению дифференциальных уравнений. Решение дифференциального уравнения не всегда можно выразить в элементарных функциях. Интегралы многих дифференциальных уравнений могут быть представлены в виде степенного ряда, сходящегося в некотором интервале значений независимой переменной. В таком случае ряд, являющийся решением дифференциального уравнения можно найти с помощью рядов Тейлора.

Пусть необходимо найти частное решение дифференциального уравнения с заданными начальными условиями, т.е. решить задачу Коши.

Проиллюстрируем решение на примере.

Задача №8. Найти первые пять членов разложения в степенной ряд решения дифференциального уравнения

.

Решение. Будем искать частное решение дифференциального уравнения в виде ряда

Мы выбрали разложение в ряд Маклорена, поскольку в условии задачи нам даны значения искомой функции и ее первой производной в точке
. Для того, чтобы найти приближенное значение функции
, нам необходимо знать значения ее второй, третьей и четвертой производных в точке
. Значения самой функции и первой производной в нуле даны по условию.

Значение второй производной при
найдем из дифференциального уравнения, подставив начальные условия:

.

Для нахождения третьей производной продифференцируем данное дифференциальное уравнение:

.

При этом необходимо учесть, что -- это функция, а-- независимая переменная:

Теперь можно вычислить значение третьей производной в точке
:

Аналогично вычислим значение четвертой производной:

, или

Подставив в найденное равенство значения

Осталось подставить вычисленные в заданной точке значения производных в ряд Маклорена:

Ответ:
.

Задача №9. Найти первые четыре члена разложения в степенной ряд решения дифференциального уравнения
, удовлетворяющего начальным условиям

.

Решение. Начальные условия заданы в точке
, поэтому решение будем искать в виде ряда Тейлора:

Значения самой функции и ее первой производной даны в условии задачи. Вторую производную в точке
найдем из дифференциального уравнения:

Вычислим третью производную, продифференцировав дифференциальное уравнение:

или

.

Тогда значение третьей производной равно

Осталось записать искомый ряд.

На данном уроке мы рассмотрим первую, наиболее простую задачу, для решения которой потребуются самые элементарные знания о рядах, таблица разложений функций в степенные ряды и микрокалькулятор. Как вариант, пойдёт Эксель (если умеете управляться с его функциями). Вычислительные задачи требуют повышенной концентрации внимания, поэтому к изучению статьи рекомендую подойти в хорошей физической форме и со свежей головой:

Существует 2 типа рассматриваемой задачи, с которыми мы на самом деле уже сталкивались ранее, в частности при вычислении интеграла по формуле трапеций и методом Симпсона . Тип первый:

Пример 1

Используя разложение функции в ряд, вычислить число , ограничившись 5 членами разложения. Результат округлить до 0,001. Провести вычисления на калькуляторе и найти абсолютную погрешность вычислений.

Решение : прежде всего, выбираем подходящее табличное разложение функции . Очевидно, что в нашем случае необходимо взять следующий ряд:
, который сходится при любом значении «икс».

Кратко повторим, что такое сходимость функционального ряда : чем больше слагаемых мы рассмотрим, тем точнее функция-многочлен будет приближать функцию . Действительно, график параболы совсем не напоминает экспоненту и график кубической функции тоже далёк от идеала, но если взять 50-100 членов ряда, то картина в корне поменяется. И, наконец, график бесконечного многочлена совпадёт с графиком экспоненциальной функции .

Примечание : в теории даже есть такой подход и определение: функция – это сумма функционального ряда .

В условии прямо сказано, что нужно просуммировать 5 первых членов ряда, причём, результат следует округлить до 0,001. И поэтому проблем здесь никаких:

Вычислим более точное значение с помощью микрокалькулятора:

Абсолютная погрешность вычислений:
– ну что же, вполне и вполне неплохо. Но бывает лучше.

Ответ :

Теперь рассмотрим нескольку другую разновидность задания:

Пример 2

Используя разложение функции в ряд, вычислить приближённо с точностью до 0,001.

! Примечание : иногда аргумент бывает выражен в градусах, в таких случаях его необходимо перевести в радианы .

Давайте вспомним смысл выражения «с точностью до 0,001». Оно обозначает, что наш ответ должен отличаться от истины не более чем на 0,001.

