Макияж. Уход за волосами. Уход за кожей

Макияж. Уход за волосами. Уход за кожей

» » Чему равен arccos x. Вывод формул обратных тригонометрических функций

Чему равен arccos x. Вывод формул обратных тригонометрических функций

В данной статье рассматриваются вопросы нахождения значений арксинуса, арккосинуса, арктангенса и арккотангенса заданного числа. Для начала вводятся понятия арксинуса, арккосинуса, арктангенса и арккотангенса. Рассматриваем основные их значения, по таблицам, в том числе и Брадиса, нахождение этих функций.

Yandex.RTB R-A-339285-1

Значения арксинуса, арккосинуса, арктангенса и арккотангенса

Необходимо разобраться в понятиях «значения арксинуса, арккосинуса, арктангенса, арккотангенса».

Определения арксинуса, арккосинуса, арктангенса и арккотангенса числапомогут разобраться в вычислении заданных функций. Значение тригонометрических функций угла равняется числу a , тогда автоматически считается величиной этого угла. Если a – число, тогда это и есть значение функции.

Для четкого понимания рассмотрим пример.

Если имеем арккосинус угла равного π 3 , то значение косинуса отсюда равно 1 2 по таблице косинусов. Данный угол расположен в промежутке от нуля до пи, значит, значение арккосинуса 1 2 получим π на 3 . Такое тригонометрическое выражение записывается как a r cos (1 2) = π 3 .

Величиной угла может быть как градус, так и радиан. Значение угла π 3 равняется углу в 60 градусов (подробней разбирается в теме перевода градусов в радианы и обратно ). Данный пример с арккосинусом 1 2 имеет значение 60 градусов. Такая тригонометрическая запись имеет вид a r c cos 1 2 = 60 °

Основные значения arcsin, arccos, arctg и arctg

Благодаря таблице синусов, косинусов, тангенсов и котангенсов, мы имеет точные значения угла при 0 , ± 30 , ± 45 , ± 60 , ± 90 , ± 120 , ± 135 , ± 150 , ± 180 градусов. Таблица достаточно удобна и из нее можно получать некоторые значения для аркфункций, которые имеют название как основные значения арксинуса, арккосинуса, арктангенса и арккотангенса.

Таблица синусов основных углов предлагает такие результаты значений углов:

sin (- π 2) = - 1 , sin (- π 3) = - 3 2 , sin (- π 4) = - 2 2 , sin (- π 6) = - 1 2 , sin 0 = 0 , sin π 6 = 1 2 , sin π 4 = 2 2 , sin π 3 = 3 2 , sin π 2 = 1

Учитывая их, можно легко высчитать арксинус числа всех стандартных значений, начиная от - 1 и заканчивая 1 , также значения от – π 2 до + π 2 радианов, следуя его основному значению определения. Это и является основными значениями арксинуса.

Для удобного применения значений арксинуса занесем в таблицу. Со временем придется выучить эти значения, так как на практике приходится часто к ним обращаться. Ниже приведена таблица арксинуса с радианным и градусным значением углов.

Для получения основных значений арккосинуса необходимо обратиться к таблице косинусов основных углов. Тогда имеем:

cos 0 = 1 , cos π 6 = 3 2 , cos π 4 = 2 2 , cos π 3 = 1 2 , cos π 2 = 0 , cos 2 π 3 = - 1 2 , cos 3 π 4 = - 2 2 , cos 5 π 6 = - 3 2 , cos π = - 1

Следуя из таблицы, находим значения арккосинуса:

a r c cos (- 1) = π , arccos (- 3 2) = 5 π 6 , arcocos (- 2 2) = 3 π 4 , arccos - 1 2 = 2 π 3 , arccos 0 = π 2 , arccos 1 2 = π 3 , arccos 2 2 = π 4 , arccos 3 2 = π 6 , arccos 1 = 0

Таблица арккосинусов.

