Макияж. Уход за волосами. Уход за кожей

Макияж. Уход за волосами. Уход за кожей

» » Самую высокую продуктивность имеют. Продуктивность основных типов природных биомов

Самую высокую продуктивность имеют. Продуктивность основных типов природных биомов

  • 6.Антропогенное влияние на круговороты основных биогенных элементов в биосфере.
  • 7.Основные этапы изменения взаимоотношений человека с природой в ходе его исторического развития.
  • 8.Проблема глобального изменения климата на планете: возможные причины, последствия, пути решения.
  • 9.Опустынивание земель как глобальная экологическая проблема.
  • 10.Проблема обеспечения пресной водой как глобальная экологическая проблема.
  • 11.Проблема деградации почв: причины и последствия в глобальном масштабе.
  • 12.Экологическая оценка глобальной демографической ситуации.
  • 13.Глобальная экологическая проблема загрязнения Мирового океана. В чем причины и экологическая опасность этого процесса?
  • 14.Проблема сокращения биологического разнообразия: причины, экологические последствия, возможные пути решения проблемы.
  • 15.Экологические факторы: понятие и классификация. Основные механизмы действия экологических факторов на живые организмы.
  • 16.Адаптация: понятие адаптации, ее экологическая роль.
  • 17.Основные закономерности действия экологических факторов на живые организмы.
  • 18.Типы биотических взаимоотношений в природе, их экологическая роль.
  • 19.Понятия – стенобионтность и эврибионтность.
  • 20.Понятие популяции, ее биологический и экологический смысл.
  • 21.Численность, плотность, прирост популяции. Регуляция численности.
  • 22.Рождаемость и смертность в популяции: теоретическая и экологическая. Факторы их определяющие.
  • 23.Половая структура популяции и факторы ее определяющие.
  • 24.Возрастная структура популяции, основные типы популяций в зависимости от соотношения возрастов.
  • 25.Пространственная структура популяции и факторы ее определяющие.
  • 26.Этологическая (поведенческая) структура популяции и факторы ее определяющие.
  • 27.Экологические стратегии популяций (r- и k- жизненные стратегии). Их экологический смысл.
  • 28.Выживаемость и кривые выживания организмов в популяции, экологический смысл кривых выживания.
  • 29. Кривые роста популяций, экологическая значимость каждой из стадий роста.
  • 30.Понятие экосистемы, ее основные компоненты, типы экосистем.
  • 31. Пирамиды численности, биомассы, энергии в экосистемах, их экологический смысл.
  • 32.Поток энергии в экосистеме. Правило 10 % энергии.
  • 33.Поток вещества в экосистеме. Принципиальная разница потока вещества и энергии.
  • 34.Пищевые цепи. Эффект накопления токсикантов в пищевых цепях.
  • 35.Продуктивность экологических систем. Наиболее продуктивные экосистемы Земного шара, их экологические проблемы.
  • 36.Экологическая сукцессия, виды сукцессии.
  • 37.Продуценты, консументы и редуценты, их место в цепи питания и экологическая роль в экосистемах.
  • 38.Место и роль человека в экологической системе.
  • 39.Естественные и искусственные экосистемы, их экологическая устойчивость.
  • 40.Понятие загрязнения окружающей среды, естественное и антропогенное загрязнение.
  • 41.Основные виды антропогенного воздействия на окружающую среду: химическое, энергетическое, биологическое загрязнение среды.
  • 42.Экологическая ситуация и здоровье человека. Адаптации человека к действию экстремальных факторов среды.
  • 43.Нормирование качества окружающей среды: цели нормирования, виды нормативов.
  • 44. Принципы, лежащие в основе выработки пдк.
  • 45.Мониторинг среды обитания: понятие, цели и виды мониторинга.
  • 46. Экологические проблемы Дальнего Востока.
  • 35.Продуктивность экологических систем. Наиболее продуктивные экосистемы Земного шара, их экологические проблемы.

    Биологическая продукция – это количество биологического вещества, которое создано за единицу времени на единицу площади (гр/м², кг/м²).

    Биологическая продукция:

    Первичная (валовая); Вторичная (чистая).

    Валовая продукция - это та продукция, которую создают растения в процессе фотосинтеза.

    Чистая продукция – это та часть энергии, которая осталась после расходов на дыхание.

    Средняя продуктивность экосистем земли не превышает 0,3кг/м². При переходе энергии с одного уровня на другой, теряется примерно 90% энергии, поэтому вторичная продукция в 20-50 раз меньше, чем первичная

    Производительность экосистемы, измеряемая количеством органического вещества, которое создано за единицу времени на единицу площади, называется биологической продуктивностью. Единицы измерения продуктивности: г/м² в день, кг/м² в год, т/км ² в год.

    Различают первичную биологическую продукцию, которую создают продуценты, и вторичную биологическую продукцию, которую создают консументы и редуценты.

    Первичную продукцию подразделяют на: валовую – это общее количество созданного органического вещества, и чистую – это то, что осталось после расхода на дыхание и корневые выделения.

    По продуктивности экосистемы делятся на четыре класса:

    1.Экосистемы очень высокой биологической продуктивности – свыше 2 кг/м² в год. К ним относятся заросли тростника в дельтах Волги, Дона и Урала.

    2.Экосистемы высокой продуктивности – 1-2 кг/м² в год. Это липово-дубовые леса, заросли рогоза или тростника на озере, посевы кукурузы.

    3.Экосистемы средней биологической продуктивности – 0,25-1 кг/м² в год. К ним относятся сосновые, берёзовые леса, сенокосные луга, степи.