Решение : используя табличное разложение , запишем несколько членов соответствующего ряда, при этом округление лучше проводить с «запасом» – до 5-6 знаков после запятой:

Сколько членов ряда следует просуммировать для достижения требуемой точности? Для сходящихся знакочередующихся рядов справедлив следующий критерий :члены следует суммировать до тех пор, пока они по модулю больше заданной точности. Первый же меньший вместе со всем «хвостом» подлежит утилизации. В данном примере таковым является 4-й член: , поэтому:

– с округлением финального результата до требуемой точности.

Ответ : с точностью до 0,001

Наверное, все понимают, почему она гарантирована: здесь к отрицательному 4-му члену прибавляется мЕньшее по модулю число , затем из результата вычитается ещё более малое число – и так далее до бесконечности. Образно говоря, конструкция напоминает маятник с затухающими колебаниями, где – самый большой размах в отрицательную сторону, «затмевающий» собой все остальные движения.

Очевидно, что для сходящихся положительных рядов (ближайший пример – Пример 1) рассмотренный критерий некорректен. Условно говоря, если 0,00034 < 0,001, то сумма «хвоста» может запросто превзойти 0,001 (т.к. ВСЕ члены ряда положительны) . И к этому вопросу я ещё вернусь позже:

Пример 3

Пример 4

Вычислить приближённо, используя первые два члена соответствующего разложения. Оценить абсолютную погрешность вычислений.

Это примеры для самостоятельного решения. Разумеется, выгодно сразу же найти чтобы эффективно контролировать ход решения.

И возникает вопрос: зачем заниматься такими нелепыми вещами, если есть калькуляторы, расчётные программы? Отчасти я дал ответ на уроке Приближенные вычисления с помощью дифференциала . Не так уж и давно калькулятор был большой редкостью, не говоря о такой роскоши, как клавиши с надписями и т.д. В гостевой книге сайта одна из посетительниц поделилась воспоминаниями, как все расчёты своего диплома проводила с помощью математических таблиц и логарифмической линейки. А такой инструментарий наряду с механическими счётами сегодня займут место разве что в музее истории математики.

Резюме таково – мы решаем устаревшую задачу. Насущный же практический смысл состоит в том, что её нужно решить =) Ну, может ещё по информатике будет полезно кому – приближенная сумма с наперёд заданной точностью элементарно алгоритмизируется циклом. Правда, какой-нибудь Паскаль довольно быстро сломается, поскольку факториал растёт семимильными шагами.

Кроме того, есть ещё одно очень важное и актуальное приложение, имеющее прикладное значение, но этот секрет будет раскрыт по ходу урока;-) Выдвигайте гипотезы, если догадаетесь – респект.

Также не следует упускать из внимания область сходимости предлагаемых рядов, разложения синуса, косинуса и экспоненты – да, сходятся при любом «икс», но разобранные примеры не должны усыплять бдительность! Простейшая иллюстрация – арктангенс и его разложение . Если попытаться вычислить, скажем, значение , то легко заметить неограниченный рост (по модулю) членов ряда, который не приведёт нас к какому бы то ни было конечному , и тем более приближённому значению. А всё потому, что не входит в область сходимости данного разложения.

Разберём более трудные задания:

Пример 5

Вычислить с точностью до 0,01

Решение : щёлкаем по клавишам калькулятора: . И думаем, как выполнить приближённые вычисления с помощью ряда. В ситуациях с корнем дело сводится к биномиальному разложению с гарантированным интервалом сходимости .

Пытаемся представить наш радикал в виде :

И всё бы было хорошо, но только значение не входит в область сходимости рассматриваемого биномиального ряда, то есть конструкция не годится для вычислений – произойдёт такой же несчастный случай, как с рассмотренным выше .

Как быть? Ещё раз смотрим на значение и замечаем, что оно близко к «тройке». В самом деле: . Используя замечательного соседа, проводим следующее типовое преобразование: под корнем выделяем число 27, искусственно выносим его за скобки и далее выносим из-под корня:

Вот теперь всё тип-топ: число принадлежит интервалу сходимости . Но в качестве «побочного эффекта» возникает необходимость поправить точность вычислений. Ведь когда мы подсчитаем члены разложения , то будем обязаны домножить каждое число на «тройку». И по этой причине изначально требуемую точность 0,01 нужно устрожить в три раза: .

