Макияж. Уход за волосами. Уход за кожей

Макияж. Уход за волосами. Уход за кожей

» » Базис наименьших квадратов. Аппроксимация опытных данных

Базис наименьших квадратов. Аппроксимация опытных данных

Метод наименьших квадратов

Метод наименьших квадратов (МНК, OLS, Ordinary Least Squares ) - один из базовых методов регрессионного анализа для оценки неизвестных параметров регрессионных моделей по выборочным данным. Метод основан на минимизации суммы квадратов остатков регрессии.

Необходимо отметить, что собственно методом наименьших квадратов можно назвать метод решения задачи в любой области, если решение заключается или удовлетворяет некоторому критерию минимизации суммы квадратов некоторых функций от искомых переменных. Поэтому метод наименьших квадратов может применяться также для приближённого представления (аппроксимации) заданной функции другими (более простыми) функциями, при нахождении совокупности величин, удовлетворяющих уравнениям или ограничениям, количество которых превышает количество этих величин и т. д.

Сущность МНК

Пусть задана некоторая (параметрическая) модель вероятностной (регрессионной) зависимости между (объясняемой) переменной y и множеством факторов (объясняющих переменных) x

где - вектор неизвестных параметров модели

- случайная ошибка модели.

Пусть также имеются выборочные наблюдения значений указанных переменных. Пусть - номер наблюдения (). Тогда - значения переменных в -м наблюдении. Тогда при заданных значениях параметров b можно рассчитать теоретические (модельные) значения объясняемой переменной y:

Величина остатков зависит от значений параметров b.

Сущность МНК (обычного, классического) заключается в том, чтобы найти такие параметры b, при которых сумма квадратов остатков (англ. Residual Sum of Squares ) будет минимальной:

В общем случае решение этой задачи может осуществляться численными методами оптимизации (минимизации). В этом случае говорят о нелинейном МНК (NLS или NLLS - англ. Non-Linear Least Squares ). Во многих случаях можно получить аналитическое решение. Для решения задачи минимизации необходимо найти стационарные точки функции , продифференцировав её по неизвестным параметрам b, приравняв производные к нулю и решив полученную систему уравнений:

Если случайные ошибки модели имеют нормальное распределение , имеют одинаковую дисперсию и некоррелированы между собой, МНК-оценки параметров совпадают с оценками метода максимального правдоподобия (ММП) .

МНК в случае линейной модели

Пусть регрессионная зависимость является линейной:

Пусть y - вектор-столбец наблюдений объясняемой переменной, а - матрица наблюдений факторов (строки матрицы - векторы значений факторов в данном наблюдении, по столбцам - вектор значений данного фактора во всех наблюдениях). Матричное представление линейной модели имеет вид:

Тогда вектор оценок объясняемой переменной и вектор остатков регрессии будут равны

соответственно сумма квадратов остатков регрессии будет равна

Дифференцируя эту функцию по вектору параметров и приравняв производные к нулю, получим систему уравнений (в матричной форме):

.

Решение этой системы уравнений и дает общую формулу МНК-оценок для линейной модели:

Для аналитических целей оказывается полезным последнее представление этой формулы. Если в регрессионной модели данные центрированы , то в этом представлении первая матрица имеет смысл выборочной ковариационной матрицы факторов, а вторая - вектор ковариаций факторов с зависимой переменной. Если кроме того данные ещё и нормированы на СКО (то есть в конечном итоге стандартизированы ), то первая матрица имеет смысл выборочной корреляционной матрицы факторов, второй вектор - вектора выборочных корреляций факторов с зависимой переменной.

Немаловажное свойство МНК-оценок для моделей с константой - линия построенной регрессии проходит через центр тяжести выборочных данных, то есть выполняется равенство:

В частности, в крайнем случае, когда единственным регрессором является константа, получаем, что МНК-оценка единственного параметра (собственно константы) равна среднему значению объясняемой переменной. То есть среднее арифметическое, известное своими хорошими свойствами из законов больших чисел, также является МНК-оценкой - удовлетворяет критерию минимума суммы квадратов отклонений от неё.

Пример: простейшая (парная) регрессия

В случае парной линейной регрессии формулы расчета упрощаются (можно обойтись без матричной алгебры):

Свойства МНК-оценок

В первую очередь, отметим, что для линейных моделей МНК-оценки являются линейными оценками, как это следует из вышеприведённой формулы. Для несмещенности МНК-оценок необходимо и достаточно выполнения важнейшего условия регрессионного анализа : условное по факторам математическое ожидание случайной ошибки должно быть равно нулю. Данное условие, в частности, выполнено, если

  1. математическое ожидание случайных ошибок равно нулю, и
  2. факторы и случайные ошибки - независимые случайные величины.