    4.Экосистемы низкой биологической продуктивности – менее 0,25 кг/м² в год.

    Это арктические пустыни, тундры, большая часть морских экосистем.

    Средняя продуктивность экосистем земли составляет 0,3 кг/м² в год, т. е. на Земле преобладают средние и низкопродуктивные экосистемы.

    При переходе с одного трофического уровня на другой теряется 90% энергии.

    Примером повышенной продуктивности на стыках экосистем мо­гут служить переходные экосистемы между лесом и полем («опу­шечный эффект»), а в водных средах - экосистемы, возникающие в эстуариях рек (места впадения их в моря, океаны и озера и т. п.).

    Этими же закономерностями во многом обусловливаются упо­минавшиеся выше локальные сгущения больших масс живого ве­щества (наиболее высокопродуктивные экосистемы).

    Обычно в океане выделяют следующие сгущения жизни:

    1. Прибрежные. Они располагаются на контакте водной и наземно-воздушной среды. Особенно высокопродуктивны экосистемы эстуариев. Протяженность этих сгущений тем значительнее, чем больше вынос реками органических и минеральных веществ с суши.

    2. Коралловые рифы. Высокая продуктивность этих экосистем связана прежде всего с благоприятным температурным режимом, фильтрационным типом питания многих организмов, видовым бо­гатством сообществ, симбиотическими связями и другими факто­рами.

    3. Саргассовые сгущения. Создаются большими массами плавающих водорослей, чаще всего саргассовых (в Саргассовом море) и филлофорных (в Черном море).

    4. Апвеллинговые. Эти сгущения приурочены к районам океана, где имеет место восходя­щее движение водных масс от дна к поверхности (апвеллинг). Они несут много донных органических и минеральных отложений и в результате активного перемешивания хорошо обеспечены кисло­родом. Эти высокопродуктивные экосистемы являются одним из основных районов промысла рыб и других морепродуктов.

    5. Рифтовые глубоководные (абиссальные) сгущения. Эти экосистемы были открыты только в 70-х годах настоящего столетия. Они уникальны по своей природе: существуют на больших глубинах (2-3 тыс. метров). Первичная продукция в них образуется только в результате процессов хемосинтеза за счет высвобождения энергии из сернистых соединений, поступающих из разломов дна (рифтов). Высокая продуктивность здесь обязана прежде всего благо­приятным температурным условиям, поскольку разломы одновременно являются очагами выхода из недр подогретых (термальных) вод. Это единственные экосистемы, не использующие солнечную энергию. Они живут за счет энергии недр Земли.

    На суше к наиболее высокопродуктивным экосистемам (сгущениям живого вещества) относят: 1) экосистемы берегов морей и океанов в районах, хорошо обеспеченных теплом; 2) экосистемы пойм, периодически заливаемые водами рек, которые откладывают ил, а вместе с ним органические и биогенные вещества, 3) экосистемы небольших внутренних водоемов, бога­тые питательными веществами, а также 4) экосистемы тро­пических лесов. Продуктивность других экосистем видна из табл.3. Выше мы уже отмечали, что человек должен стремиться сохранить высокопродуктивные экосистемы - этот мощнейший каркас биосферы. Его разрушение связано с наиболее значительными отрицательными последствиями для всей биосферы.

    Что касается вторичной (животной) продукции, то она заметно выше в океане, чем в наземных экосистемах. Это связано с тем, что на суше в звено консументов (травоядных) в среднем включается лишь около 10% первичной продукции, а в океане - до 50%. Поэтому, несмотря на более низкую первичную продуктивность океана, чем суши, по массе вторичной продукции эти экосистемы примерно равны.

    В наземных экосистемах основную продукцию (до 50%) и особенно биомассу (около 90%) дают лесные экосистемы. Вместе с тем основная масса этой продукции поступает сразу в звено деструкторов и редуцентов. Для таких экосистем характерно преобладание детритных (за счет мертвого органического вещества) цепей питания. В травянистых экосистемах (луга, степи, прерии, саванны), как и в океане, значительно большая часть первичной продукции прижизненно отчуждается фитофагами (травоядными животными). Такие цепи носят название пастбищных или цепей выеданния.

    По мере того, как человечество с упрямством, достойным лучшего применения, превращает лицо Земли в сплошной антропогенный ландшафт, всё большее практическое значение приобретает оценка продуктивности различных экосистем. Человек научился получать энергию для своих производственных и бытовых нужд самыми различными способами, но энергию для собственного питания он может получать только через фотосинтез.