Таким же образом, исходя из определения и стандартных таблиц, находятся значения арктангенса и арккотангенса, которые изображены в таблице арктангенсов и арккотангенсов ниже.

a r c sin , a r c cos , a r c t g и a r c c t g

Для точного значения a r c sin , a r c cos , a r c t g и a r c c t g числа а необходимо знать величину угла. Об этом сказано в предыдущем пункте. Однако, точное значении функции нам неизвестно. Если необходимо найти числовое приближенное значение аркфункций, применяют т аблицу синусов, косинусов, тангенсов и котангенсов Брадиса.

Такая таблица позволяет выполнять довольно точные вычисления, так как значения даются с четырьмя знаками после запятой. Благодаря этому числа выходят точными до минуты. Значения a r c sin , a r c cos , a r c t g и a r c c t g отрицательных и положительных чисел сводится к нахождению формул a r c sin , a r c cos , a r c t g и a r c c t g противоположных чисел вида a r c sin (- α) = - a r c sin α , a r c cos (- α) = π - a r c cos α , a r c t g (- α) = - a r c t g α , a r c c t g (- α) = π - a r c c t g α .

Рассмотрим решение нахождения значений a r c sin , a r c cos , a r c t g и a r c c t g с помощью таблицы Брадиса.

Если нам необходимо найти значение арксинуса 0 , 2857 , ищем значение, найдя таблицу синусов. Видим, что данному числу соответствует значение угла sin 16 градусов и 36 минут. Значит, арксинус числа 0 , 2857 – это искомый угол в 16 градусов и 36 минут. Рассмотрим на рисунке ниже.

Правее градусов имеются столбцы называемые поправки. При искомом арксинусе 0 , 2863 используется та самая поправка в 0 , 0006 , так как ближайшим числом будет 0 , 2857 . Значит, получим синус 16 градусов 38 минут и 2 минуты, благодаря поправке. Рассмотрим рисунок с изображением таблицы Брадиса.

Бывают ситуации, когда искомого числа нет в таблице и даже с поправками его не найти, тогда отыскивается два самых близких значения синусов. Если искомое число 0,2861573, то числа 0,2860 и 0,2863 являются ближайшими его значениями. Этим числам соответствуют значения синуса 16 градусов 37 минут и 16 градусов и 38 минут. Тогда приближенное значение данного числа можно определить с точностью до минуты.

Таким образом находятся значения a r c sin , a r c cos , a r c t g и a r c c t g .

Чтобы найти арксинус через известный арккосинус данного числа, нужно применить тригонометрические формулы a r c sin α + a r c cos α = π 2 , a r c t g α + a r c c t g α = π 2 (не обходимо просмотреть тему формул сумм ы арккосинуса и арксинуса, суммы арктангенса и арккотангенса ).

При известном a r c sin α = - π 12 необходимо найти значение a r c cos α , тогда необходимо вычислить арккосинус по формуле:

a r c cos α = π 2 − a r c sin α = π 2 − (− π 12) = 7 π 12 .

Если необходимо найти значение арктангенса или арккотангенса числа a с помощью известного арксинуса или арккосинуса, необходимо производить долгие вычисления, так как стандартных формул нет. Рассмотрим на примере.

Если дан арккосинус числа а равный π 10 , а вычислить арктангенс данного числа поможет таблица тангенсов. Угол π 10 радиан представляет собой 18 градусов, тогда по таблице косинусов видим, что косинус 18 градусов имеет значение 0 , 9511 , после чего заглядываем в таблицу Брадиса.

При поиске значения арктангенса 0 , 9511 определяем, что значение угла имеет 43 градуса и 34 минуты. Рассмотрим по таблице ниже.

Фактически, таблица Брадиса помогает в нахождении необходимого значения угла и при значении угла позволяет определить количество градусов.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Представлен способ вывода формул для обратных тригонометрических функций. Получены формулы для отрицательных аргументов, выражения, связывающие арксинус, арккосинус, арктангенс и арккотангенс. Указан способ вывода формул суммы арксинусов, арккосинусов, арктангенсов и арккотангенсов.

