Макияж. Уход за волосами. Уход за кожей

Макияж. Уход за волосами. Уход за кожей

» » Полупроводниками называют. Полупроводники

Полупроводниками называют. Полупроводники

Одно из главных свойств p‑n‑перехода состоит в его способности пропускать электрический ток в одном (прямом) направлении в тысячи и миллионы раз лучше, чем в обратном.

Полупроводники - класс веществ, занимающих промежуточное положение между веществами, хорошо проводящими электрический ток (проводники, в основном металлы), и веществами, практически не проводящими электрического тока (изоляторы или диэлектрики).

Для полупроводников характерна сильная зависимость их свойств и характеристик от микроскопических количеств содержащихся в них примесей. Изменяя количество примеси в полупроводнике от десятимиллионных долей процента до 0,1–1%, можно изменить их проводимость в миллионы раз. Другое важнейшее свойство полупроводников состоит в том, что электрический ток переносится в них не только отрицательными зарядами - электронами, но и равными им по величине положительными зарядами - дырками.

Если рассматривать идеализированный полупроводниковый кристалл, абсолютно свободный от каких‑нибудь примесей, то его способность проводить электрический ток будет определяться так называемой собственной электропроводностью.

Атомы в кристалле полупроводника связаны между собой с помощью электронов внешней электронной оболочки. При тепловых колебаниях атомов тепловая энергия распределяется между электронами, образующими связи, неравномерно. Отдельные электроны могут получать количество тепловой энергии, достаточное для того, чтобы «оторваться» от своего атома и получить возможность свободно перемещаться в кристалле, т. е. стать потенциальными носителями тока (по‑другому можно сказать, что они переходят в зону проводимости). Такой уход электрона нарушает электрическую нейтральность атома, у него возникает положительный заряд, равный по величине заряду ушедшего электрона. Это вакантное место называют дыркой.

Так как вакантное место может быть занято электроном соседней связи, дырка также может перемещаться внутри кристалла и являться уже положительным носителем тока. Естественно, что электроны и дырки при этих условиях возникают в равных количествах, и электропроводность такого идеального кристалла будет в равной степени определяться как положительными, так и отрицательными зарядами.

Если на место атома основного полупроводника поместить атом примеси, во внешней электронной оболочке которого содержится на один электрон больше, чем у атома основного полупроводника, то такой электрон окажется как бы лишним, ненужным для образования межатомных связей в кристалле и слабо связанным со своим атомом. Достаточно в десятки раз меньше энергии, чтобы оторвать его от своего атома и превратить в свободный электрон. Такие примеси называют донорными, т. е. отдающими «лишний» электрон. Атом примеси заряжается, разумеется, положительно, но дырки при этом не появляется, так как дыркой может быть только вакансия электрона в незаполненной межатомной связи, а в данном случае все связи заполнены. Этот положительный заряд остается связанным со своим атомом, неподвижным и, следовательно, в процессе электропроводности участия принимать не может.

Введение в полупроводник примесей, внешняя электронная оболочка которых содержит меньшее количество электронов, чем в атомах основного вещества, приводит к появлению незаполненных связей, т. е. дырок. Как было сказано выше, эта вакансия может быть занята электроном из соседней связи, и дырка получает возможность свободного перемещения по кристаллу. Иными словами, движение дырки - это последовательный переход электронов из одной соседней связи в другую. Такие примеси, «принимающие» электрон, называют акцепторными.

Если приложить к структуре металл - диэлектрик полупроводник n‑типа напряжение (указанной на рисунке полярности), то в приповерхностном слое полупроводника возникает электрическое поле, отталкивающее электроны. Этот слой оказывается обедненным.

В полупроводнике p‑типа, где основными носителями являются положительные заряды - дырки, та полярность напряжения, которая отталкивала электроны, будет притягивать дырки и создавать обогащенный слой с пониженным сопротивлением. Смена полярности в этом случае приведет к отталкиванию дырок и образованию приповерхностного слоя с повышенным сопротивлением.

С увеличением количества примесей того или иного типа электропроводность кристалла начинает приобретать все более ярко выраженный электронный или дырочный характер. В соответствии с первыми буквами латинских слов negativus и positivus электронную электропроводность называют электропроводностью n‑типа, а дырочную - p‑типа, отмечая этим, какой тип подвижных носителей заряда для данного полупроводника является основным, а какой - неосновным.

При электропроводности, обусловленной наличием примесей (т. е. примесной), в кристалле по‑прежнему остается 2 типа носителей: основные, появляющиеся главным образом за счет введения в полупроводник примесей, и неосновные, обязанные своим появлением тепловому возбуждению. Содержание в 1 см 3 (концентрация) электронов n и дырок p для данного полупроводника при данной температуре есть величина постоянная: n − p = const. Это значит, что, увеличивая за счет введения примесей в несколько раз концентрацию носителей данного типа, мы во столько же раз уменьшаем концентрацию носителей другого типа. Следующее важное свойство полупроводников - их сильная чувствительность к температуре и облучению. С ростом температуры повышается средняя энергия колебания атомов в кристалле, и все большее количество связей будет подвергаться разрыву. Будут появляться все новые и новые пары электронов и дырок. При достаточно высоких температурах собственная (тепловая) проводимость может сравняться с примесной или даже значительно превзойти её. Чем выше концентрация примесей, тем при более высоких температурах будет наступать этот эффект.