    В пищевой цепи человека в основании почти всегда оказываются продуценты, преобразующие в энергию биомассы органического вещества. Ибо это как раз та энергия, которую впоследствии могут использовать консументы и, в частности, человек. Одновременно те же самые продуценты производят необходимый для дыхания кислород и поглощают углекислый газ, причём скорость газообмена продуцентов прямо пропорциональна их биопродуктивности. Следовательно, в обобщенном виде вопрос об эффективности экосистем формулируется просто: какую энергию может запасти растительность в виде биомассы органического вещества? На верхнем рис. 1 приведены значения удельной (на 1 м 2) продуктивности основных типов . Из этой диаграммы видно, что сельскохозяйственные угодья, создаваемые человеком, отнюдь не самые продуктивные экосистемы. Наивысшую удельную продуктивность дают болотистые экосистемы — влажные тропические джунгли, эстуарии и лиманы рек и обычные болота умеренных широт. На первый взгляд, они производят бесполезную для человека биомассу, но именно эти экосистемы очищают воздух и стабилизируют состав атмосферы, очищают воду и служат резервуарами для рек и почвенных вод и, наконец, являются местами размножения для огромного числа рыб и других обитателей вод, используемых в пищу человеком. Занимая 10 % площади суши, они создают 40 % производимой на суше биомассы. И это без каких-либо усилий со стороны человека! Именно поэтому уничтожение и «окультуривание» этих экосистем есть не только «убийство курицы, несушей золотые яйца», но и может оказаться самоубийством для человечества. Если обратиться к нижней диаграмме рис. 1, то можно видеть, что вклад пустынь и сухих степей в продуктивность биосферы ничтожен, хотя они уже занимают около четверти поверхности суши и благодаря антропогенному вмешательству имеют тенденцию к быстрому росту. В долгосрочной перспективе борьба с опустыниванием и эрозией почв, то есть превращение малопродуктивных экосистем в продуктивные, — вот разумный путь для антропогенных изменений в биосфере.

    Удельная биопродуктивность открытого океана почти столь же низка, как у полупустынь, а его огромная суммарная продуктивность объясняется тем, что он занимает более 50 % поверхности Земли, вдвое превосходя всю площадь суши. Попытки использовать открытый океан в качестве серьёзного источника продуктов питания в ближайшее время вряд ли могут быть экономически оправданы именно в силу его низкой удельной продуктивности. Однако роль открытого океана в стабилизации условий жизни на Земле столь велика, что охрана его от загрязнения, особенно нефтепродуктами, совершенно необходима.

    Рис. 1. Биопродуктивность экосистем как энергия, накопленная продуцентами в процессе фотосинтеза. Мировое производство электроэнергии составляет около 10 Экал/год, а всего человечество потребляет 50-100 Экал/год; 1 Экал (эксакалория) = 1 миллион миллиардов ккал = К) 18 кал

    Нельзя недооценивать и вклад лесов умеренного пояса и тайги в жизнеспособность биосферы. Особенно существенна их относительная устойчивость к антропогенным воздействиям по сравнению с влажными тропическими джунглями.

    Тот факт, что удельная продуктивность сельскохозяйственных угодий до сих пор в среднем намного ниже, чем у многих природных экосистем, показывает, что возможности роста производства продуктов питания на существующих площадях ещё далеко не исчерпаны. Пример — заливные рисовые плантации, в сущности — антропогенные болотные экосистемы, с их огромными урожаями, получаемыми при современной агротехнике.

    Биологическая продуктивность экосистем

    Скорость, с которой продуценты экосистемы фиксируют солнечную энергию в химических связях синтезируемого органического вещества, определяет продуктивность сообществ. Органическую массу, создаваемую растениями за единицу времени, называют первичной продукцией сообщества. Продукцию выражают количественно в сырой или сухой массе растений либо в энергетических единицах — эквивалентном числе джоулей.

    Валовая первичная продукция — количество вещества, создаваемого растениями за единицу времени при данной скорости фотосинтеза. Часть этой продукции идет на поддержание жизнедеятельности самих растений (траты на дыхание).

    Оставшаяся часть созданной органической массы характеризует чистую первичную продукцию , которая представляет собой величину прироста растений. Чистая первичная продукция — энергетический резерв для консументов и редуцентов. Перерабатываясь в цепях питания, она идет на пополнение массы гетеротрофных организмов. Прирост за единицу времени массы консументов - вторичная продукция сообщества. Вторичную продукцию вычисляют отдельно для каждого трофического уровня, так как прирост массы на каждом из них происходит за счет энергии, поступающей с предыдущего.

    Гетеротрофы, включаясь в трофические цепи, живут за счет чистой первичной продукции сообщества. В разных экосистемах они расходуют ее с разной полнотой. Если скорость изъятия первичной продукции в цепях питания отстает от темпов прироста растений, то это ведет к постепенному увеличению обшей биомассы продуцентов. Под биомассой понимают суммарную массу организмов данной группы или всего сообщества в целом. Недостаточная утилизация продуктов опада в цепях разложения имеет следствием накопление в системе мертвого органического вещества, что происходит, например, при заторфовывании болот, зарастании мелководных водоемов, создании больших запасов подстилки в таежных лесах и т.д. Биомасса сообщества с уравновешенным круговоротом веществ остается относительно постоянной, так как практически вся первичная продукция тратится в цепях питания и разложения.

    Экосистемы также различаются по относительной скорости создания и расходования как первичной, так и вторичной продукции на каждом трофическом уровне. Однако всем без исключения экосистемам свойственны определенные количественные соотношения первичной и вторичной продукции, получившие название правша пирамиды продукции : на каждом предыдущем трофическом уровне количество биомассы, создаваемой за единицу времени, больше, чем на последующем. Графически это правило обычно иллюстрируют в виде пирамид, суживающихся кверху и образованных поставленными друг на друга прямоугольниками равной высоты, длина которых соответствует масштабам продукции на соответствующих трофических уровнях.

    Скорость создания органического вещества не определяет его суммарные запасы, т.е. общую биомассу всех организмов каждого трофического уровня. Наличная биомасса продуцентов или консументов в конкретных экосистемах зависит оттого, как соотносятся между собой темпы накопления органического вещества на определенном трофическом уровне и передачи его на вышестоящий.

