Макияж. Уход за волосами. Уход за кожей

Макияж. Уход за волосами. Уход за кожей

» » Урок «Квадратный трехчлен и его корни. Расположение корней квадратного трехчлена

Урок «Квадратный трехчлен и его корни. Расположение корней квадратного трехчлена

Тема «Квадратный трехчлен и его корни» изучается в курсе алгебры 9 класса. как и любой другой урок математики, урок по этой теме требует иособых средств и методов обучения. Необходима наглядность. К таковой можно отнести данный видеоурок, который разработан специально для того, чтобы облегчить труд учителя.

Данный урок длится 6:36 минут. За это время автор успевает раскрыть тему полностью. Учителю останется только подобрать задания по теме, чтобы закрепить материал.

Урок начинается с демонстрации примеров многочленов с одной переменной. Затем на экране появляется определение корня многочлена. Это определение подкрепляется примером, где необходимо найти корни многочлена. Решив уравнение, автор получает корни многочлена.

Далее следует замечание, что к квадратным трехчленам относятся и такие многочлены второй степени, у которых второй, третий или оба коэффициента, кроме старшего, равны нулю. Эта информация подкрепляется примером, где свободный коэффициент равен нулю.

Затем автор поясняет, как найти корни квадратного трехчлена. Для этого необходимо решить квадратное уравнение. И проверить это автор предлагает на примере, где дан квадратный трехчлен. Нужно найти его корни. Решение строится на основе решения квадратного уравнения, полученного из данного квадратного трехчлена. Решение расписано на экране подробно, четко и понятно. По ходу решения данного примера автор вспоминает, как решается квадратное уравнение, записывает формулы, и получает результат. На экране записывается ответ.

Нахождение корней квадратного трехчлена автор объяснил на основе примера. Когда обучающиеся поймут суть, то можно переходить к более общим моментам, что автор и делает. Поэтому он далее обобщает все вышесказанное. Общими словами на математическом языке автор записывает правило нахождения корней квадратного трехчлена.

Далее следует замечание, что в некоторых задачах удобнее квадратный трехчлен записывать немного иначе. На экране дается эта запись. То есть получается, что из квадратного трехчлена можно выделить квадрат двучлена. Такое преобразование предлагается рассмотреть на примере. Решение данного примера приводится на экране. Как и в прошлом примере, решение строится подробно со всеми необходимыми пояснениями. Затем автор рассматривает задачу, где используется только что выданная информация. Это геометрическая задача на доказательство. В решении присутствует иллюстрация в виде чертежа. Решение задачи расписано подробно и понятно.

На этом урок завершается. Но учитель может подобрать по способностям обучающихся задания, которые будут соответствовать данной теме.

Данный видеоурок можно использовать в качестве объяснения нового материала на уроках алгебры. Он отлично подойдет для самостоятельной подготовки обучающихся к уроку.

Тема урока : «Квадратный трехчлен и его корни».

Цель урока : познакомить обучающихся с понятием квадратного трехчлена и его корней, совершенствовать их умения и навыки в решении заданий на выделение квадрата двучлена из квадратного трехчлена.

Урок включает четыре основных этапа :

    Контроль знаний

    Объяснение нового материала

    Репродуктивное закрепление.

    Тренировочное закрепление.

    Рефлексия.

1 этап. Контроль знаний.

Учитель проводит математический диктант «под копирку» по материалу предыдущего цикла. Для диктанта используется карточки двух цветов: синего - для 1 варианта, красного –2 варианта.

    Из данных аналитических моделей функций выберите только квадратичные.

Вариант 1. у=ах+4, у=45-4х, у=х²+4х-5, у=х³+х²-1.

Вариант 2. у=8х-в, у=13+2х, у= -х²+4х, у=-х³+4х²-1.

    Изобразите схематично квадратичные функции. Можно ли однозначно определить положение квадратичной функции на координатной плоскости. Ответ попытайтесь аргументировать.

    Решите квадратные уравнения.

Вариант 1. а) х² +11х-12=0

Б) х² +11х =0

Вариант 2. а) х² -9х+20=0

Б) х² -9 х =0

4. Не решая уравнения, выясните, имеет ли оно корни.

Вариант 1. А) х² + х +12=0

Вариант 2. А) х² + х - 12=0

Полученные ответы учитель проверяет у первых двух пар. Полученные неправильные ответы обсуждаются всем классом.

Вариант 1.

Вариант 2.

1. у=х²+4х-5

1. у= -х²+4х

2. ветви вверх, но однозначно определить положение нельзя не хватает данных.