Разрыв связей может осуществляться также за счет облучения полупроводника, например, светом, если энергия световых квантов достаточна для разрыва связей. Энергия разрыва связей у разных полупроводников различна, поэтому они по‑разному реагируют на те или иные участки спектра облучения.

В качестве основных полупроводниковых материалов используют кристаллы кремния и германия, а в роли примесей - бор, фосфор, индий, мышьяк, сурьму и многие другие элементы, сообщающие полупроводникам необходимые свойства. Получение полупроводниковых кристаллов с заданным содержанием примесей - сложнейший технологический процесс, проводимый в особо чистых условиях с использованием оборудования высокой точности и сложности.

Все перечисленные важнейшие свойства полупроводников используются для создания самых различных по своему назначению и областям применения полупроводниковых приборов. В технике широко используются диоды, транзисторы, тиристоры и многие другие полупроводниковые приборы. Применение полупроводников началось сравнительно недавно, а сегодня уже трудно перечислить все их «профессии». Они преобразуют световую и тепловую энергию в электрическую и, наоборот, с помощью электричества создают теплоту и холод (см. Гелиоэнергетика). Полупроводниковые приборы можно встретить в обычном радиоприемнике и в квантовом генераторе - лазере, в крошечной атомной батарее и в миниатюрных блоках электронной вычислительной машины. Инженеры не могут сегодня обходиться без полупроводниковых выпрямителей, переключателей и усилителей. Замена ламповой аппаратуры полупроводниковой позволила в десятки раз уменьшить габариты и массу электронных устройств, снизить потребляемую ими мощность и резко увеличить надежность.

Об этом можно прочесть в статье Микроэлектроника.

Что такое полупроводник и с чем его едят?

Полупроводник - материал, без которого не мыслим современный мир техники и электроники. Полупроводники проявляют свойства металов и неметаллов в тех или иных условиях. По значению удельного электрического сопротивления полупроводники занимают промежуточное положение между хорошими проводниками и диэлектриками. Полупроводник отличается от проводников сильной зависимостью удельной проводимости от наличия в кристаллической решетки элементов-примесей (примесные элементы) и концентрации этих элементов, а также от температуры и воздействия различных видов излучения.
Основное свойство полупроводника - увеличение электрической проводимости с увеличением температуры.
Полупроводниками являются вещества, ширина запрещённой зоны которых составляет порядка нескольких электрон-вольт (эВ). Например, алмаз можно отнести к широкозонным полупроводникам, а арсенид индия - к узкозонным. Ширина запрещённой зоны - это ширина энергетического зазора между дном зоны проводимости и потолком валентной зоны, в котором отсутствуют разрешённые состояния для электрона.
Величина ширины запрещённой зоны имеет важное значение при генерации света в светодиодах и полупроводниковых лазерах и определяет энергию испускаемых фотонов.

К числу полупроводников относятся многие химические элементы: Si кремний, Ge германий, As мышьяк, Se селен, Te теллур и другие, а также всевозможные сплавы и химические соединения, например: йодид кремния, арсенид галлия, теллурит ртути и др.). В общем почти все неорганические вещества окружающего нас мира являются полупроводниками. Самым распространённым в природе полупроводником является кремний, составляющий по приблизительным подсчетам почти 30 % земной коры.

В зависимости от того, отдаёт ли атом примесного элемента электрон или захватывает его, примесные атомы называют донорными или акцепторными. Донорские и акцепторные свойства атома примесного элемента зависят также того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается.
Как выше упоминалось, проводниковые свойства полупроводников сильно зависит от температуры, а при достижениитемпературы абсолютного нуля (-273°С) полупроводники имеют свойства диэлектриков.

По виду проводимости полупроводники подразделяют на n-тип и р-тип

Полупроводник n-типа

По виду проводимости полупроводники подразделяют на n-тип и р-тип.

Полупроводник n-типа имеет примесную природу и проводит электрический ток подобно металлам. Примесные элементы, которые добавляют в полупроводники для получения полупроводников n-типа, называются донорными. Термин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд, переносимый свободным электроном.

Теория процесса переноса заряда описывается следующим образом:

В четырёхвалентный Si кремний добавляют примесный элемент, пятивалентный As мышьяка. В процессе взаимодействия каждый атом мышьяка вступает в ковалентную связь с атомами кремния. Но остается пятый свободный атом мышьяка, которому нет места в насыщенных валентных связях, и он переходит на дальнюю электронную орбиту, где для отрыва электрона от атома нужно меньшее количество энергии. Электрон отрывается и превращается в свободный, способный переносить заряд. Таким образом перенос заряда осуществляется электроном, а не дыркой, то есть данный вид полупроводников проводит электрический ток подобно металлам.
Также сурьмой Sb улучшают свойства одного из самых важных полупроводников – германия Ge.