    Отношение годового прироста растительности к биомассе в наземных экосистемах сравнительно невелико. Даже в наиболее продуктивных дождевых тропических лесах эта величина не превышает 6,5%. В сообществах с преобладанием травянистых форм скорость воспроизводства биомассы гораздо выше. Отношение первичной продукции к биомассе растений определяет те масштабы потребления растительной массы, которые возможны в сообществе без изменения его продуктивности.

    Для океана правило пирамиды биомасс не действует (пирамида имеет перевернутый вид).

    Все три правила пирамид — продукции, биомассы и чисел — отражают, в конечном счете, энергетические отношения в экосистемах, и если два последних проявляются в сообществах с определенной трофической структурой, то первое (пирамида продукции) имеет универсальный характер. Пирамида чисел отражает численность отдельных организмов (рис. 2) или, например, численность населения по возрастным группам.

    Рис. 2. Упрощенная пирамида численности отдельных организмов

    Знание законов продуктивности экосистем и возможность количественного учета потока энергии имеют важное практическое значение. Первичная продукция агроценозов и эксплуатации человеком природных сообществ — основной источник запасов пищи для человечества.

    Точные расчеты потока энергии и масштабов продуктивности экосистем позволяют регулировать в них круговорот веществ таким образом, чтобы добиваться наибольшего выхода выгодной для человека продукции. Кроме того, необходимо хорошо представлять допустимые пределы изъятия растительной и животной биомассы из природных систем, чтобы не подорвать их продуктивность. Подобные расчеты обычно очень сложны из-за методических трудностей.

    Важнейшим практическим результатом энергетического подхода к изучению экосистем явилось осуществление исследований по Международной биологической программе, проводившихся учеными разных стран мира в течение ряда лет, начиная с 1969 г. в целях изучения потенциальной биологической продуктивности Земли.

    Теоретическая возможная скорость создания первичной биологической продукции определяется возможностями фотосинтетического аппарата растений (ФАР). Максимально достигаемый в природе КПД фотосинтеза 10-12% энергии ФАР, что составляет около половины теоретически возможного. КПД фотосинтеза в 5% считается для фитоценоза очень высоким. В целом по земному шару усвоение растениями солнечной энергии не превышает 0,1%, так как активность фотосинтеза растений ограничивает множество факторов.

    Мировое распределение первичной биологической продукции крайне неравномерно. Общая годовая продукция сухого органического вещества на Земле составляет 150-200 млрд т. Более трети его образуется в океанах, около двух третей — на суше. Почти вся чистая первичная продукция Земли служит для поддержания жизни всех гетеротрофных организмов. Энергия, недоиспользованная консу ментами, запасается в их организмах, органических осадках водоемов и гумусе почв.

    На территории России в зонах достаточного увлажнения первичная продуктивность увеличивается с севера на юг, с увеличением притока тепла и продолжительности вегетационного сезона. Годовой прирост растительности изменяется от 20 ц/га на побережье и островах Северного Ледовитого океана до более чем 200 ц/га на Черноморском побережье Кавказа. В среднеазиатских пустынях продуктивность падает до 20 ц/га.

    Для пяти континентов мира средняя продуктивность различается сравнительно мало. Исключением является Южная Америка, на большей части которой условия для развития растительности очень благоприятны.

    Питание людей обеспечивают в основном сельскохозяйственные культуры, занимающие примерно 10% площади суши (около 1,4 млрд га). Общий годовой прирост культурных растений составляет около 16% всей продуктивности суши, большая часть которой приходится на леса. Примерно половина урожая идет непосредственно на питание людей, остальная часть — на корм домашним животным, используется в промышленности и теряется в отбросах.

    Имеющиеся на Земле ресурсы, включая продукцию животноводства и результаты промысла на суше и в океане, могут обеспечить ежегодно менее 50% потребностей современного населения Земли.

    Таким образом, большая часть населения Земли находится в состоянии хронического белкового голодания, а значительная часть людей страдает также и от общего недоедания.

    Продуктивность биоценозов

    Скорость фиксации солнечной энергии определяет продуктивность биоценозов. Основной показатель продукции — биомасса организмов (растительных и животных), составляющих биоценоз. Различают растительную биомассу — фитомассу, животную — зоомассу, бактериомассу и биомассу каких-либо конкретных групп или организмов отдельных видов.

    Биомасса - органическое вещество организмов, выраженное в определенных количественных единицах и приходящееся на единицу площади или объема (например, г/м 2 , г/м 3 , кг/га, т/км 2 и др.).

    Продуктивность — скорость прироста биомассы. Ее обычно относят к определенному периоду и площади, например к году и гектару.

    Известно, что зеленые растения являются первым звеном в пищевых цепях и только они способны самостоятельно образовывать органическое вещество, используя энергию Солнца. Поэтому биомасса, произведенная автотрофными организмами, т.е. количество энергии, преобразованное растениями в органическое вещество на определенной площади, выраженное в определенных количественных единицах, называется первичной продукцией. Ее величина отражает продуктивность всех звеньев гетеротрофных организмов экосистемы.

    Суммарная продукция фотосинтеза называется первичной валовой продукцией. Это вся химическая энергия в форме произведенного органического вещества. Часть энергии может идти на поддержание жизнедеятельности (дыхание) самих производителей продукции — растений. Если изъять ту часть энергии, которая тратится растениями на дыхание, то получится чистая первичная продукция. Ее можно легко учесть. Достаточно собрать, высушить и взвесить растительную массу, например, при уборке урожая. Таким образом, чистая первичная продукция равна разности между количеством атмосферного углерода, усвоенного растениями в процессе фотосинтеза и потребленного ими на дыхание.