Итак, используем ряд , в котором . Не забываем проверить по таблице разложений , не подпадает ли наш пример под какой-нибудь частный случай биномиального разложения. Нет. А, значит, придётся работать ручками:

Тут для достижения необходимой точности (заметьте, что члены начали знакочередоваться!) хватило трёх слагаемых, и четвёртого монстра считать не было смысла. Но «про запас» всегда стараемся расписать побольше членов ряда. Если поленитесь и не хватит слагаемых – будете заново переписывать всё задание.

Ответ : с точностью до 0,001

Да, вычисления, конечно, не подарочные, но что поделать….

Более простая вариация на ту же тему для самостоятельного решения:

Пример 6

Вычислить , ограничившись первыми тремя членами ряда. Результат округлить до 3 знаков после запятой.

Образец оформления задачи в конце урока. И не забываем вновь обратиться к вычислительной технике: .

Что студент с нетерпением ждёт изо дня в день? Логарифмы:

Пример 7

Вычислить с точностью до 0,001

Решение : сначала, как всегда, узнаем ответ: .

Очевидно, что здесь нужно использовать разложение

И это действительно возможно, т.к. значение входит в область сходимости данного ряда.

Считаем:

Стоп. Что-то здесь не так. Сойтись-то ряд сойдётся, но такими темпами вычисления могут затянуться до скончания века. И научный тык в неравенство подсказал, что этот конец наступит после счастливого номера .

Таким образом, ряд сходится довольно медленно и пригоден для вычислений разве что и других логарифмов, аргумент которых достаточно близок к единице.

В целях значительного ускорения процесса несложно вывести следующее разложение:
с областью сходимости

Приятная вещь состоит в том, что всякое положительное число (кроме единицы) можно представить в виде . Преобразуем аргумент логарифма в обыкновенную дробь: и решим следующее уравнение:

Проверка:

«Заряжаем»:

И теперь у нас обнаружилась другая проблемка – ряд-то, оказывается, положительный , и поэтому здесь нельзя указать и отбросить весь «хвост». Вдруг он в своей сумме окажется больше, чем 0,001? В этой связи используем более хитрый метод оценки. Сохранив «на всякий случай» подозрительно большой 3-й член, рассмотрим остаток ряда:

Числа 9, 11, 13, … в знаменателях меняем на 7 – тем самым только увеличивая члены, а значит, и всю сумму остатка:


По-научному, это называется подбором мажорантного сходящегося ряда (в данном случае – геом. прогрессии), сумму которого легко отыскать (или которая известна). И план оказался не только выполнен, но и перевыполнен! Отбрасывая все члены ряда, начиная с 4-го, будет гарантирована точность 0,00002! Впрочем, по условию результат всё равно нужно округлить до трёх знаков после запятой:

Ответ : с точностью до 0,001

Ну и осталось с чувством голубого морального удовлетворения свериться с более точным значением .

…А может быть, было проще вычислить сумму 12 членов медленно сходящегося ряда? =) Впрочем, в следующем задании такой возможности уже не будет в принципе:

Пример 8

Вычислить с точностью до 0,001

– по той причине, что значение не входит в область сходимости ряда .

Дерзайте!

Статья начиналась с приближённого вычисления числа «е», и закончим мы её другой знаменитой константой:

Приближённое вычисление числа с помощью ряда

О «пи» исписаны километры бумаги и сказаны миллионы слов, поэтому я не буду загружать вас историей, теорией и гипотезами, если интересно (а это и на самом деле интересно), обратитесь, например, к Википедии. Данное число обладает бесконечным количеством знаков после запятой: , и теория рядов предоставляет один из эффективных способов нахождения этих цифр.

Если функция f(x) имеет на некотором интервале, содержащем точку а, производные всех порядков, то к ней может быть применена формула Тейлора:
,
где r n – так называемый остаточный член или остаток ряда, его можно оценить с помощью формулы Лагранжа:
, где число x заключено между х и а.

f(x)=

В точке x 0 =
Количество элементов ряда 3 4 5 6 7
Использовать разложение элементарных функций e x , cos(x), sin(x), ln(1+x), (1+x) m

Правила ввода функций :

Если для некоторого значения х r n →0 при n →∞, то в пределе формула Тейлора превращается для этого значения в сходящийся ряд Тейлора :
,
Таким образом, функция f(x) может быть разложена в ряд Тейлора в рассматриваемой точке х, если:
1) она имеет производные всех порядков;
2) построенный ряд сходится в этой точке.