ветви вниз, но однозначно определить положение нельзя не хватает данных.

3. а) –12; 1 б) –11;0

3. а) 4;5 б) 9;0

4. Д0, есть два корня

2 этап. Давайте составим кластер. Какие ассоциации у вас возникают при рассмотрении квадратного трехчлена?

Составление кластера.


Возможные ответы:

    квадратный трехчлен используют для рассмотрения кв. функции;

    можно найти нули кв. функции

    по значению дискриминанта оценить количество корней.

    Описать реальные процессы и т.д.

Объяснение нового материала.

Параграф 2. п.3 стр.19-22.

Рассматриваются выражения, и дается определение квадратного трехчлена и корня многочлена (в ходе обсуждения ранее рассмотренных выражений)

    Формулируется определение корня многочлена.

    Формулируется определение квадратного трехчлена.

    Разбираются примеры решения трехчлена:

    Найти корни квадратного трехчлена.

    Выделим квадрат двучлена из квадратного трехчлена.

3х²-36х+140=0.

    Составляется схема ориентировочной основы действия.

Алгоритм выделения двучлена из квадратного трехчлена.

1.Опрелелить числовое значение старшего коэффициента квадратного трехчлена.

2. Выполнить тождественные и 2. Преобразовать выражение,

равносильные преобразования использовав формулы

(вынести общий множитель за скобки; квадрата суммы и разности.

преобразовать выражение, в скобках

достроив его до формулы квадрата суммы

или разности)

а²+2ав+в²= (а+в)² а²-2ав+в²= (а-в)²

3 этап. Решение типовых заданий из учебника (№ 60 а,в; 61 а, 64 а,в) Делаются у доски и комментируются.

4 этап. Самостоятельная работа на 2варианта (№ 60а,б; 65 а,б). Учащиеся сверяются с образцами решения на доске.

Домашнее задание: П.3 (теорию выучить, № 56, 61г, 64 г)

Рефлексия. Учитель дает задание: оценить свои успехи на каждом этапе урока с помощью рисунка и сдать учителю. (задание выполняется на отдельных листах, образец выдается).

Образец:

Используя, порядок расположения элементов на рисунке, определите на каком этапе урока ваше незнание преобладало. Выделите этот этап красным цветом.

Учитель высшей категории: Минайченко Н.С., гимназия №24, г.Севастополь

Урок в 8 классе: «Квадратный трёхчлен и его корни»

Тип урока : урок новых знаний.

Цель урока:

    организовать деятельность учащихся по закреплению и развитию знаний о разложении квадратного трехчлена на линейные множители, сокращении дробей;

    развивать навыки в применении знаний всех способов разложения на множители: вынесение за скобки, с помощью формул сокращенного умножения и способа группировки с целью подготовки к успешной сдаче экзамена по алгебре;

    создать условия для развития познавательного интереса к предмету, формирования логического мышления и самоконтроля при использовании разложения на множители.

Оборудование: мультимедийный проектор, экран, презентация: «Корни квадратного трехчлена», кроссворд, тест, раздаточный материал.

Основные понятия . Разложение квадратного трёхчлена на множители.

Самостоятельная деятельность учащихся. Применение теоремы о разложении квадратного трёхчлена на множители при решении задач.

План урока

Решение задач.

Ответы на вопросы учащихся

IV. Первичная проверка усвоения знаний. Рефлексия

Сообщение учителя.

Сообщение учащихся

V. Домашнее задание

Запись на доске

Методический комментарий:

Эта тема является основополагающей в разделе «Тождественные преобразования алгебраических выражений». Поэтому важно, чтобы учащиеся автоматически умели не только видеть в примерах формулы разложения на множители, но и применять их в других заданиях: в таких как решение уравнений, преобразование выражений, доказательство тождеств.

В этой теме основное внимание уделяется разложению квадратного трёхчлена на множители:

ax + bx + c = a(x – x )(x – x ),

где x и x– корни квадратного уравнения ax + bx + c = 0.

Это позволяет расширить поле зрения учащегося, научить его мыслить в нестандартной ситуации, используя при этом изучаемый материал, т.е. используя формулу разложения квадратного трёхчлена на множители:

    умение сокращать алгебраические дроби;

    умение упрощать алгебраические выражения;

    умение решать уравнения;

    умение доказывать тождества.

Основное содержание урока:

а) 3x + 5x – 2;

б) –x + 16x – 15;

в) x – 12x + 24;

г) –5x + 6x – 1.