Второе условие - условие экзогенности факторов - принципиальное. Если это свойство не выполнено, то можно считать, что практически любые оценки будут крайне неудовлетворительными: они не будут даже состоятельными (то есть даже очень большой объём данных не позволяет получить качественные оценки в этом случае). В классическом случае делается более сильное предположение о детерминированности факторов, в отличие от случайной ошибки, что автоматически означает выполнение условия экзогенности. В общем случае для состоятельности оценок достаточно выполнения условия экзогенности вместе со сходимостью матрицы к некоторой невырожденной матрице при увеличении объёма выборки до бесконечности.

Для того, чтобы кроме состоятельности и несмещенности , оценки (обычного) МНК были ещё и эффективными (наилучшими в классе линейных несмещенных оценок) необходимо выполнение дополнительных свойств случайной ошибки:

Данные предположения можно сформулировать для ковариационной матрицы вектора случайных ошибок

Линейная модель, удовлетворяющая таким условиям, называется классической . МНК-оценки для классической линейной регрессии являются несмещёнными , состоятельными и наиболее эффективными оценками в классе всех линейных несмещённых оценок (в англоязычной литературе иногда употребляют аббревиатуру BLUE (Best Linear Unbaised Estimator ) - наилучшая линейная несмещённая оценка; в отечественной литературе чаще приводится теорема Гаусса - Маркова). Как нетрудно показать, ковариационная матрица вектора оценок коэффициентов будет равна:

Обобщенный МНК

Метод наименьших квадратов допускает широкое обобщение. Вместо минимизации суммы квадратов остатков можно минимизировать некоторую положительно определенную квадратичную форму от вектора остатков , где - некоторая симметрическая положительно определенная весовая матрица. Обычный МНК является частным случаем данного подхода, когда весовая матрица пропорциональна единичной матрице. Как известно из теории симметрических матриц (или операторов) для таких матриц существует разложение . Следовательно, указанный функционал можно представить следующим образом , то есть этот функционал можно представить как сумму квадратов некоторых преобразованных «остатков». Таким образом, можно выделить класс методов наименьших квадратов - LS-методы (Least Squares).

Доказано (теорема Айткена), что для обобщенной линейной регрессионной модели (в которой на ковариационную матрицу случайных ошибок не налагается никаких ограничений) наиболее эффективными (в классе линейных несмещенных оценок) являются оценки т. н. обобщенного МНК (ОМНК, GLS - Generalized Least Squares) - LS-метода с весовой матрицей, равной обратной ковариационной матрице случайных ошибок: .

Можно показать, что формула ОМНК-оценок параметров линейной модели имеет вид

Ковариационная матрица этих оценок соответственно будет равна

Фактически сущность ОМНК заключается в определенном (линейном) преобразовании (P) исходных данных и применении обычного МНК к преобразованным данным. Цель этого преобразования - для преобразованных данных случайные ошибки уже удовлетворяют классическим предположениям.

Взвешенный МНК

В случае диагональной весовой матрицы (а значит и ковариационной матрицы случайных ошибок) имеем так называемый взвешенный МНК (WLS - Weighted Least Squares). В данном случае минимизируется взвешенная сумма квадратов остатков модели, то есть каждое наблюдение получает «вес», обратно пропорциональный дисперсии случайной ошибки в данном наблюдении: . Фактически данные преобразуются взвешиванием наблюдений (делением на величину, пропорциональную предполагаемому стандартному отклонению случайных ошибок), а к взвешенным данным применяется обычный МНК.

Некоторые частные случаи применения МНК на практике

Аппроксимация линейной зависимости

Рассмотрим случай, когда в результате изучения зависимости некоторой скалярной величины от некоторой скалярной величины (Это может быть, например, зависимость напряжения от силы тока : , где - постоянная величина, сопротивление проводника) было проведено измерений этих величин, в результате которых были получены значения и соответствующие им значения . Данные измерений должны быть записаны в таблице.

Таблица. Результаты измерений.

№ измерения
1
2
3
4
5
6

Вопрос звучит так: какое значение коэффициента можно подобрать, чтобы наилучшим образом описать зависимость ? Согласно МНК это значение должно быть таким, чтобы сумма квадратов отклонений величин от величин

была минимальной

Сумма квадратов отклонений имеет один экстремум - минимум, что позволяет нам использовать эту формулу . Найдём из этой формулы значение коэффициента . Для этого преобразуем её левую часть следующим образом:

Последняя формула позволяет нам найти значение коэффициента , что и требовалось в задаче.