Полупроводник p-типа

Полупроводник p-типа, кроме примесной основы, характеризуется дырочной природой проводимости. Примеси, которые добавляют в этом случае, называются акцепторными.
«p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей.
Например в полупроводник, четырёхвалентный Si кремний, добавляют небольшое количество атомов трехвалентного In индия. Индий в нашем случае будет примесным элементом, атомы которого устанавливает ковалентную связь с тремя соседними атомами кремния. Но у кремния остается одна свободная связь в то время, как у атома индия нет валентного электрона, поэтому он захватывает валентный электрон из ковалентной связи между соседними атомами кремния и становится отрицательно заряженным ионом, образуя так называемую дырку и соответственно дырочный переход.
По такой же схеме In ндий сообщает Ge германию дырочную проводимость.

Исследуя свойства полупроводниковых элементов и материалов, изучая свойства контакта проводника и полупроводника, экспериментируя в изготовлении полупроводниковых материалов, О.В. Лосев 1920-х годах создал прототип современного светодиода.

Наряду с проводниками электричества в природе существует много веществ, обладающих значительно меньшей электропроводимостью, чем металлические проводники. Вещества подобного рода называются полупроводниками.

К полупроводникам относятся: некоторые химические элементы, например селен, кремний и германий, сернистые соединения, например сернистый таллий, сернистый кадмий, сернистое серебро, карбиды, например карборунд, углерод (алмаз), бор, серое олово, фосфор, сурьму, мышьяк, теллур, йод и ряд соединений, в состав которых входит хотя бы один из элементов 4 - 7-й групп системы Менделеева. Существуют также органические полупроводники.

Природа электрической проводимости полупроводника зависит от рода примесей, имеющихся в основном материале полупроводника, и от технологии изготовления его составных частей.

Полупроводник - вещество с 10 -10 - 10 4 (ом х см) -1 , находящееся по этим свойствам между проводником и изолятором. Различие между проводниками, полупроводниками и изоляторами по зонной теории заключается в следующем: в чистых полупроводниках и электронных изоляторах между заполненной зоной (валентной) и зоной проводимости находится запрещенная зона энергий.


Почему полупроводники проводят ток

Полупроводник обладает электронной проводимостью, если в атомах его примеси внешние электроны относительно слабо связаны с ядрами этих атомов. Если в подобного рода полупроводнике создать электрическое поле, то под влиянием сил этого поля внешние электроны атомов примеси полупроводника покинут пределы своих атомов и превратятся в свободные электроны.

Свободные электроны создадут в полупроводнике электрический ток проводимости под влиянием сил электрического поля. Следовательно, природа электрического тока в полупрооводниках с электронной проводимостью та что и в металлических проводниках. Но так как свободных электронов в единице объема полупроводника во много раз меньше, чем в единице объема металлического проводника, то естественно, что при всех прочих одинаковых условиях ток в полупроводнике будет во много раз меньше, чем в металлическом проводнике.

Полупроводник обладает «дырочной» проводимостью, если атомы его примеси не только не отдают своих внешних электронов, но, наоборот, стремятся захватить электроны атомов основного вещества полупроводника. Если атом примеси отберет электрон у атома основного вещества, то в последнем образуется нечто вроде свободного места для электрона - «дырка».

Атом полупроводника, потерявший электрон, называют «электронной дыркой», или просто «дыркой». Если «дырка» заполняется электроном, перешедшим с соседнего атома, то она ликвидируется и атом становится нейтральным в электрическом отношении, а «дырка» смещается на соседний атом, потерявший электрон. Следовательно, если на полупроводник, обладающий «дырочной» проводимостью, воздействовать электрическим полем, то «электронные дырки» будут смещаться в направлении этого поля.

Смещение «электронных дырок» в направлении действия электрического поля аналогично перемещению положительных электрических зарядов в поле и, следовательно, представляет собой явление электрического тока в полупроводнике.

Полупроводники нельзя строго разграничивать по механизму их электрической проводимости, так как наряду с «дырочной» проводимостью данный полупроводник может в той или иной степени обладать и электронной проводимостью.

Полупроводники характеризуются:

    типом проводимости (электронный - n -тип, дырочный - р-тип);

    удельным сопротивлением;

    временем жизни носителей заряда (неосновных) или диффузионной длиной, скоростью поверхностной рекомбинации;

    плотностью дислокаций.

Кремний - наиболее распространенный полупроводниковый материал

Температура оказывает существ, влияние на характеристики полупроводников. Повышение ее преимущественно приводит к уменьшению удельного сопротивления и наоборот, т. е. для полупроводников характерно наличие отрицательного . Вблизи абсолютного нуля полупроводник становится изолятором.

Основой многих приборов служат полупроводники. В большинстве случаев они должны быть получены в виде монокристаллов. Для придания заданных свойств полупроводники легируют различными примесями. К чистоте исходных полупроводниковых материалов предъявляются повышенные требования.