    Максимальная продуктивность характерна для тропических экваториальных лесов. Для такого леса 500 т сухого вещества на 1 га — не предел. Для Бразилии называют цифры в 1500 и даже 1700 т — это 150-170 кг растительной массы на 1 м 2 (сравните: в тундрах — 12 т, а в широколиственных лесах умеренной зоны — до 400 т на 1 га).

    Плодородные наносы почвы, высокая сумма годичных температур, обилие влаги способствуют поддержанию очень высокой продуктивности фитоценозов в дельтах южных рек, в лагунах и эстуариях. Она достигает 20-25 т с 1 га в год в сухом веществе, что значительно превосходит первичную продуктивность еловых лесов (8-12 т). Сахарный тростник за год успевает накопить до 78 т фитомассы на 1 га. Даже сфагновое болото при благоприятных условиях обладает продуктивностью 8-10 т, что можно сравнить с продуктивностью елового леса.

    «Рекордсмены» продуктивности на Земле — травяно-древесные заросли долинного типа, которые сохранились в дельтах Миссисипи, Параны, Ганга, вокруг озера Чад и в некоторых других регионах. Здесь за один год на 1 га образуется до 300 т органического вещества!

    Вторичная продукция — это биомасса, созданная всеми консументами биоценоза за единицу времени. При ее подсчете производят вычисления отдельно для каждого трофического уровня, потому что при движении энергии от одного трофического уровня к другому она прирастает за счет поступления с предыдущего уровня. Общую продуктивность биоценоза нельзя оценить простой арифметической суммой первичной и вторичной продукции, потому что прирост вторичной продукции происходит не параллельно росту первичной, а за счет уничтожения какой-то ее части. Происходит как бы изъятие, вычитание вторичной продукции из общего количества первичной. Поэтому оценку продуктивности биоценоза производят по первичной продукции. Первичная продукция во много раз больше вторичной. В целом вторичная продуктивность колеблется от 1 до 10 %.

    Законами экологии предопределены различия в биомассе растительноядных животных и первичных хищников. Так, за стадом мигрирующих оленей обычно следуют несколько хищников, например волков. Это позволяет волкам быть сытыми без ущерба для воспроизводства стада. Если бы численность волков приближалась к количеству оленей, то хищники быстро истребили бы стадо и остались без корма. По этой причине в умеренной зоне не бывает высокой концентрации хищных млекопитающих и птиц.

    Продуктивность экосистемы - это накопление экосистемой органического вещества в процессе ее жизнедеятельности. Продуктивность экосистемы измеряется количеством органического вещества, создаваемого за единицу времени на единицу площади.

    Различают разные уровни продуцирования, на которых создается первичная и вторичная продукция. Органическая масса, создаваемая продуцентами в единицу времени, называется первичной продукцией , а прирост за единицу времени массы консументов - вторичной продукцией .

    Первичная продукция подразделяется на два уровня - валовую и чистую продукцию. Валовая первичная продукция - это общая масса валового органического вещества, создаваемая растением в единицу времени при данной скорости фотосинтеза, включая и траты на дыхание.

    Растения тратят на дыхание от 40 до 70% валовой продукции. Меньше всего ее тратят планктонные водоросли - около 40% от всей использованной энергии. Та часть валовой продукции, которая не израсходована «на дыхание», называется чистой первичной продукцией, она представляет собой величину прироста растений и именно эта продукция потребляется консументами и редуцентами.

    Вторичная продукция не делится уже на валовую и чистую, так как консументы и редуценты, т.е. все гетеротрофы, увеличивают свою массу за счет первичной продукции, т.е. используют ранее созданную продукцию.

    Рассчитывают вторичную продукцию отдельно для каждого трофического уровня , так как она формируется за счет энергии, поступающей с предшествующего уровня.

    Все живые компоненты экосистемы - продуценты, консументы и редуценты - составляют общую биомассу (живой вес) сообщества в целом или его отдельных частей, тех или иных групп организмов. Биомассу обычно выражают через сырой и сухой вес, но можно выражать и в энергетических единицах - в калориях, джоулях и т.п, что позволяет выявить связь между величиной поступающей энергии и, например, средней биомассой.

    По величине биологической продуктивности экосистемы подразделяют на 4 класса:

    1. экосистемы очень высокой продуктивности — >2 кг/м 2 в год (тропические леса, коралловые рифы);
    2. экосистемы высокой продуктивности – 1-2 кг/м 2 в год (липово-дубовые леса, прибрежные заросли рогоза или тростника на озерах, посевы кукурузы и многолетних трав при орошении и внесении высоких доз удобрений);
    3. экосистемы умеренной продуктивности — 0,25-1 кг/м 2 в год (сосновые и березовые леса, сенокосные луга и степи, заросшие водными растениями озера);
    4. экосистемы низкой продуктивности — < 0,25 кг/м 2 в год (пустыни, тундра, горные степи, большая часть морских экосистем). Средняя биологическая продуктивность экосистем на планете равна 0,3 кг/м 2 в год.

    Понятие продуктивности экосистем

    Экосистема, или экологическая система -- биологическая система, состоящая из сообщества живых организмов (биоценоз), среды их обитания (биотоп), системы связей, осуществляющей обмен веществом и энергией между ними. Одно из основных понятий экологии.

    Пример экосистемы -- пруд с обитающими в нём растениями, рыбами, беспозвоночными животными, микроорганизмами, составляющими живую компоненту системы, биоценоз.