Основные формулы

Вывод формул для обратных тригонометрических функций прост, но требует контроля за значениями аргументов прямых функций. Это связано с тем, что тригонометрические функции периодичны и, поэтому, обратные к ним функции многозначны. Если особо не оговорено, то под обратными тригонометрическими функциями подразумевают их главные значения. Для определения главного значения, область определения тригонометрической функции сужают до интервала, на котором она монотонна и непрерывна. Вывод формул для обратных тригонометрических функций основывается на формулах тригонометрических функций и свойствах обратных функций как таковых. Свойства обратных функций можно разбить на две группы.

В первую группу входят формулы, справедливые на всей области определения обратных функций:
sin(arcsin x) = x
cos(arccos x) = x
tg(arctg x) = x (-∞ < x < +∞ )
ctg(arcctg x) = x (-∞ < x < +∞ )

Во вторую группу входят формулы, справедливые только на множестве значений обратных функций.
arcsin(sin x) = x при
arccos(cos x) = x при
arctg(tg x) = x при
arcctg(ctg x) = x при

Если переменная x не попадает в указанный выше интервал, то ее следует привести к нему, применяя формулы тригонометрических функций (далее n - целое):
sin x = sin(- x-π) ; sin x = sin(π-x) ; sin x = sin(x+2 πn) ;
cos x = cos(-x) ; cos x = cos(2 π-x) ; cos x = cos(x+2 πn) ;
tg x = tg(x+πn) ; ctg x = ctg(x+πn)

Например, если известно, что то
arcsin(sin x) = arcsin(sin( π - x )) = π - x .

Легко убедиться, что при π - x попадает в нужный интервал. Для этого умножим на -1 : и прибавим π : или Все правильно.

Обратные функции отрицательного аргумента

Применяя указанные выше формулы и свойства тригонометрических функций, получаем формулы обратных функций отрицательного аргумента.

arcsin(- x) = arcsin(-sin arcsin x) = arcsin(sin(-arcsin x)) = - arcsin x

Поскольку то умножив на -1 , имеем: или
Аргумент синуса попадает в допустимый интервал области значений арксинуса. Поэтому формула верна.

Аналогично для остальных функций.
arccos(- x) = arccos(-cos arccos x) = arccos(cos(π-arccos x)) = π - arccos x

arctg(- x) = arctg(-tg arctg x) = arctg(tg(-arctg x)) = - arctg x

arcctg(- x) = arcctg(-ctg arcctg x) = arcctg(ctg(π-arcctg x)) = π - arcctg x

Выражение арксинуса через арккосинус и арктангенса через арккотангенс

Выразим арксинус через арккосинус.

Формула справедлива при Эти неравенства выполняются, поскольку

Чтобы убедиться в этом, умножим неравенства на -1 : и прибавим π/2 : или Все правильно.

Аналогично выражаем арктангенс через арккотангенс.

Выражение арксинуса через арктангенс, арккосинуса через арккотангенс и наоборот

Поступаем аналогичным способом.

Формулы суммы и разности

Аналогичным способом, получим формулу суммы арксинусов.

Установим пределы применимости формулы. Чтобы не иметь дела с громоздкими выражениями, введем обозначения: X = arcsin x , Y = arcsin y . Формула применима при
. Далее замечаем, что, поскольку arcsin(- x) = - arcsin x, arcsin(- y) = - arcsin y, то при разных знаках у x и y , X и Y также разного знака и поэтому неравенства выполняются. Условие различных знаков у x и y можно написать одним неравенством: . То есть при формула справедлива.

Теперь рассмотрим случай x > 0 и y > 0 , или X > 0 и Y > 0 . Тогда условие применимости формулы заключается в выполнении неравенства: . Поскольку косинус монотонно убывает при значениях аргумента в интервале от 0 , до π , то возьмем косинус от левой и правой части этого неравенства и преобразуем выражение:
;
;
;
.
Поскольку и ; то входящие сюда косинусы не отрицательные. Обе части неравенства положительные. Возводим их в квадрат и преобразуем косинусы через синусы:
;
.
Подставляем sin X = sin arcsin x = x :
;
;
;
.