При а =0 получаем ряд, называемый рядом Маклорена :
,
Разложение простейших (элементарных) функций в ряд Маклорена:
Показательные функции
, R=∞
Тригонометрические функции
, R=∞
, R=∞
, (-π/2 < x < π/2), R=π/2
Функция actgx не разлагается по степеням x, т.к. ctg0=∞
Гиперболические функции


Логарифмические функции
, -1
Биномиальные ряды
.

Пример №1 . Разложить в степенной ряд функцию f(x)= 2 x .
Решение . Найдем значения функции и ее производных при х =0
f(x) = 2 x , f(0) = 2 0 =1;
f"(x) = 2 x ln2, f"(0) = 2 0 ln2= ln2;
f""(x) = 2 x ln 2 2, f""(0) = 2 0 ln 2 2= ln 2 2;

f (n) (x) = 2 x ln n 2, f (n) (0) = 2 0 ln n 2= ln n 2.
Подставляя полученные значения производных в формулу ряда Тейлора, получим:

Радиус сходимости этого ряда равен бесконечности, поэтому данное разложение справедливо для -∞<x <+∞.

Пример №2 . Написать ряд Тейлора по степеням (х +4) для функции f(x)= e x .
Решение . Находим производные функции e x и их значения в точке х =-4.
f(x) = е x , f(-4) = е -4 ;
f"(x) = е x , f"(-4) = е -4 ;
f""(x) = е x , f""(-4) = е -4 ;

f (n) (x) = е x , f (n) ( -4) = е -4 .
Следовательно, искомый ряд Тейлора функции имеет вид:

Данное разложение также справедливо для -∞<x <+∞.

Пример №3 . Разложить функцию f(x) =lnx в ряд по степеням (х- 1),
(т.е. в ряд Тейлора в окрестности точки х =1).
Решение . Находим производные данной функции.
f(x)=lnx , , , ,

f(1)=ln1=0, f"(1)=1, f""(1)=-1, f"""(1)=1*2,..., f (n) =(-1) n-1 (n-1)!
Подставляя эти значения в формулу, получим искомый ряд Тейлора:

С помощью признака Даламбера можно убедиться, что ряд сходится при ½х-1½<1 . Действительно,

Ряд сходится, если ½х- 1½<1, т.е. при 0<x <2. При х =2 получаем знакочередующийся ряд, удовлетворяющий условиям признака Лейбница. При х=0 функция не определена. Таким образом, областью сходимости ряда Тейлора является полуоткрытый промежуток (0;2].

Пример №4 . Разложить в степенной ряд функцию .
Решение . В разложении (1) заменяем х на -х 2 , получаем:
, -∞

Пример №5 . Разложить в ряд Маклорена функцию .
Решение . Имеем
Пользуясь формулой (4), можем записать:

подставляя вместо х в формулу –х, получим:

Отсюда находим: ln(1+x)-ln(1-x) = -
Раскрывая скобки, переставляя члены ряда и делая приведение подобных слагаемых, получим
. Этот ряд сходится в интервале (-1;1), так как он получен из двух рядов, каждый из которых сходится в этом интервале.

Замечание .
Формулами (1)-(5) можно пользоваться и для разложения соответствующих функций в ряд Тейлора, т.е. для разложения функций по целым положительным степеням (х-а ). Для этого над заданной функцией необходимо произвести такие тождественные преобразования, чтобы получить одну из функций (1)-(5), в которой вместо х стоит k(х-а ) m , где k – постоянное число, m – целое положительное число. Часто при этом удобно сделать замену переменной t =х-а и раскладывать полученную функцию относительно t в ряд Маклорена.

Этот метод основан на теореме о единственности разложения функции в степенной ряд. Сущность этой теоремы состоит в том, что в окрестности одной и той же точки не может быть получено два различных степенных ряда, которые бы сходились к одной и той же функции, каким бы способом ее разложение ни производилось.

Пример №5а . Разложить в ряд Маклорена функцию , указать область сходимости.
Решение. Сначала найдем 1-x-6x 2 =(1-3x)(1+2x) , .
на элементарные:

Дробь 3/(1-3x) можно рассматривать как сумму бесконечно убывающей геометрической прогрессии знаменателем 3x, если |3x| < 1. Аналогично, дробь 2/(1+2x) как сумму бесконечно убывающей геометрической прогрессии знаменателем -2x, если |-2x| < 1. В результате получим разложение в степенной ряд

с областью сходимости |x| < 1/3.