    Понятие экосистемы:

    Определения

    1. Любое единство, включающее все организмы на данном участке и взаимодействующее с физической средой таким образом, что поток энергии создаёт чётко определённую трофическую структуру, видовое разнообразие и круговорот веществ (обмен веществами и энергией между биотической и абиотической частями) внутри системы, представляет собой экологическую систему, или экосистему.

    2. Сообщество живых организмов вместе с неживой частью среды, в которой оно находится, и всеми разнообразными взаимодействиями называют экосистемой.

    3. Любую совокупность организмов и неорганических компонентов окружающей их среды, в которой может осуществляться круговорот веществ, называют экологической системой или экосистемой.

    4. Биогеоценоз -- взаимообусловленный комплекс живых и косных компонентов, связанных между собой обменом веществ и энергииhttp://ru.wikipedia.org/wiki/%D0%AD%D0%BA%D0%BE%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0 - cite_note-biogeobse-5 .

    Продуктивность экосистем -- это количество органического вещества (в единицах массы или энергии), производимой с единицы поверхности за единицу времени. Например, производительность тропического леса -- кг/м кв в год и т.д.

    Производительность биологическая (экосистем) бывает первичной, вторичной, чистой и валовой.

    Первичная продуктивность (или продукция) -- это биомасса или энергия, созданная продуцентами в единицу времени на единицу пространства. Различают валовую первичную продуктивность (ВПП) -- скорость, с которой солнечная энергия превращается продуцентами на органическое соединение во время фотосинтеза (ее выражают в кал/м кв в час), и чистую первичную продуктивность (ЧПП) -- энергию, что идет на прирост или поглощается деструктором:

    ВПП = ЧПП + Д,

    где ВПП -- валовая первичная продуктивность; ЧПП -- чистая первичная продуктивность; Д -- энергия дыхания.

    Вторичная производительность (или вторичная продукция) -- общее количество органического вещества, которая произведена всеми гетеротрофами на единицу площади за единицу времени. Вторичная производительность также делится на валовую и чистую.

    Продуктивность основных типов природных биомов

    продуктивность природная биом агроэкосистема

    Биом - это природная зона или область с определенными климатическими условиями и соответствующим набором доминирующих видов растений и животных (живое население), составляющих географическое единство. Для разграничения наземных биомов, кроме физико-географических условий среды, используют сочетания жизненных форм растений, их составляющих. Например, в лесных биомах доминирующая роль принадлежит деревьям, в тундре - многолетним травам, в пустыне - однолетним травам, ксерофитам и суккулентам.

    Продвигаясь с севера к экватору, можно выделить девять основных типов сухопутных биомов. Приведем их краткую характеристику.

    1. Тундра. Расположена между полярными льдами и таежными лесами к югу. Характерной особенностью этого биома является малое годовое количество осадков - всего 250 мм в год. Основные лимитирующие факторы - низкая температура и короткий сезон вегетации.

    2. Тайга (биом бореальных (северных) хвойных лесов). Это один из самых обширных по площади биомов. Здесь растут вечнозеленые хвойные древесные породы: лиственница, ель, пихта, сосна. Из лиственных обычна примесь ольхи, березы, осины. Крупных животных мало, в основном это лоси и олени, но обитает большое количество хищников: куницы, рыси, волки, росомахи, норки, соболи. Многочисленные грызуны.

    3. Листопадные леса умеренной зоны. В умеренном поясе, где достаточно влаги (800-1500 мм в год), а жаркое лето сменяется холодной зимой, развились леса определенного типа. К существованию в таких условиях приспособились деревья, сбрасывающие листву в неблагоприятное время года: дуб, бук, клен, граб, орешник. Вперемешку с ними встречаются здесь и сосна, и ель. Среди представителей животного мира можно отметить кабана, волка, оленя, лисицу, медведя, а также дятла, синицу, дрозда, зяблика и др. Современная лесная растительность здесь сформировалась под непосредственным влиянием человека.

    4. Степи умеренной зоны. Степи занимают внутренние пространство евразийского, североамериканского континентов, юг Южной Америки и Австралии. Решающий фактор существования степей - климат. Осадков здесь недостаточно для существования деревьев, но и не настолько мало, чтобы образовались пустыни. В год выпадает от 250 до 750 мм осадков. Почвы степей с высокими травами богаты гумусом, поскольку к концу лета травы погибают и быстро разлагаются. В настоящее время здесь можно встретить порой только одомашненных коров, лошадей, овец и коз.

    5. Растительность средиземноморского типа. Этот биом носит специфическое название - чапарраль. Его распространение приурочено к областям с мягкими дождливыми зимами и нередко засушливым летом. Преобладает жестколистная растительность с толстыми и глянцевыми листьями. В Австралии такую растительность составляют деревья и кустарники из рода эвкалипт. Из животных встречаются кролики, древесные крысы, бурундуки, некоторые виды оленей. В этом биоме важную роль играют пожары, которые, с одной стороны, благоприятствуют росту трав и кустарников (в почву возвращаются элементы питания), а с другой - создают естественный барьер от вторжения пустынной растительности.

    6. Пустыни. Биом пустынь характерен для засушливых и полузасушливых зон Земли, где выпадает менее 250 мм осадков. Пустыни занимают около 1/5 поверхности суши. Среди них выделяют:

    ¦ пустыни, где годами не выпадает ни одного дождя (центральная Сахара, пустыни Такла-Макан в Центральной Азии, Атакама в Южной Америке, Ла-Жойа в Перу и Асуан в Ливии). В среднем такие пустыни получают около 10 мм осадков в год;

    ¦ пустыни, где выпадает менее 100 мм осадков в год (растительность здесь сосредоточивается вдоль русел рек, наполняющихся только после дождя);

    ¦ пустыни, где выпадает от 100 до 200 мм" осадков в год (возделывать культуры здесь невозможно, но многолетняя растительность встречается повсюду).