История

До начала XIX в. учёные не имели определённых правил для решения системы уравнений , в которой число неизвестных меньше, чем число уравнений; до этого времени употреблялись частные приёмы, зависевшие от вида уравнений и от остроумия вычислителей, и потому разные вычислители, исходя из тех же данных наблюдений, приходили к различным выводам. Гауссу (1795) принадлежит первое применение метода, а Лежандр (1805) независимо открыл и опубликовал его под современным названием (фр. Méthode des moindres quarrés ) . Лаплас связал метод с теорией вероятностей , а американский математик Эдрейн (1808) рассмотрел его теоретико-вероятностные приложения . Метод распространён и усовершенствован дальнейшими изысканиями Энке , Бесселя , Ганзена и других.

Альтернативное использование МНК

Идея метода наименьших квадратов может быть использована также в других случаях, не связанных напрямую с регрессионным анализом. Дело в том, что сумма квадратов является одной из наиболее распространенных мер близости для векторов (евклидова метрика в конечномерных пространствах).

Одно из применений - «решение» систем линейных уравнений, в которых число уравнений больше числа переменных

где матрица не квадратная, а прямоугольная размера .

Такая система уравнений, в общем случае не имеет решения (если ранг на самом деле больше числа переменных). Поэтому эту систему можно «решить» только в смысле выбора такого вектора , чтобы минимизировать «расстояние» между векторами и . Для этого можно применить критерий минимизации суммы квадратов разностей левой и правой частей уравнений системы, то есть . Нетрудно показать, что решение этой задачи минимизации приводит к решению следующей системы уравнений

Если некоторая физическая величина зависит от другой величины, то эту зависимость можно исследовать, измеряя y при различных значениях x . В результате измерений получается ряд значений:

x 1 , x 2 , ..., x i , ... , x n ;

y 1 , y 2 , ..., y i , ... , y n .

По данным такого эксперимента можно построить график зависимости y = ƒ(x). Полученная кривая дает возможность судить о виде функции ƒ(x). Однако постоянные коэффициенты, которые входят в эту функцию, остаются неизвестными. Определить их позволяет метод наименьших квадратов. Экспериментальные точки, как правило, не ложатся точно на кривую. Метод наименьших квадратов требует, чтобы сумма квадратов отклонений экспериментальных точек от кривой, т.е. 2 была наименьшей.

На практике этот метод наиболее часто (и наиболее просто) используется в случае линейной зависимости, т.е. когда

y = kx или y = a + bx.

Линейная зависимость очень широко распространена в физике. И даже когда зависимость нелинейная, обычно стараются строить график так, чтобы получить прямую линию. Например, если предполагают, что показатель преломления стекла n связан с длиной λ световой волны соотношением n = a + b/λ 2 , то на графике строят зависимость n от λ -2 .

Рассмотрим зависимость y = kx (прямая, проходящая через начало координат). Составим величину φ – сумму квадратов отклонений наших точек от прямой

Величина φ всегда положительна и оказывается тем меньше, чем ближе к прямой лежат наши точки. Метод наименьших квадратов утверждает, что для k следует выбирать такое значение, при котором φ имеет минимум


или
(19)

Вычисление показывает, что среднеквадратичная ошибка определения величины k равна при этом

, (20)
где – n число измерений.

Рассмотрим теперь несколько более трудный случай, когда точки должны удовлетворить формуле y = a + bx (прямая, не проходящая через начало координат).

Задача состоит в том, чтобы по имеющемуся набору значений x i , y i найти наилучшие значения a и b.

Снова составим квадратичную форму φ , равную сумме квадратов отклонений точек x i , y i от прямой

и найдем значения a и b , при которых φ имеет минимум

;

.

.

Совместное решение этих уравнений дает

(21)

Среднеквадратичные ошибки определения a и b равны

(23)

.  (24)

При обработке результатов измерения этим методом удобно все данные сводить в таблицу, в которой предварительно подсчитываются все суммы, входящие в формулы (19)–(24). Формы этих таблиц приведены в рассматриваемых ниже примерах.

Пример 1. Исследовалось основное уравнение динамики вращательного движения ε = M/J (прямая, проходящая через начало координат). При различных значениях момента M измерялось угловое ускорение ε некоторого тела. Требуется определить момент инерции этого тела. Результаты измерений момента силы и углового ускорения занесены во второй и третий столбцы таблицы 5 .