Пример №6 . Разложить функцию в ряд Тейлора в окрестности точки х =3.
Решение . Эту задачу можно решить, как и раньше, с помощью определения ряда Тейлора, для чего нужно найти производные функции и их значения при х =3. Однако проще будет воспользоваться имеющимся разложением (5):
=
Полученный ряд сходится при или –3

Пример №7 . Написать ряд Тейлора по степеням (х -1) функции ln(x+2) .
Решение .


Ряд сходится при , или -2 < x < 5.

Пример №8 . Разложить функцию f(x)=sin(πx/4) в ряд Тейлора в окрестности точки x =2.
Решение . Сделаем замену t=х-2:

Воспользовавшись разложением (3), в котором на место х подставим π / 4 t, получим:

Полученный ряд сходится к заданной функции при -∞< π / 4 t<+∞, т.е. при (-∞Таким образом,
, (-∞

Приближенные вычисления с помощью степенных рядов

Степенные ряды широко используются в приближенных вычислениях. С их помощью с заданной точностью можно вычислять значения корней, тригонометрических функций, логарифмов чисел, определенных интегралов. Ряды применяются также при интегрировании дифференциальных уравнений.
Рассмотрим разложение функции в степенной ряд:

Для того, чтобы вычислить приближенное значение функции в заданной точке х , принадлежащей области сходимости указанного ряда, в ее разложении оставляют первые n членов (n – конечное число), а остальные слагаемые отбрасывают:

Для оценки погрешности полученного приближенного значения необходимо оценить отброшенный остаток r n (x) . Для этого применяют следующие приемы:
  • если полученный ряд является знакочередующимся, то используется следующее свойство: для знакочередующегося ряда, удовлетворяющего условиям Лейбница, остаток ряда по абсолютной величине не превосходит первого отброшенного члена .
  • если данный ряд знакопостоянный, то ряд, составленный из отброшенных членов, сравнивают с бесконечно убывающей геометрической прогрессией.
  • в общем случае для оценки остатка ряда Тейлора можно воспользоваться формулой Лагранжа: ax).

Пример №1 . Вычислить ln(3) с точностью до 0,01.
Решение . Воспользуемся разложением , где x=1/2 (см. пример 5 в предыдущей теме):

Проверим, можем ли мы отбросить остаток после первых трех членов разложения, для этого оценим его с помощью суммы бесконечно убывающей геометрической прогрессии:

Таким образом, мы можем отбросить этот остаток и получаем

Пример №2 . Вычислить с точностью до 0,0001.
Решение . Воспользуемся биномиальным рядом. Так как 5 3 является ближайшим к 130 кубом целого числа, то целесообразно число 130 представить в виде 130=5 3 +5.



так как уже четвертый член полученного знакочередующегося ряда, удовлетворяющего признаку Лейбница, меньше требуемой точности:
, поэтому его и следующие за ним члены можно отбросить.
Многие практически нужные определенные или несобственные интегралы не могут быть вычислены с помощью формулы Ньютона-Лейбница, ибо ее применение связано с нахождением первообразной, часто не имеющей выражения в элементарных функциях. Бывает также, что нахождение первообразной возможно, но излишне трудоемко. Однако если подынтегральная функция раскладывается в степенной ряд, а пределы интегрирования принадлежат интервалу сходимости этого ряда, то возможно приближенное вычисление интеграла с наперед заданной точностью.

Пример №3 . Вычислить интеграл ∫ 0 1 4 sin (x) x с точностью до 10 -5 .
Решение . Соответствующий неопределенный интеграл не может быть выражен в элементарных функциях, т.е. представляет собой «неберущийся интеграл». Применить формулу Ньютона-Лейбница здесь нельзя. Вычислим интеграл приближенно.
Разделив почленно ряд для sinx на x , получим:

Интегрируя этот ряд почленно (это возможно, так как пределы интегрирования принадлежат интервалу сходимости данного ряда), получаем:

Так как полученный ряд удовлетворяет условиям Лейбница и достаточно взять сумму первых двух членов, чтобы получить искомое значение с заданной точностью.
Таким образом, находим
.

Пример №4 . Вычислить интеграл ∫ 0 1 4 e x 2 с точностью до 0,001.
Решение .
. Проверим, можем ли мы отбросить остаток после второго члена полученного ряда.
≈0.0001<0.001. Следовательно, .