В современной технике полупроводники нашли самое широкое применение, они оказали очень сильное влияние на технический прогресс. Благодаря им удается значительно уменьшить вес и габариты электронных устройств. Развитие всех направлений электроники приводит к созданию и совершенствованию большого количества разнообразной аппаратуры на полупроводниковых приборах. Полупроводниковые приборы служат основой микроэлементов, микромодулей, твердых схем и т. д.

Электронные устройства на полупроводниковых приборах практически безинерционны. Тщательно выполненный и хорошо герметизированный полупроводниковый прибор может служить десятки тыс. часов. Однако некоторые полупроводниковые материалы имеют малый температурный предел (например, германий), но не очень сложная температурная компенсация или замена основного материала прибора другим (напр., кремнием, карбидом кремния) в значительной, степени устраняет и этот недостаток. Совершенствование технологии изготовления полупроводниковых приборов приводит к уменьшению имеющихся еще разброса и нестабильности параметров.

Контакт полупроводник - металл и электронно-дырочный переход (n -р-переход), созданный в полупроводниках, используются при изготовлении полупроводниковых диодов. Двойные переходы (р-n -р или n -р-n ) - транзисторов и тиристоров. Эти приборы в основном применяются для выпрямления, генерации и усиления электрических сигналов.

На основе фотоэлектрических свойств полупроводников создают фотосопротивления, фотодиоды и фототранзисторы. Полупроводник служит активной частью генераторов (усилителей) колебаний . При пропускании электрического тока через p-n переход в прямом направлении, носители заряда - электроны и дырки - рекомбинируют с излучением фотонов, что используется при создании светодиодов.



Термоэлектрические свойства полупроводников позволили создать термосопротивления полупроводниковые, термоэлементы полупроводниковые, термобатареи и термоэлектрические генераторы, а термоэлектрическое охлаждение полупроводников, на основе эффекта Пельтье, - термоэлектрические холодильники и термостабилизаторы.

Полупроводники используются в безмашинных преобразователях тепловой и солнечной энергии в электрическую - термоэлектрических генераторах, и фотоэлектрических преобразователях (солнечных батареях).

Механическое напряжение, приложенное к полупроводнику, изменяет его электрическое сопротивление (эффект сильнее, чем в металлах), что явилось основой тензометра полупроводникового.

Полупроводниковые приборы получили широкое распространение в мировой практике, революционно преобразуя электронику, они служат основой при разработке и производстве:

    измерительной техники, компьютеров,

    аппаратуры для всех видов связи и транспорта,

    для автоматизации процессов в промышленности,

    устройств для научных исследований,

    ракетной техники,

    медицинской аппаратуры

    других электронных устройств и приборов.

Применение полупроводниковых приборов позволяет создавать новую аппаратуру и совершенствовать старую, приводит к значит, уменьшению ее габаритов, веса, потребляемых мощностей, а значит, уменьшению выделения тепла в схеме, к увеличению прочности, к немедленной готовности к действию, позволяет увеличить срок службы и надежность электронных устройств.

Полупроводники характеризуются как свойствами проводников , так и диэлектриков . В полупроводниковых кристаллах атомы устанавливают ковалентные связи (то есть, один электрон в кристалле кремния, как и алмаза, связан двумя атомами), электронам необходим уровень внутренней энергии для высвобождения из атома (1,76·10 −19 Дж против 11,2·10 −19 Дж, чем и характеризуется отличие между полупроводниками и диэлектриками). Эта энергия появляется в них при повышении температуры (например, при комнатной температуре уровень энергии теплового движения атомов равняется 0,4·10 −19 Дж), и отдельные атомы получают энергию для отрыва электрона от атома. С ростом температуры число свободных электронов и дырок увеличивается, поэтому в полупроводнике, не содержащем примесей, удельное сопротивление уменьшается. Условно принято считать полупроводниками элементы с энергией связи электронов меньшей чем 1,5-2 эВ. Электронно-дырочный механизм проводимости проявляется у собственных (то есть без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.

Дырка

Во время разрыва связи между электроном и ядром появляется свободное место в электронной оболочке атома. Это обуславливает переход электрона с другого атома на атом со свободным местом. На атом, откуда перешёл электрон, входит другой электрон из другого атома и т. д. Это обуславливается ковалентными связями атомов. Таким образом, происходит перемещение положительного заряда без перемещения самого атома. Этот условный положительный заряд называют дыркой .

Собственная плотность

При термодинамическом равновесии, плотность электронов полупроводника связана с температурой следующим соотношением:

- Постоянная Планка - масса электрона - температура ; - уровень проводимой зоны - уровень Ферми ;

Также, плотность дырок полупроводника связана с температурой следующим соотношением:

- Постоянная Планка ; - масса дырки; - температура ; - уровень Ферми ; - уровень валентной зоны.

Собственная плотность связана с и следующим соотношением:

Виды полупроводников

По характеру проводимости

Собственная проводимость

Полупроводники, в которых свободные электроны и «дырки» появляются в процессе ионизации атомов, из которых построен весь кристалл, называют полупроводниками с собственной проводимостью. В полупроводниках с собственной проводимостью концентрация свободных электронов равняется концентрации «дырок».