    Пустынные животные выживают, поедая запасающие воду растения. Из крупных животных отметим верблюда, который может долгое время обходиться без воды, при условии периодического ее «запасания». Для мелких животных пустынь главным источником воды в основном является влага, содержащаяся в поедаемых ими кормах. Некоторые из этих животных вообще не умеют пить воду

    7. Тропические саванны и лугопастбищные земли. Данный биом распространен на довольно бедных почвах, что послужило причиной относительной его сохранности.

    Биом располагается по обеим сторонам от экваториальной зоны между тропиков. Типичный пейзаж саванны - высокая трава с редкостоящими деревьями из родов акация, баобаб, древовидные молочаи. Растения вынуждены здесь приспосабливаться к сухим сезонам и пожарам.

    Видовое разнообразие животных в саваннах значительно меньше, чем в тропических лесах, но отдельные виды выделяются высокой плотностью особей, образуя стада, табуны, стаи, прайды. В саваннах Африки пасется такое количество копытных, которое не встречается ни в одном другом биоме. Растениями питаются многие звери и птицы: бородавочники, зебры, жирафы, слоны, цесарки, страусы.

    8. Тропическое или колючее редколесье. Это в основном светлые редкослойные лиственные леса и колючие, причудливо изогнутые кустарники. Данный биом характерен для южной, юго-западной Африки и юго-западной Азии. Монотонно-однообразная растительность иногда украшается величественными баобабами. Лимитирующий фактор здесь - неравномерное распределение осадков, хотя в целом их выпадает достаточное количество.

    9. Тропические леса. Биом занимает тропические области Земли в бассейнах Амазонки и Ориноко в Южной Америке; бассейны Конго, Нигера и Замбези в Центральной и Западной Африке, Мадагаскар, Индо-Малайскую область и Борнео-Новую Гвинею. Тропики обычно называют джунглями.

    В кронах обитает многочисленное и разнообразное население. Среди птиц, обитающих в кронах, немало таких, которые не слишком хорошо летают, в основном они прыгают и лазают (птицы-носороги, райские птицы).

    Растительность тропического леса предстает перед путешественником сплошной стеной растений, поднимающихся на высоту до 75 м (рис. 6.12). Главной особенностью тропических лесов является то, что произрастают они на крайне бедных почвах. Верхний слой почвы не превышает 5 см на склонах. Под ним обычно лежит красная латеритная глина, лишенная питательных веществ.

    Лучистая энергия солнца, усваиваемая зелеными автотрофными растениями, превращается в энергию химических связей синтезируемого вещества. Скорость фиксации солнечной энергии определяет продуктивность сообществ. Продуктивность автотрофных организмов представляет собой первичную продуктивность . Продуктивность представителей других трофических уровней составляет вторичную продуктивность .

    Основной показатель продуктивности - биомасса организмов (растительных и животных), составляющих экосистему. Биомасса - это выраженное в единицах массы или энергии количество живого вещества организмов, приходящееся на единицу площади или объема (например, г/м2, г/м3, кг/га, т/км2 и др.). Используют массу либо сырого, либо, чаще всего, сухого вещества. Различают растительную биомассу (фитомассу), животную (зоомассу), бактериомассу, либо биомассу каких-либо конкретных групп или организмов отдельных видов.

    Величина биомассы меняется в зависимости от сезона года, миграций животных, от степени ее потребления.

    Биомасса, производимая биоценозом на единице площади за единицу времени, называется биологической продукцией . Она выражается в тех же величинах, что и биомасса, но с указанием времени, за которое она создана (например, кг/га за месяц).

    Различают 2 вида продукции - первичную и вторичную.

    Первичная продукция - это биомасса, произведенная автотрофными организмами (зелёными растениями) на единице площади за единицу времени.

    Суммарная продукция фотосинтеза называется первичной валовой продукцией . Это вся химическая энергия в форме произведенного органического вещества. При этом часть энергии может идти на поддержание жизнедеятельности (дыхание) самих производителей продукции - растений. Если мы изымем ту часть энергии, которая тратится растениями на дыхание, то получим чистую первичную продукцию .

    Зеленые растения могут перерабатывать от 1 до 5% получаемой энергии Солнца. Животные, питающиеся растениями, для образования биомассы своего тела используют всего 1% энергии, содержащейся в растительном материале.

    Вторичная продукция - это биомасса, созданная всеми консументами экосистемы за единицу времени.

    В целом вторичная продукция колеблется от 1 до 10% в зависимости от свойств животного и особенностей поедаемого корма.

    По участию в биологическом круговороте веществ в экосистеме различают 3 группы организмов.

    • 1 Продуценты (автотрофные организмы). Являясь организмами-продуцентами, автотрофы синтезируют с помощью солнечного света из СО2 и Н2O, а также неорганических солей почвы органические соединения, преобразуя при этом световую энергию в химическую. Они обеспечивают органическими веществами и энергией все живое население биоценоза.
    • 2 Консументы (потребители). Они не способны синтезировать вещества своего тела из неорганических составляющих. К ним относятся все животные, которые извлекают необходимую энергию из готовой пищи, поедая растения или других животных. Первичными консументами являются растительноядные животные (фитофаги), питающиеся травой, семенами, плодами, подземными частями растений - корнями, клубнями, луковицами и даже древесиной (некоторые насекомые). Ко вторичным консументам относят плотоядных животных (хищников).