Итак, полученная формула справедлива при или .

Теперь рассмотрим случай x > 0, y > 0 и x 2 + y 2 > 1 . Здесь аргумент синуса принимает значения: . Его нужно привести к интервалу области значения арксинуса :

Итак,

при и.

Заменив x и y на - x и - y , имеем

при и.
Выполняем преобразования:

при и.
Или

при и.

Итак, мы получили следующие выражения для суммы арксинусов:

при или ;

при и ;

при и .

Даны все свойства арктангенса и арккотангенса, их графики, формулы, таблица арктангенсов и арккотангенсов. Выражения через комплексные числа, гиперболические функции. Производные, интегралы, разложения в степенные ряды.

Арктангенс, arctg

Арктангенс (y = arctg x ) - это функция, обратная к тангенсу (x = tg y
tg(arctg x) = x
arctg(tg x) = x

Арктангенс обозначается так:
.

График функции арктангенс

График функции y = arctg x

График арктангенса получается из графика тангенса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, множество значений ограничивают интервалом , на котором функция монотонна. Такое определение называют главным значением арктангенса.

Арккотангенс, arcctg

Арккотангенс (y = arcctg x ) - это функция, обратная к котангенсу (x = ctg y ). Он имеет область определения и множество значений .
ctg(arcctg x) = x
arcctg(ctg x) = x

Арккотангенс обозначается так:
.

График функции арккотангенс


График функции y = arcctg x

График арккотангенса получается из графика котангенса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, область значений ограничивают интервалом , на котором функция монотонна. Такое определение называют главным значением арккотангенса.

Четность

Функция арктангенс является нечетной:
arctg(- x) = arctg(-tg arctg x) = arctg(tg(-arctg x)) = - arctg x

Функция арккотангенс не является четной или нечетной:
arcctg(- x) = arcctg(-ctg arcctg x) = arcctg(ctg(π-arcctg x)) = π - arcctg x ≠ ± arcctg x .

Свойства - экстремумы, возрастание, убывание

Функции арктангенс и арккотангенс непрерывны на своей области определения, то есть для всех x . (см. доказательство непрерывности). Основные свойства арктангенса и арккотангенса представлены в таблице.

y = arctg x y = arcctg x
Область определения и непрерывность - ∞ < x < + ∞ - ∞ < x < + ∞
Множество значений
Возрастание, убывание монотонно возрастает монотонно убывает
Максимумы, минимумы нет нет
Нули, y = 0 x = 0 нет
Точки пересечения с осью ординат, x = 0 y = 0 y = π/2
- π
0

Таблица арктангенсов и арккотангенсов

В данной таблице представлены значения арктангенсов и арккотангенсов, в градусах и радианах, при некоторых значениях аргумента.

x arctg x arcctg x
град. рад. град. рад.
- ∞ - 90° - 180° π
- - 60° - 150°
- 1 - 45° - 135°
- - 30° - 120°
0 0 90°
30° 60°
1 45° 45°
60° 30°
+ ∞ 90° 0

≈ 0,5773502691896258
≈ 1,7320508075688772

Формулы

Формулы суммы и разности


при

при

при


при

при

при

Выражения через логарифм, комплексные числа

Выражения через гиперболические функции

Производные


См. Вывод производных арктангенса и арккотангенса > > >

Производные высших порядков :
Пусть . Тогда производную n-го порядка арктангенса можно представить одним из следующих способов:
;
.
Символ означает мнимую часть стоящего следом выражения.

См. Вывод производных высших порядков арктангенса и арккотангенса > > >
Там же даны формулы производных первых пяти порядков.

Аналогично для арккотангенса. Пусть . Тогда
;
.