Проводимость связана с подвижностью частиц следующим соотношением:

где - удельное сопротивление, - подвижность электронов , - подвижность дырок, - их концентрация, q - элементарный электрический заряд (1,602·10 −19 Кл).

Для собственного полупроводника концентрации носителей совпадают и формула принимает вид:

Примесная проводимость

Для создания полупроводниковых приборов часто используют кристаллы с примесной проводимостью. Такие кристаллы изготавливаются с помощью внесения примесей с атомами трехвалентного или пятивалентного химического элемента.

По виду проводимости

Электронные полупроводники (n-типа)

Полупроводник n-типа

Термин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд основных носителей. Этот вид полупроводников имеет примесную природу. В четырёхвалентный полупроводник (например, кремний) добавляют примесь пятивалентного полупроводника (например, мышьяка). В процессе взаимодействия каждый атом примеси вступает в ковалентную связь с атомами кремния. Однако для пятого электрона атома мышьяка нет места в насыщенных валентных связях, и он переходит на дальнюю электронную оболочку. Там для отрыва электрона от атома нужно меньшее количество энергии. Электрон отрывается и превращается в свободный. В данном случае перенос заряда осуществляется электроном, а не дыркой, то есть данный вид полупроводников проводит электрический ток подобно металлам. Примеси, которые добавляют в полупроводники, вследствие чего они превращаются в полупроводники n-типа, называются донорными.

Проводимость N-полупроводников приблизительно равна:

Дырочные полупроводники (р-типа)

Полупроводник p-типа

Термин «p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей. Этот вид полупроводников, кроме примесной основы, характеризуется дырочной природой проводимости. В четырёхвалентный полупроводник (например, в кремний) добавляют небольшое количество атомов трехвалентного элемента (например, индия). Каждый атом примеси устанавливает ковалентную связь с тремя соседними атомами кремния. Для установки связи с четвёртым атомом кремния у атома индия нет валентного электрона, поэтому он захватывает валентный электрон из ковалентной связи между соседними атомами кремния и становится отрицательно заряженным ионом, вследствие чего образуется дырка. Примеси, которые добавляют в этом случае, называются акцепторными.

Проводимость p-полупроводников приблизительно равна:

Использование в радиотехнике

Полупроводниковый диод

Полупроводниковый диод состоит из двух типов полупроводников - дырочного и электронного. В процессе контакта между этими областями из области с полупроводником n-типа в область с полупроводником p-типа проходят электроны, которые затем рекомбинируют с дырками. Вследствие этого возникает электрическое поле между двумя областями, что устанавливает предел деления полупроводников - так называемый p-n переход . В результате в области с полупроводником p-типа возникает некомпенсированный заряд из отрицательных ионов, а в области с полупроводником n-типа возникает некомпенсированный заряд из положительных ионов. Разница между потенциалами достигает 0,3-0,6 В.

Связь между разницей потенциалов и концентрацией примесей выражается следующей формулой:

где - термодинамическое напряжение, - концентрация электронов, - концентрация дырок, - собственная концентрация .

В процессе подачи напряжения плюсом на p-полупроводник и минусом на n-полупроводник внешнее электрическое поле будет направлено против внутреннего электрического поля p-n перехода и при достаточном напряжении электроны преодолеют p-n переход, и в цепи диода появится электрический ток (прямая проводимость). При подаче напряжения минусом на область с полупроводником p-типа и плюсом на область с полупроводником n-типа между двумя областями возникает область, которая не имеет свободных носителей электрического тока (обратная проводимость). Обратный ток полупроводникового диода не равен нулю, так как в обоих областях всегда есть неосновные носители заряда. Для этих носителей p-n переход будет открыт.

Таким образом, p-n переход проявляет свойства односторонней проводимости, что обуславливается подачей напряжения с различной полярностью. Это свойство используют для выпрямления переменного тока .

Транзистор

Транзистор - полупроводниковое устройство, которое состоит из двух областей с полупроводниками p- или n-типа, между которыми находится область с полупроводником n- или p-типа. Таким образом, в транзисторе есть две области p-n перехода. Область кристалла между двумя переходами называют базой, а внешние области называют эмиттером и коллектором. Самой употребляемой схемой включения транзистора является схема включения с общим эмиттером, при которой через базу и эмиттер ток распространяется на коллектор.

Биполярный транзистор используют для усиления электрического тока.

Типы полупроводников в периодической системе элементов

В нижеследующей таблице представлена информация о большом количестве полупроводниковых элементов и их соединений, разделённых на несколько типов:

  • одноэлементные полупроводники IV группы периодической системы элементов ,
  • сложные: двухэлементные A III B V и A II B VI из третьей и пятой группы и из второй и шестой группы элементов соответственно.

Все типы полупроводников обладают интересной зависимостью ширины запрещённой зоны от периода, а именно - с увеличением периода ширина запрещённой зоны уменьшается.