Таблица 5
n M, Н · м ε, c -1 M 2 M · ε ε - kM (ε - kM) 2
1 1.44 0.52 2.0736 0.7488 0.039432 0.001555
2 3.12 1.06 9.7344 3.3072 0.018768 0.000352
3 4.59 1.45 21.0681 6.6555 -0.08181 0.006693
4 5.90 1.92 34.81 11.328 -0.049 0.002401
5 7.45 2.56 55.5025 19.072 0.073725 0.005435
– – 123.1886 41.1115 – 0.016436

По формуле (19) определяем:

.

Для определения среднеквадратичной ошибки воспользуемся формулой (20)

0.005775 кг -1 · м -2 .

По формуле (18) имеем

; .

S J = (2.996 · 0.005775)/0.3337 = 0.05185 кг · м 2 .

Задавшись надежностью P = 0.95 , по таблице коэффициентов Стьюдента для n = 5, находим t = 2.78 и определяем абсолютную ошибку ΔJ = 2.78 · 0.05185 = 0.1441 ≈ 0.2 кг · м 2 .

Результаты запишем в виде:

J = (3.0 ± 0.2) кг · м 2 ;


Пример 2. Вычислим температурный коэффициент сопротивления металла по методу наименьших квадратов. Сопротивление зависит от температуры по линейному закону

R t = R 0 (1 + α t°) = R 0 + R 0 α t°.

Свободный член определяет сопротивление R 0 при температуре 0° C , а угловой коэффициент – произведение температурного коэффициента α на сопротивление R 0 .

Результаты измерений и расчетов приведены в таблице (см. таблицу 6 ).

Таблица 6
n t°, c r, Ом t-¯ t (t-¯ t) 2 (t-¯ t)r r - bt - a (r - bt - a) 2 ,10 -6
1 23 1.242 -62.8333 3948.028 -78.039 0.007673 58.8722
2 59 1.326 -26.8333 720.0278 -35.581 -0.00353 12.4959
3 84 1.386 -1.83333 3.361111 -2.541 -0.00965 93.1506
4 96 1.417 10.16667 103.3611 14.40617 -0.01039 107.898
5 120 1.512 34.16667 1167.361 51.66 0.021141 446.932
6 133 1.520 47.16667 2224.694 71.69333 -0.00524 27.4556
515 8.403 – 8166.833 21.5985 – 746.804
∑/n 85.83333 1.4005 – – – – –

По формулам (21), (22) определяем

R 0 = ¯ R- α R 0 ¯ t = 1.4005 - 0.002645 · 85.83333 = 1.1735 Ом .

Найдем ошибку в определении α. Так как , то по формуле (18) имеем:

.

Пользуясь формулами (23), (24) имеем

;

0.014126 Ом .

Задавшись надежностью P = 0.95, по таблице коэффициентов Стьюдента для n = 6, находим t = 2.57 и определяем абсолютную ошибку Δα = 2.57 · 0.000132 = 0.000338 град -1 .

α = (23 ± 4) · 10 -4 град -1 при P = 0.95.


Пример 3. Требуется определить радиус кривизны линзы по кольцам Ньютона. Измерялись радиусы колец Ньютона r m и определялись номера этих колец m. Радиусы колец Ньютона связаны с радиусом кривизны линзы R и номером кольца уравнением

r 2 m = mλR - 2d 0 R,

где d 0 – толщина зазора между линзой и плоскопараллельной пластинкой (или деформация линзы),

λ – длина волны падающего света.

λ = (600 ± 6) нм;
r 2 m = y;
m = x;
λR = b;
-2d 0 R = a,

тогда уравнение примет вид y = a + bx .

.

Результаты измерений и вычислений занесены в таблицу 7 .

Таблица 7
n x = m y = r 2 , 10 -2 мм 2 m -¯ m (m -¯ m) 2 (m -¯ m)y y - bx - a, 10 -4 (y - bx - a) 2 , 10 -6
1 1 6.101 -2.5 6.25 -0.152525 12.01 1.44229
2 2 11.834 -1.5 2.25 -0.17751 -9.6 0.930766
3 3 17.808 -0.5 0.25 -0.08904 -7.2 0.519086
4 4 23.814 0.5 0.25 0.11907 -1.6 0.0243955
5 5 29.812 1.5 2.25 0.44718 3.28 0.107646
6 6 35.760 2.5 6.25 0.894 3.12 0.0975819
21 125.129 – 17.5 1.041175 – 3.12176
∑/n 3.5 20.8548333 – – – – –

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Метод наименьших квадратов - математический (математико-статистический) прием, служащий для выравнивания динамических рядов, выявления формыкорреляционной связи между случайными величинами и др. Состоит в том, что функция, описывающая данное явление, аппроксимируется более простой функцией. Причем последняя подбирается с таким расчетом, чтобы среднеквадратичное отклонение (см.Дисперсия) фактических уровней функции в наблюдаемых точках от выровненных было наименьшим.