Интегралы

Делаем подстановку x = tg t и интегрируем по частям:
;
;
;

Выразим арккотангенс через арктангенс:
.

Разложение в степенной ряд

При |x| ≤ 1 имеет место следующее разложение:
;
.

Обратные функции

Обратными к арктангенсу и арккотангенсу являются тангенс и котангенс , соответственно.

Следующие формулы справедливы на всей области определения:
tg(arctg x) = x
ctg(arcctg x) = x .

Следующие формулы справедливы только на множестве значений арктангенса и арккотангенса:
arctg(tg x) = x при
arcctg(ctg x) = x при .

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.


Эта статья про нахождение значений арксинуса, арккосинуса, арктангенса и арккотангенса данного числа. Сначала мы внесем ясность, что называется значением арксинуса, арккосинуса, арктангенса и арккотангенса. Дальше получим основные значения этих аркфункций, после чего разберемся, как находятся значения арксинуса, арккосинуса, арктангенса и арккотангенса по таблицам синусов, косинусов, тангенсов и котангенсов Брадиса. Наконец, поговорим про нахождение арксинуса числа, когда известен арккосинус, арктангенс или арккотангенс этого числа, и т.п.

Навигация по странице.

Значения арксинуса, арккосинуса, арктангенса и арккотангенса

Сначала стоит разобраться, что вообще такое «значение арксинуса, арккосинуса, арктангенса и арккотангенса ».

Таблицы синусов и косинусов, а также тангенсов и котангенсов Брадиса позволяют найти значение арксинуса, арккосинуса, арктангенса и арккотангенса положительного числа в градусах с точностью до одной минуты. Здесь стоит оговориться, что нахождение значений арксинуса, арккосинуса, арктангенса и арккотангенса отрицательных чисел можно свести к нахождению значений соответствующих аркфункций положительных чисел, обратившись к формулам arcsin, arccos, arctg и arcctg противоположных чисел вида arcsin(−a)=−arcsin a , arccos(−a)=π−arccos a , arctg(−a)=−arctg a и arcctg(−a)=π−arcctg a .

Разберемся с нахождением значений арксинуса, арккосинуса, арктангенса и арккотангенса по таблицам Брадиса. Будем это делать на примерах.

Пусть нам требуется найти значение арксинуса 0,2857 . Находим это значение в таблице синусов (случаи, когда это значение отсутствует в таблице, разберем ниже). Ему соответствует синус 16 градусов 36 минут. Следовательно, искомым значением арксинуса числа 0,2857 является угол 16 градусов 36 минут.

Часто приходится учитывать и поправки из трех справа столбцов таблицы. К примеру, если нам нужно найти арксинус 0,2863 . По таблице синусов это значение получается как 0,2857 плюс поправка 0,0006 , то есть, значению 0,2863 соответствует синус 16 градусов 38 минут (16 градусов 36 минут плюс 2 минуты поправки).

Если же число, арксинус которого нас интересует, отсутствует в таблице и даже не может быть получено с учетом поправок, то в таблице нужно отыскать два наиболее близких к нему значения синусов, между которыми данное число заключено. Например, мы ищем значение арксинуса числа 0,2861573 . Этого числа нет в таблице, с помощью поправок это число тоже не получить. Тогда находим два наиболее близких значения 0,2860 и 0,2863 , между которыми исходное число заключено, этим числам соответствуют синусы 16 градусов 37 минут и 16 градусов 38 минут. Искомое значение арксинуса 0,2861573 заключено между ними, то есть, любое из этих значений угла можно принять в качестве приближенного значения арксинуса с точностью до 1 минуты.

Абсолютно аналогично находятся и значения арккосинуса, и значения арктангенса и значения арккотангенса (при этом, конечно, используются таблицы косинусов, тангенсов и котангенсов соответственно).

Нахождение значения arcsin через arccos, arctg, arcctg и т.п.