Группа IIB IIIA IVA VA VIA
Период
2 5 6 7
3 13 14 15 16
4 30 31 32 33 34
5 48 49 50 51 52
6 80

Физические свойства и применение

Прежде всего, следует сказать, что физические свойства полупроводников наиболее изучены по сравнению с металлами и диэлектриками . В немалой степени этому способствует огромное количество эффектов, которые не могут быть наблюдаемы ни в тех ни в других веществах, прежде всего связанные с устройством зонной структуры полупроводников, и наличием достаточно узкой запрещённой зоны. Конечно же, основным стимулом для изучения полупроводников является производство полупроводниковых приборов и интегральных микросхем - это в первую очередь относится к кремнию , но затрагивает и другие соединения ( , GaAs , InP , InSb).

В связи с тем, что технологи могут получать очень чистые вещества, встаёт вопрос о новом эталоне для числа Авогадро .

Легирование

Объёмные свойства полупроводника могут сильно зависеть от наличия дефектов в кристаллической структуре . И поэтому стремятся выращивать очень чистые вещества, в основном для электронной промышленности. Легирующие примеси вводят для управления величиной и типом проводимости полупроводника. Например, широко распространённый кремний можно легировать элементом V подгруппы периодической системы элементов - фосфором , который является донором , и создать n-Si. Для получения кремния с дырочным типом проводимости (p-Si) используют бор (акцептор). Также создают компенсированные полупроводники с тем чтобы зафиксировать уровень Ферми в середине запрещённой зоны.

Методы получения

Для получения монокристаллов полупроводников используют различные методы физического и химического осаждения. Наиболее прецизионный и дорогой инструмент в руках технологов для роста монокристаллических плёнок - установки молекулярно-лучевой эпитаксии , позволяющей выращивать кристалл с точностью до монослоя.

Оптика полупроводников

Поглощение света полупроводниками обусловлено переходами между энергетическими состояниями зонной структуры. Учитывая принцип запрета Паули , электроны могут переходить только из заполненного энергетического уровня на незаполненный. В собственном полупроводнике все состояния валентной зоны заполнены, а все состояния зоны проводимости незаполненные, поэтому переходы возможны лишь из валентной зоны в зону проводимости . Для осуществления такого перехода электрон должен получить от света энергию, превышающую ширину запрещённой зоны. Фотоны с меньшей энергией не вызывают переходов между электронными состояниями полупроводника, поэтому такие полупроводники прозрачны в области частот , где - ширина запрещённой зоны, - постоянная Планка . Эта частота определяет фундаментальный край поглощения для полупроводника. Для полупроводников, которые зачастую применяются в электронике (кремний , германий , арсенид галлия) она лежит в инфракрасной области спектра.

Дополнительные ограничения на поглощение света полупроводников накладывают правила отбора , в частности закон сохранения импульса . Закон сохранения импульса требует, чтобы квазиимпульс конечного состояния отличался от квазиимпульса начального состояния на величину импульса поглощённого фотона. Волновое число фотона , где - длина волны, очень мало по сравнению с волновым вектором обратной решётки полупроводника, или, что то же самое, длина волны фотона в видимой области намного больше характерного межатомного расстояния в полупроводнике, что приводит к требованию того, чтобы квазиимпульс конечного состояния при электронном переходе практически равнялся квазиимпульсу начального состояния. При частотах, близких к фундаментальному краю поглощения, это возможно только для прямозонных полупроводников . Оптические переходы в полупроводниках, при которых импульс электрона почти не меняется называются прямыми или вертикальными . Импульс конечного состояния может значительно отличаться от импульса начального состояния, если в процессе поглощения фотона участвует ещё одна, третья частица, например, фонон . Такие переходы тоже возможны, хотя и менее вероятны. Они называются непрямыми переходами .

Таким образом, прямозонные полупроводники, такие как арсенид галлия , начинают сильно поглощать свет, когда энергия кванта превышает ширину запрещённой зоны. Такие полупроводники очень удобны для использования в оптоэлектронике .

Непрямозонные полупроводники, например, кремний , поглощают в области частот света с энергией кванта чуть больше ширины запрещённой зоны значительно слабее, только благодаря непрямым переходам, интенсивность которых зависит от присутствия фононов, и следовательно, от температуры . Граничная частота прямых переходов кремния больше 3 эВ, то есть лежит в ультрафиолетовой области спектра.

При переходе электрона из валентной зоны в зону проводимости в полупроводнике возникают свободные носители заряда , а следовательно фотопроводимость .

При частотах ниже края фундаментального поглощения также возможно поглощение света, которое связано с возбуждением экситонов , электронными переходами между уровнями примесей и разрешенными зонами, а также с поглощением света на колебаниях решётки и свободных носителях. Экситонные зоны расположены в полупроводнике несколько ниже дна зоны проводимости благодаря энергии связи экситона. Экситонные спектры поглощения имеют водородоподобную структуру энергетических уровней. Аналогичным образом примеси, акцепторы или доноры , создают акцепторные или донорные уровни, лежащие в запрещённой зоне. Они значительно модифицируют спектр поглощения легированного полупроводника. Если при непрямозонном переходе одновременно с квантом света поглощается фонон, то энергия поглощенного светового кванта может быть меньше на величину энергии фонона, что приводит к поглощению на частотах несколько ниже по энергии от фундаментального края поглощения.