Напр., по имеющимся данным (xi ,yi ) (i = 1, 2, ..., n ) строится такая кривая y = a + bx , на которой достигается минимум суммы квадратов отклонений

т. е. минимизируется функция, зависящая от двух параметров: a - отрезок на оси ординат и b - наклон прямой.

Уравнения, дающие необходимые условия минимизации функции S (a ,b ), называются нормальными уравнениями. В качестве аппроксимирующих функций применяются не только линейная (выравнивание по прямой линии), но и квадратическая, параболическая, экспоненциальная и др. Пример выравнивания динамического ряда по прямой см. на рис. M.2, где сумма квадратов расстояний (y 1 – 1)2 + (y 2 – 2)2 .... - наименьшая, и получившаяся прямая наилучшим образом отражает тенденцию динамического ряда наблюдений за некоторым показателем во времени.

Для несмещенности МНК-оценок необходимо и достаточно выполнения важнейшего условия регрессионного анализа: условное по факторам математическое ожидание случайной ошибки должно быть равно нулю. Данное условие, в частности, выполнено, если: 1.математическое ожидание случайных ошибок равно нулю, и 2.факторы и случайные ошибки - независимые случайные величины. Первое условие можно считать выполненным всегда для моделей с константой, так как константа берёт на себя ненулевое математическое ожидание ошибок. Второе условие - условие экзогенности факторов - принципиальное. Если это свойство не выполнено, то можно считать, что практически любые оценки будут крайне неудовлетворительными: они не будут даже состоятельными (то есть даже очень большой объём данных не позволяет получить качественные оценки в этом случае).

Наиболее распространенным в практике статистического оценивания параметров уравнений регрессии является метод наименьших квадратов. Этот метод основан на ряде предпосылок относительно природы данных и результатов построения модели. Основные из них - это четкое разделение исходных переменных на зависимые и независимые, некоррелированность факторов, входящих в уравнения, линейность связи, отсутствие автокорреляции остатков, равенство их математических ожиданий нулю и постоянная дисперсия.

Одной из основных гипотез МНК является предположение о равенстве дисперсий отклонений еi, т.е. их разброс вокруг среднего (нулевого) значения ряда должен быть величиной стабильной. Это свойство называется гомоскедастичностью. На практике дисперсии отклонений достаточно часто неодинаковы, то есть наблюдается гетероскедастичность. Это может быть следствием разных причин. Например, возможны ошибки в исходных данных. Случайные неточности в исходной информации, такие как ошибки в порядке чисел, могут оказать ощутимое влияние на результаты. Часто больший разброс отклонений єi, наблюдается при больших значениях зависимой переменной (переменных). Если в данных содержится значительная ошибка, то, естественно, большим будет и отклонение модельного значения, рассчитанного по ошибочным данным. Для того, чтобы избавиться от этой ошибки нам нужно уменьшить вклад этих данных в результаты расчетов, задать для них меньший вес, чем для всех остальных. Эта идея реализована во взвешенном МНК.

Метод наименьших квадратов (МНК) позволяет оценивать различные величины, используя результаты множества измерений, содержащих случайные ошибки.

Характеристика МНК

Основная идея данного метода состоит в том, что в качестве критерия точности решения задачи рассматривается сумма квадратов ошибок, которую стремятся свести к минимуму. При использовании этого метода можно применять как численный, так и аналитический подход.

В частности, в качестве численной реализации метод наименьших квадратов подразумевает проведение как можно большего числа измерений неизвестной случайной величины. Причем, чем больше вычислений, тем точнее будет решение. На этом множестве вычислений (исходных данных) получают другое множество предполагаемых решений, из которого затем выбирается наилучшее. Если множество решений параметризировать, то метод наименьших квадратов сведется к поиску оптимального значения параметров.

В качестве аналитического подхода к реализации МНК на множестве исходных данных (измерений) и предполагаемом множестве решений определяется некоторая (функционал), которую можно выразить формулой, получаемой в качестве некоторой гипотезы, требующей подтверждения. В этом случае метод наименьших квадратов сводится к нахождению минимума этого функционала на множестве квадратов ошибок исходных данных.

Заметьте, что не сами ошибки, а именно квадраты ошибок. Почему? Дело в том, что зачастую отклонения измерений от точного значения бывают как положительными, так и отрицательными. При определении средней простое суммирование может привести к неверному выводу о качестве оценки, поскольку взаимное уничтожение положительных и отрицательных значений понизит мощность выборки множества измерений. А, следовательно, и точность оценки.