Например, пусть нам известно, что arcsin a=−π/12 , а нужно найти значение arccos a . Вычисляем нужное нам значение арккосинуса: arccos a=π/2−arcsin a=π/2−(−π/12)=7π/12 .

Куда интереснее обстоит дело, когда по известному значению арксинуса или арккосинуса числа a требуется найти значение арктангенса или арккотангенса этого числа a или наоборот. Формул, задающих такие связи, мы, к сожалению, не знаем. Как же быть? Разберемся с этим на примере.

Пусть нам известно, что арккосинус числа a равен π/10 , и нужно вычислить значение арктангенса этого числа a . Решить поставленную задачу можно так: по известному значению арккосинуса найти число a , после чего найти арктангенс этого числа. Для этого нам сначала потребуется таблица косинусов, а затем – таблица тангенсов.

Угол π/10 радиан – это угол 18 градусов, по таблице косинусов находим, что косинус 18 градусов приближенно равен 0,9511 , тогда число a в нашем примере есть 0,9511 .

Осталось обратиться к таблице тангенсов, и с ее помощью найти нужное нам значение арктангенса 0,9511 , оно приближенно равно 43 градусам 34 минутам.

Эту тему логически продолжает материал статьи вычисление значений выражений, содержащих arcsin, arccos, arctg и arcctg .

Список литературы.

  • Алгебра: Учеб. для 9 кл. сред. шк./Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского.- М.: Просвещение, 1990.- 272 с.: ил.- ISBN 5-09-002727-7
  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • И. В. Бойков, Л. Д. Романова. Сборникк задач для подготовки к ЕГЭ, часть 1, Пенза 2003.
  • Брадис В. М. Четырехзначные математические таблицы: Для общеобразоват. учеб. заведений. - 2-е изд. - М.: Дрофа, 1999.- 96 с.: ил. ISBN 5-7107-2667-2

Урок и презентация на тему: "Арктангенс. Арккотангенс. Таблицы арктангенса и арккотангенса"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Пособия и тренажеры в интернет-магазине "Интеграл" от компании 1С
Решаем задачи по геометрии. Интерактивные задания на построение для 7-10 классов
Решаем задачи по геометрии. Интерактивные задания на построение в пространстве

Что будем изучать:
1. Что такое арктангенс?
2. Определение арктангенса.
3. Что такое арккотангенс?
4. Определение арккотангенса.
5. Таблицы значений.
6. Примеры.

Что такое арктангенс?

Ребята, мы с вами уже научились решать уравнения для косинуса и синуса. Теперь давайте научимся решать подобные уравнения для тангенса и котангенса. Рассмотрим уравнение tg(x)= 1. Для решения этого уравнение построим два графика: y= 1 и y= tg(x). Графики наших функций имеют бесконечное множество точек пересечения. Абсциссы этих точек имеют вид: x= x1 + πk, x1 – абсцисса точки пересечения прямой y= 1 и главной ветки функции y= tg(x), (-π/2 <x1> π/2). Для числа x1 было введено обозначение, как арктангенс. Тогда решение нашего уравнения запишется: x= arctg(1) + πk.

Определение арктангенса

arctg(a) – это такое число из отрезка [-π/2; π/2], тангенс которого равен а.



Уравнение tg(x)= a имеет решение: x= arctg(a) + πk, где k - целое число.



Также заметим: arctg(-a)= -arctg(a).

Что такое арккотангенс?

Давайте решим уравнение сtg(x)= 1. Для этого построим два графика: y= 1 и y=сtg(x). Графики наших функций имеют бесконечное множество точек пересечения. Абсциссы этих точек имеют вид: x= x1 + πk. x1 – абсцисса точки пересечения прямой y= 1 и главной ветки функции y= сtg(x), (0 <x1> π).
Для числа x1 было введено обозначение, как арккотангенс. Тогда решение нашего уравнения запишется: x= arcсtg(1) + πk.



Определение арккотангенса

arсctg(a) – это такое число из отрезка , котангенс которого равен а.