Список полупроводников

Полупроводниковые соединения делят на несколько типов:

  • простые полупроводниковые материалы - собственно химические элементы: бор B, углерод C, германий Ge, кремний Si, селен Se, сера S, сурьма Sb, теллур Te и йод I. Самостоятельное применение широко нашли германий, кремний и селен. Остальные чаще всего применяются в качестве легирующих добавок или в качестве компонентов сложных полупроводниковых материалов;
  • в группу сложных полупроводниковых материалов входят химические соединения, обладающие полупроводниковыми свойствами и включающие в себя два, три и более химических элементов. Полупроводниковые материалы этой группы, состоящие из двух элементов, называют бинарными , и так же, как это принято в химии, имеют наименование того компонента, металлические свойства которого выражены слабее. Так, бинарные соединения, содержащие мышьяк, называют арсенидами , серу - сульфидами , теллур - теллуридами , углерод - карбидами . Сложные полупроводниковые материалы объединяют по номеру группы Периодической системы элементов Д. И. Менделеева , к которой принадлежат компоненты соединения, и обозначают буквами латинского алфавита (A - первый элемент, B - второй и т. д.). Например, бинарное соединение фосфид индия InP имеет обозначение A III B V

Широкое применние получили следующие соединения:

A III B V

  • InSb, InAs, InP, GaSb, GaP, AlSb, GaN, InN
A II B V
  • CdSb, ZnSb
A II B VI
  • ZnS, ZnSe, ZnTe, CdS, CdTe, HgSe, HgTe, HgS
A IV B VI
  • PbS, PbSe, PbTe, SnTe, SnS, SnSe, GeS, GeSe

а также некоторые окислы свинца, олова, германия, кремния а также феррит, аморфные стёкла и многие другие соединения (A I B III C 2 VI , A I B V C 2 VI , A II B IV C 2 V , A II B 2 II C 4 VI , A II B IV C 3 VI).

На основе большинства из приведённых бинарных соединений возможно получение их твёрдых растворов: (CdTe) x (HgTe) 1-x , (HgTe) x (HgSe) 1-x , (PbTe) x (SnTe) 1-x , (PbSe) x (SnSe) 1-x и других.

Соединения A III B V , в основном, применяются для изделий электронной техники, работающих на сверхвысоких частотах

Соединения A II B V используют в качестве люминофоров видимой области, светодиодов , датчиков Холла , модуляторов.

Соединения A III B V , A II B VI и A IV B VI применяют при изготовлении источников и приёмников света, индикаторов и модуляторов излучений.

Окисные полупроводниковые соединения применяют для изготовления фотоэлементов , выпрямителей и сердечников высокочастотных индуктивностей.

Физические свойства соединений типа A III B V
Параметры AlSb GaSb InSb AlAs GaAs InAs
Температура плавления, К 1333 998 798 1873 1553 1218
Постоянная решётки, 6,14 6,09 6,47 5,66 5,69 6,06
Ширина запрещённой зоны ΔE , эВ 0,52 0,7 0,18 2,2 1,32 0,35
Диэлектрическая проницаемость ε 8,4 14,0 15,9 - - -
Подвижность, см²/(В·с):
электронов 50 5000 60 000 - 4000 3400
дырок 150 1000 4000 - 400 460
Показатель преломления света, n 3,0 3,7 4,1 - 3,2 3,2
Линейный коэффициент теплового
расширения, K -1
- 6,9·10 -6 5,5·10 -6 5,7·10 -6 5,3·10 -6 -

Свое название полупроводники получили оттого, что они занимают промежуточное место между проводниками (металлы, электролиты, уголь), обладающими большой электропроводимостью, и изоляторами (фарфор, слюда, резина и другие), которые почти не проводят электрического тока.

Если сравнить удельное объемное сопротивление в Ом × см для различных веществ, то окажется, что проводники имеют: ρ U = 10 -6 - 10 -3 Ом × см; удельное сопротивление полупроводников: ρ U = 10 -3 - 10 8 Ом × см; а у диэлектриков: ρ U = 10 8 - 10 20 Ом × см. К полупроводникам относятся: окислы металлов - оксиды (Al 2 O 3 , Cu 2 O, ZnO, TiO 2 , VO 2 , WO 2 , MoO 3); сернистые соединения - сульфиды (Cu 2 S, Ag 2 S, ZnS, CdS, HgS); соединения с селеном - селениды; соединения с теллуром - теллуриды; некоторые сплавы (MgSb 2 , ZnSb, Mg 2 Sb, CdSb, AlSb, ClSb); химические элементы - германий, кремний, теллур, селен, бор, углерод, сера, фосфор, мышьяк, а также большое число сложных соединений (гален, карборунд и другие).