Для того чтобы этого не произошло, и суммируют квадраты отклонений. Даже более того, чтобы выровнять размерность измеряемой величины и итоговой оценки, из суммы квадратов погрешностей извлекают

Некоторые приложения МНК

МНК широко используется в различных областях. Например, в теории вероятностей и математической статистике метод используется для определения такой характеристики случайной величины, как среднее квадратическое отклонение, определяющей ширину диапазона значений случайной величины.

Метод наименьших квадратов (МНК, англ. Ordinary Least Squares, OLS ) -- математический метод, применяемый для решения различных задач, основанный на минимизации суммы квадратов отклонений некоторых функций от искомых переменных. Он может использоваться для «решения» переопределенных систем уравнений (когда количество уравнений превышает количество неизвестных), для поиска решения в случае обычных (не переопределенных) нелинейных систем уравнений, для аппроксимации точечных значений некоторой функцией. МНК является одним из базовых методов регрессионного анализа для оценки неизвестных параметров регрессионных моделей по выборочным данным.

Сущность метода наименьших квадратов

Пусть -- набор неизвестных переменных (параметров), -- совокупность функций от этого набора переменных. Задача заключается в подборе таких значений x, чтобы значения этих функций были максимально близки к некоторым значениям. По существу речь идет о «решении» переопределенной системы уравнений в указанном смысле максимальной близости левой и правой частей системы. Сущность МНК заключается в выборе в качестве «меры близости» суммы квадратов отклонений левых и правых частей -- . Таким образом, сущность МНК может быть выражена следующим образом:

В случае, если система уравнений имеет решение, то минимум суммы квадратов будет равен нулю и могут быть найдены точные решения системы уравнений аналитически или, например, различными численными методами оптимизации. Если система переопределена, то есть, говоря нестрого, количество независимых уравнений больше количества искомых переменных, то система не имеет точного решения и метод наименьших квадратов позволяет найти некоторый «оптимальный» вектор в смысле максимальной близости векторов и или максимальной близости вектора отклонений к нулю (близость понимается в смысле евклидова расстояния).

Пример -- система линейных уравнений

В частности, метод наименьших квадратов может использоваться для «решения» системы линейных уравнений

где матрица не квадратная, а прямоугольная размера (точнее ранг матрицы A больше количества искомых переменных).

Такая система уравнений, в общем случае не имеет решения. Поэтому эту систему можно «решить» только в смысле выбора такого вектора, чтобы минимизировать «расстояние» между векторами и. Для этого можно применить критерий минимизации суммы квадратов разностей левой и правой частей уравнений системы, то есть. Нетрудно показать, что решение этой задачи минимизации приводит к решению следующей системы уравнений

Используя оператор псевдоинверсии, решение можно переписать так:

где -- псевдообратная матрица для.

Данную задачу также можно «решить» используя так называемый взвешенный МНК (см. ниже), когда разные уравнения системы получают разный вес из теоретических соображений.

Строгое обоснование и установление границ содержательной применимости метода даны А. А. Марковым и А. Н. Колмогоровым.

МНК в регрессионном анализе (аппроксимация данных)[править | править вики-текст] Пусть имеется значений некоторой переменной (это могут быть результаты наблюдений, экспериментов и т. д.) и соответствующих переменных. Задача заключается в том, чтобы взаимосвязь между и аппроксимировать некоторой функцией, известной с точностью до некоторых неизвестных параметров, то есть фактически найти наилучшие значения параметров, максимально приближающие значения к фактическим значениям. Фактически это сводится к случаю «решения» переопределенной системы уравнений относительно:

В регрессионном анализе и в частности в эконометрике используются вероятностные модели зависимости между переменными

где -- так называемые случайные ошибки модели.

Соответственно, отклонения наблюдаемых значений от модельных предполагается уже в самой модели. Сущность МНК (обычного, классического) заключается в том, чтобы найти такие параметры, при которых сумма квадратов отклонений (ошибок, для регрессионных моделей их часто называют остатками регрессии) будет минимальной:

где -- англ. Residual Sum of Squares определяется как:

В общем случае решение этой задачи может осуществляться численными методами оптимизации (минимизации). В этом случае говорят о нелинейном МНК (NLS или NLLS -- англ. Non-Linear Least Squares). Во многих случаях можно получить аналитическое решение. Для решения задачи минимизации необходимо найти стационарные точки функции, продифференцировав её по неизвестным параметрам, приравняв производные к нулю и решив полученную систему уравнений:

МНК в случае линейной регрессии[править | править вики-текст]

Пусть регрессионная зависимость является линейной:

Пусть y -- вектор-столбец наблюдений объясняемой переменной, а -- это -матрица наблюдений факторов (строки матрицы -- векторы значений факторов в данном наблюдении, по столбцам -- вектор значений данного фактора во всех наблюдениях). Матричное представление линейной модели имеет вид:

Тогда вектор оценок объясняемой переменной и вектор остатков регрессии будут равны

соответственно сумма квадратов остатков регрессии будет равна

Дифференцируя эту функцию по вектору параметров и приравняв производные к нулю, получим систему уравнений (в матричной форме):

В расшифрованной матричной форме эта система уравнений выглядит следующим образом:


где все суммы берутся по всем допустимым значениям.

Если в модель включена константа (как обычно), то при всех, поэтому в левом верхнем углу матрицы системы уравнений находится количество наблюдений, а в остальных элементах первой строки и первого столбца -- просто суммы значений переменных: и первый элемент правой части системы -- .

Решение этой системы уравнений и дает общую формулу МНК-оценок для линейной модели:

Для аналитических целей оказывается полезным последнее представление этой формулы (в системе уравнений при делении на n, вместо сумм фигурируют средние арифметические). Если в регрессионной модели данные центрированы, то в этом представлении первая матрица имеет смысл выборочной ковариационной матрицы факторов, а вторая -- вектор ковариаций факторов с зависимой переменной. Если кроме того данные ещё инормированы на СКО (то есть в конечном итоге стандартизированы), то первая матрица имеет смысл выборочной корреляционной матрицы факторов, второй вектор -- вектора выборочных корреляций факторов с зависимой переменной.

Немаловажное свойство МНК-оценок для моделей с константой -- линия построенной регрессии проходит через центр тяжести выборочных данных, то есть выполняется равенство:

В частности, в крайнем случае, когда единственным регрессором является константа, получаем, что МНК-оценка единственного параметра (собственно константы) равна среднему значению объясняемой переменной. То есть среднее арифметическое, известное своими хорошими свойствами из законов больших чисел, также является МНК-оценкой -- удовлетворяет критерию минимума суммы квадратов отклонений от неё.

Простейшие частные случаи[править | править вики-текст]

В случае парной линейной регрессии, когда оценивается линейная зависимость одной переменной от другой, формулы расчета упрощаются (можно обойтись без матричной алгебры). Система уравнений имеет вид:

Отсюда несложно найти оценки коэффициентов:

Несмотря на то что в общем случае модели с константой предпочтительней, в некоторых случаях из теоретических соображений известно, что константа должна быть равна нулю. Например, в физике зависимость между напряжением и силой тока имеет вид; замеряя напряжение и силу тока, необходимо оценить сопротивление. В таком случае речь идёт о модели. В этом случае вместо системы уравнений имеем единственное уравнение

Следовательно, формула оценки единственного коэффициента имеет вид

Статистические свойства МНК-оценок[править | править вики-текст]

В первую очередь, отметим, что для линейных моделей МНК-оценки являются линейными оценками, как это следует из вышеприведённой формулы. Длянесмещенности МНК-оценок необходимо и достаточно выполнения важнейшего условия регрессионного анализа: условное по факторам математическое ожидание случайной ошибки должно быть равно нулю. Данное условие, в частности, выполнено, если математическое ожидание случайных ошибок равно нулю, и факторы и случайные ошибки -- независимые случайные величины.

Первое условие можно считать выполненным всегда для моделей с константой, так как константа берёт на себя ненулевое математическое ожидание ошибок (поэтому модели с константой в общем случае предпочтительнее). наименьший квадрат регрессионный ковариационный

Второе условие -- условие экзогенности факторов -- принципиальное. Если это свойство не выполнено, то можно считать, что практически любые оценки будут крайне неудовлетворительными: они не будут даже состоятельными (то есть даже очень большой объём данных не позволяет получить качественные оценки в этом случае). В классическом случае делается более сильное предположение о детерминированности факторов, в отличие от случайной ошибки, что автоматически означает выполнение условия экзогенности. В общем случае для состоятельности оценок достаточно выполнения условия экзогенности вместе со сходимостью матрицы к некоторой невырожденной матрице при увеличении объёма выборки до бесконечности.