Уравнение ctg(x)= a имеет решение: x= arcctg(a) + πk, где k - целое число.


Также заметим: arcctg(-a)= π - arcctg(a).

Таблицы значений арктангенса и арккотангенса

Таблица значений тангенса и котангенса



Таблица значений арктангенса и арккотангенса


Примеры

1. Вычислить: arctg(-√3/3).
Решение: Пусть arctg(-√3/3)= x, тогда tg(x)= -√3/3. По определению –π/2 ≤x≤ π/2. Посмотрим значения тангенса в таблице: x= -π/6, т.к. tg(-π/6)= -√3/3 и – π/2 ≤ -π/6 ≤ π/2.
Ответ: arctg(-√3/3)= -π/6.

2. Вычислить: arctg(1).
Решение: Пусть arctg(1)= x, тогда tg(x)= 1. По определению –π/2 ≤ x ≤ π/2. Посмотрим значения тангенса в таблице: x= π/4, т.к. tg(π/4)= 1 и – π/2 ≤ π/4 ≤ π/2.
Ответ: arctg(1)= π/4.

3. Вычислить: arcctg(√3/3).
Решение: Пусть arcctg(√3/3)= x, тогда ctg(x)= √3/3. По определению 0 ≤ x ≤ π. Посмотрим значения котангенса в таблице: x= π/3, т.к. ctg(π/3)= √3/3 и 0 ≤ π/3 ≤ π.
Ответ: arcctg(√3/3) = π/3.

4. Вычислить: arcctg(0).
Решение: Пусть arcctg(0)= x, тогда ctg(x) = 0. По определению 0 ≤ x ≤ π. Посмотрим значения котангенса в таблице: x= π/2, т.к. ctg(π/2)= 0 и 0 ≤ π/2 ≤ π.
Ответ: arcctg(0) = π/2.

5. Решить уравнение: tg(x)= -√3/3.
Решение: Воспользуемся определением и получим: x= arctg(-√3/3) + πk. Воспользуемся формулой arctg(-a)= -arctg(a): arctg(-√3/3)= – arctg(√3/3)= – π/6; тогда x= – π/6 + πk.
Ответ: x= =– π/6 + πk.

6. Решить уравнение: tg(x)= 0.
Решение: Воспользуемся определением и получим: x= arctg(0) + πk. arctg(0)= 0, подставим в формулу решение: x= 0 + πk.
Ответ: x= πk.

7. Решить уравнение: tg(x) = 1.5.
Решение: Воспользуемся определением и получим: x= arctg(1.5) + πk. Значения арктангенса для данного значения в таблице нет, тогда оставим ответ в таком виде.
Ответ: x= arctg(1.5) + πk.

8. Решить уравнение: ctg(x)= -√3/3.
Решение: Воспользуемся формулой: ctg(x)= 1/tg(x); ctg(x)= -√3/3 =1/tg(x) => tg(x)= -√3. Воспользуемся определением и получим: x= arctg (-√3) + πk. arctg(-√3)= –arctg(√3)= –π/3, тогда x= -π/3 + πk.
Ответ: x= – π/3 + πk.

9. Решить уравнение: ctg(x)= 0.
Решение: Воспользуемся формулой: ctg(x)= cos(x)/sin(x). Тогда нам надо найти значения x, при которых cos(x)= 0, получаем, что х= π/2+ πk.
Ответ: х= π/2 + πk.

10. Решить уравнение: ctg(x)= 2.
Решение: Воспользуемся определением и получим: x= arcсtg(2) + πk. Значения арккотангенса для данного значения в таблице нет, тогда оставим ответ в таком виде. Ответ: x= arctg(2) + πk.

Задачи для самостоятельного решения

1) Вычислить: а) arctg(√3), б) arctg(-1), в) arcctg(-√3), г) arcctg(-1).
2) Решить уравнение: а) tg(x)= -√3, б) tg(x)= 1, в) tg(x)= 2.5, г) ctg(x)= √3, д) ctg(x)= 1.85.