    3 Редуценты (от лат. reducens, reducentis - возвращающий, восстанавливающий) - микроорганизмы и грибы, разрушающие мертвое органическое вещество и превращающие его в воду, СО2 и неорганические вещества, которые в состоянии усваивать другие организмы (продуценты). Основными редуцентами являются бактерии, грибы, простейшие, т.е. гетеротрофные микроорганизмы.

    Осуществляя пищевые взаимодействия, организмы биоценоза выполняют 3 функции :

    • 1) энергетическую - выражается в запасании энергии в форме химических связей первичного органического вещества; её выполняют организмы-продуценты;
    • 2) перераспределения и переноса энергии пищи - её выполняют консументы;
    • 3) разложения органического вещества редуцентами до простых минеральных соединении, которые снова вовлекаются в биологический круговорот организмами-продуцентами.

    Перенос веществ и заключенной в них энергии от автотрофов к гетеротрофам, происходящий в результате поедания одними организмами других, называется пищевой цепью . Число звеньев в ней может быть различным, но обычно их бывает от 3 до 5.

    Совокупность организмов, объединенных одним типом питания и занимающих определенное положение в пищевой цепи, носит название трофический уровень . К одному трофическому уровню принадлежат организмы, получающие свою энергию от Солнца через одинаковое число ступеней.

    Пищевые цепи, которые начинаются с автотрофных фото-синтезирующих организмов, называются пастбищными, или цепями выедания .

    Если пищевая цепь начинается с отмерших остатков растений, трупов и экскрементов животных (детрита), она называется детритной, или цепью разложения .

    В биоценозах обычно существует ряд параллельных пищевых цепей - пищевая сеть . Сокращение численности особей одного вида - звена в пищевой цепи, вызванное деятельностью человека или другими причинами, неизбежно приводит к нарушениям целостности экосистемы.

    В результате последовательности превращений энергии в пищевых цепях каждое сообщество живых организмов приобретает определенную трофическую структуру. Трофическую структуру обычно отображают графическими моделями в виде экологических пирамид.

    Эффект пирамиды в виде таких моделей разработал в 1927 г. английский зоолог Чарлз Элтон. Основанием пирамиды служит первый трофический уровень - уровень продуцентов, а последующие уровни образуют консументы различных порядков. При этом высота всех блоков одинакова, а длина - пропорциональна числу, биомассе или энергии на соответствующем уровне. Различают три способа построения экологических пирамид.

    • 1 Пирамида чисел (численностей) отражает численность отдельных организмов на каждом уровне. Например, чтобы прокормить одного волка, необходимо по крайней мере несколько зайцев, на которых он мог бы охотиться; чтобы прокормить этих зайцев, нужно довольно большое количество разнообразных растений. Иногда пирамиды чисел могут быть обращенными, или перевернутыми. Это касается пищевых цепей леса, когда продуцентами служат деревья, а первичными консументами - насекомые. В этом случае уровень первичных консументов численно богаче уровня продуцентов (на одном дереве кормится большое количество насекомых).
    • 2 Пирамида биомасс - соотношение между организмами разных трофических уровней (продуцентами, консументами и редуцентами), выраженное в их массе. Обычно в наземных биоценозах общая масса продуцентов больше, чем каждого последующего звена. В свою очередь, общая масса консументов первого порядка больше, нежели общая масса консументов второго порядка и т.д. Если организмы не слишком различаются по размерам, то на графике обычно получается ступенчатая пирамида с суживающейся верхушкой. Так, для образования 1 кг говядины необходимо 70-90 кг свежей травы.

    В водных экосистемах можно также получить обращенную (или перевернутую) пирамиду биомасс, когда биомасса продуцентов оказывается меньшей, нежели биомасса консументов, а иногда и редуцентов. Например, в океане при довольно высокой продуктивности фитопланктона его общая масса в данный момент может быть меньше, нежели масса потребителей-консументов (киты, крупные рыбы, моллюски).

    3. Пирамида энергии отражает величину потока энергии, скорость прохождения массы нищи через пищевую цепь. На структуру биоценоза в большей степени оказывает влияние не количество фиксированной энергии, а скорость продуцирования пищи.

    Пирамида энергии, в отличие от пирамид чисел и биомасс, всегда суживается кверху.

    Потребленная пища на каждом трофическом уровне ассимилируется не полностью. Значительная её часть тратится на обмен веществ. При переходе к каждому последующему звену пищевой цепи общее количество пригодной для использования энергии, передаваемой на следующий, более высокий трофический уровень, уменьшается. Продукция каждого последующего уровня примерно в 10 раз меньше продукции предыдущего.

    В 1942 г. Р. Линдеман сформулировал закон пирамиды энергии (или закон 10 процентов), согласно которому с одного трофического уровня через пищевые цепи на другой трофический уровень переходит в среднем около 10% поступившей на предыдущий уровень экологической пирамиды энергии . Остальная её часть теряется в виде теплового излучения. Организмы в результате процессов обмена теряют в каждом звене пищевой цепи около 90% всей энергии, которая расходуется на поддержание их жизнедеятельности.

    Вот почему цепи питания обычно не могут иметь более 3-5 (редко 6) звеньев, а экологические пирамиды не могут состоять из большого количества этажей.