Для того, чтобы кроме состоятельности и несмещенности, оценки (обычного) МНК были ещё и эффективными (наилучшими в классе линейных несмещенных оценок) необходимо выполнение дополнительных свойств случайной ошибки:

Постоянная (одинаковая) дисперсия случайных ошибок во всех наблюдениях (отсутствие гетероскедастичности):

Отсутствие корреляции (автокорреляции) случайных ошибок в разных наблюдениях между собой

Данные предположения можно сформулировать для ковариационной матрицы вектора случайных ошибок

Линейная модель, удовлетворяющая таким условиям, называется классической. МНК-оценки для классической линейной регрессии являютсянесмещёнными, состоятельными и наиболее эффективными оценками в классе всех линейных несмещённых оценок (в англоязычной литературе иногда употребляют аббревиатуру BLUE (Best Linear Unbiased Estimator) -- наилучшая линейная несмещённая оценка; в отечественной литературе чаще приводится теорема Гаусса -- Маркова). Как нетрудно показать, ковариационная матрица вектора оценок коэффициентов будет равна:

Эффективность означает, что эта ковариационная матрица является «минимальной» (любая линейная комбинация коэффициентов, и в частности сами коэффициенты, имеют минимальную дисперсию), то есть в классе линейных несмещенных оценок оценки МНК-наилучшие. Диагональные элементы этой матрицы -- дисперсии оценок коэффициентов -- важные параметры качества полученных оценок. Однако рассчитать ковариационную матрицу невозможно, поскольку дисперсия случайных ошибок неизвестна. Можно доказать, что несмещённой и состоятельной (для классической линейной модели) оценкой дисперсии случайных ошибок является величина:

Подставив данное значение в формулу для ковариационной матрицы и получим оценку ковариационной матрицы. Полученные оценки также являютсянесмещёнными и состоятельными. Важно также то, что оценка дисперсии ошибок (а значит и дисперсий коэффициентов) и оценки параметров модели являются независимыми случайными величинами, что позволяет получить тестовые статистики для проверки гипотез о коэффициентах модели.

Необходимо отметить, что если классические предположения не выполнены, МНК-оценки параметров не являются наиболее эффективными оценками (оставаясь несмещёнными и состоятельными). Однако, ещё более ухудшается оценка ковариационной матрицы -- она становится смещённой инесостоятельной. Это означает, что статистические выводы о качестве построенной модели в таком случае могут быть крайне недостоверными. Одним из вариантов решения последней проблемы является применение специальных оценок ковариационной матрицы, которые являются состоятельными при нарушениях классических предположений (стандартные ошибки в форме Уайта и стандартные ошибки в форме Ньюи-Уеста). Другой подход заключается в применении так называемого обобщённого МНК.

Обобщенный МНК[править | править вики-текст]

Основная статья: Обобщенный метод наименьших квадратов

Метод наименьших квадратов допускает широкое обобщение. Вместо минимизации суммы квадратов остатков можно минимизировать некоторую положительно определенную квадратичную форму от вектора остатков, где -- некоторая симметрическая положительно определенная весовая матрица. Обычный МНК является частным случаем данного подхода, когда весовая матрица пропорциональна единичной матрице. Как известно из теории симметрических матриц (или операторов) для таких матриц существует разложение. Следовательно, указанный функционал можно представить следующим образом

то есть этот функционал можно представить как сумму квадратов некоторых преобразованных «остатков». Таким образом, можно выделить класс методов наименьших квадратов -- LS-методы (Least Squares).

Доказано (теорема Айткена), что для обобщенной линейной регрессионной модели (в которой на ковариационную матрицу случайных ошибок не налагается никаких ограничений) наиболее эффективными (в классе линейных несмещенных оценок) являются оценки т. н. обобщенного МНК (ОМНК, GLS -- Generalized Least Squares) -- LS-метода с весовой матрицей, равной обратной ковариационной матрице случайных ошибок: .

Можно показать, что формула ОМНК-оценок параметров линейной модели имеет вид

Ковариационная матрица этих оценок соответственно будет равна

Фактически сущность ОМНК заключается в определенном (линейном) преобразовании (P) исходных данных и применении обычного МНК к преобразованным данным. Цель этого преобразования -- для преобразованных данных случайные ошибки уже удовлетворяют классическим предположениям.

Взвешенный МНК[править | править вики-текст]

В случае диагональной весовой матрицы (а значит и ковариационной матрицы случайных ошибок) имеем так называемый взвешенный МНК (WLS -- Weighted Least Squares). В данном случае минимизируется взвешенная сумма квадратов остатков модели, то есть каждое наблюдение получает «вес», обратно пропорциональный дисперсии случайной ошибки в данном наблюдении:

Фактически данные преобразуются взвешиванием наблюдений (делением на величину, пропорциональную предполагаемому стандартному отклонению случайных ошибок), а к взвешенным данным применяется обычный МНК.