Рисунок 1. Германий

Рисунок 2. Кремний


Рисунок 3. Теллур

Полное и широкое исследование свойств полупроводников выполнено советским ученым А. Ф. Иоффе и его сотрудниками.

Электрические свойства полупроводников резко отличаются от свойств проводников и изоляторов. Электропроводимость проводников в сильной степени зависит от температуры, освещённости, наличия и интенсивности электрического поля, количества примесей. При обычной температуре в полупроводниках есть некоторое количество свободных электронов, образовавшихся вследствие разрыва электронных связей. У полупроводников различают два вида проводимости: электронную и дырочную. Носителями заряда в полупроводниках при электронной проводимости являются свободные электроны, а при дырочной - связи, лишенные электронов.

Рассмотрим следующий опыт. Возьмем металлический проводник и будем нагревать один его конец, тогда нагретый конец проводника получит положительный заряд. Это объясняется перемещением электронов от горячего конца к холодному, в результате чего на горячем конце проводника получается недостаток электронов (положительный заряд), а на холодном конце избыток электронов (отрицательный заряд). Кратковременное протекание тока по проводнику было вызвано перемещением электронов с одного края проводника на другой. Таким образом, здесь речь идет о проводнике с электронной проводимостью. Однако существуют вещества, которые при подобном опыте ведут себя иначе: нагретый край такого вещества получает отрицательный заряд, а холодный край - положительный заряд. Это возможно, если предположить, что перенос тока осуществляется положительными зарядами.

Рисунок 4. Связь между атомами вещества

Рисунок 5. Собственная проводимость полупроводников
Рисунок 6. Электронная проводимость полупроводника
Рисунок 7. Дырочная проводимость полупроводника

Познакомимся с другим видом проводимости у полупроводников - дырочной проводимостью. В чистых полупроводниках все электроны, слабо связанные с ядрами, участвуют в электронных связях. На рисунке 4, а условно показана заполненная связь между атомами вещества. "Дыркой" называется элемент кристаллической решетки вещества, потерявший электрон, что соответствует появлению положительного заряда (рисунок 4, б ).

Освободившаяся связь может вновь оказаться заполненной, если "дырка" захватит электрон из соседней связи (рисунок 4, в ). Это вызовет переход "дырки" на новое место. В веществе полупроводника, находящегося в нормальных условиях, направление вылета электронов и место образования "дырки" носят хаотический характер. Если к чистому полупроводнику приложить постоянное напряжение, то электроны и "дырки" будут перемещаться (первые против направления сил поля, вторые в противоположном направлении). Если число образующихся "дырок" будет равно числу освободившихся электронов, то, как это бывает у чистых полупроводников, проводимость полупроводников невелика (собственная проводимость). Наличие даже небольшого количества посторонних примесей может изменить механизм электропроводимости: сделать его электронным или дырочным. Рассмотрим конкретный пример. В качестве полупроводника возьмем германий (Ge). В кристалле германия каждый атом связан с четырьмя другими атомами. При увеличении температуры или в результате облучения парные связи кристалла могут быть нарушены. При этом образуется равное количество электронов и "дырок" (рисунок 5).

Добавим к германию в качестве примеси мышьяк. Такая примесь обладает большим числом слабосвязанных электронов. Атомы примеси имеют свой энергетический уровень, располагающийся между энергетическими уровнями свободной и заполненной зон, ближе к последней (рисунок 6). Подобные примеси отдают свои электроны в свободную зону и называются донорными примесями. В полупроводнике окажется наличие свободных электронов, в то время как все связи будут заполнены. Полупроводник будет обладать электронной проводимостью в свободной зоне.

Если теперь в качестве примеси к германию добавит не мышьяк, а индий, то произойдет следующее. Такая примесь обладает малым числом слабо связанных электронов, а энергетический уровень примеси располагается между энергетическими уровнями свободной и заполненной зон, ближе к свободной зоне (рисунок 7). Примеси этого рода принимают в свою зону электроны из соседней заполненной зоны и называются акцепторными примесями. В полупроводнике окажутся незаполненные связи - "дырки" при отсутствии свободных электронов. Полупроводник будет обладать дырочной проводимостью в заполненной зоне.

Теперь станет понятным опыт нагрева полупроводника, когда нагретый конец получал отрицательный заряд, а холодный конец - положительный заряд. Под действием тепла на горячем конце начнут разрушаться связи, возникнут "дырки" и свободные электроны. Если полупроводник содержит примеси, то "дырки" начнут переходить к холодному концу, заряжая его положительно, а нагретый конец полупроводника зарядится отрицательно.

Заканчивая рассмотрение полупроводников, делаем следующий вывод.

Добавлением к полупроводнику примесей можно придать ему преобладающую электронную или дырочную проводимость. Исходя из этого, получают следующие типы полупроводников. Полупроводники с электронной проводимостью называют полупроводниками n -типа (негативные), а с дырочной проводимостью - p -типа (позитивные).

Предлагаем вам также посмотреть учебные видео-фильмы о полупроводниках:

List=PL_QCOTUIndSFAbWcR3t0wYp5IORVEHu3I