2. Сократите дробь:

3. Упростите выражение:

4. Решите уравнение:

б)

Ход урока:

I. Этап актуализации знаний.

Мотивация учебной деятельности.

а) из истории:

б) кроссворд:

Разминка-тренировка ума – кроссворд:

По горизонтали:

1) Корень второй степени называется…. (квадратный)

2) Значения переменной, при котором уравнение становится верным равенством (корни)

3) Равенство, содержащее неизвестное называется… (уравнение)

4) Индийский ученый , который изложил общее правило решения квадратных уравнений (Брахмагупта)

5) Коэффициенты квадратного уравнения - это… (числа)

6) Древнегреческий ученый, придумавший геометрический метод решения уравнений (Евклид)

7) Теорема, связывающая коэффициенты и корни квадратного уравнения (Виета)

8) «различающий», определяющий корни квадратного уравнения – это… (дискриминант)

Дополнительно:

    Если Д>0, сколько корней? (два)

    Если Д=0, сколько корней? (один)

    Если Д<0, сколько корней? (нет действительных корней)

По горизонтали и вертикали тема урока: «Квадратный трехчлен»

б) мотивация:

Эта тема является основополагающей в разделе «Тождественные преобразования алгебраических выражений». Поэтому важно, чтобы вы автоматически умели не только видеть в примерах формулы разложения на множители, но и применять их в других заданиях: таких как сокращение дробей, решение уравнений, преобразование выражений, доказательство тождеств.

Сегодня мы основное внимание уделим разложению квадратного трёхчлена на множители:

II. Изучение нового материала.

Тема: Квадратный трёхчлен и его корни.

Общая теория многочленов многих переменных далеко выходит за рамки школьного курса. Поэтому мы ограничимся изучением многочленов одной действительной переменной, да и то в простейших случаях. Рассмотрим многочлены одной переменной, приведённые к стандартному виду.



    Корнем многочлена называется значение переменной, при котором значение многочлена равно нулю. Значит, чтобы найти корни многочлена, надо приравнять его к нулю, т.е. решить уравнение.

Корень многочлена первой степени
легко найти
. Проверка:
.

Корни квадратного трехчлена можно найти, решив уравнение:
.

По формуле корней квадратного уравнения находим:

;

Теорема (о разложении квадратного трехчлена на множители ):

Если и -корни квадратного трехчлена
, где ≠ 0,

то .

Доказательство:

Выполним следующие преобразования квадратного трехчлена:

=
=
=

=
=
=

=
=

Так как дискриминант
, получим:

=
=

Применим в скобках формулу разности квадратов и получим:

=
=
,

так как
;
. Теорема доказана.

Полученная формула называется формулой разложения квадратного трехчлена на множители.

III. Формирование умений и навыков.

1. Разложите на множители квадратный трёхчлен:

а) 3x + 5x – 2;

Решение:

Ответ: 3x+5x–2=3(х+2)(х-)=(х+2)(3х-1)

На доске:

б) –5x + 6x – 1;

Дополнительно:

в) x – 12x + 24;

г) –x + 16x – 15.

2. Сократите дробь:

а)

4. Решите уравнение:

б)

IV. Первичная проверка усвоения знаний.

а) Тест.

Вариант 1.

1. Найти корни квадратного трехчлена: 2 -9х-5

Ответ:

2. Какой многочлен надо подставить вместо многоточия, чтобы было верным равенство:

б) Взаимопроверка по вариантам (ответы и параметры оценивания иллюстрируются).

в) Рефлексия.

V. Домашнее задание.


Практика экзаменов по математике показывает, что задачи с параметрами представляют наибольшую сложность как в логическом, так и в техническом плане и поэтому умение их решать во многом предопределяет успешную сдачу экзамена любого уровня.

В задачах с параметрами наряду с неизвестными величинами фигурируют величины, численные значения которых хотя и не указаны конкретно, но считаются известными и заданными на некотором числовом множестве. При этом параметры, входящие в условие, существенно влияют на логический и технический ход решения и форму ответа. Такие задачи можно найти в книге «514 задач с параметрами» В литературе по элементарной математике немало учебных пособий, задачников, методических руководств, где приводятся задачи с параметрами. Но большинство из них охватывает узкий круг вопросов, делая основной упор на рецептуру, а не на логику решения задач. К тому же наиболее удачные из книг давно стали библиографической редкостью. В конце работы дан список книг, статьи из которых помогли составить классификацию утверждений по теме работы. Наиболее значимой является пособие Шахмейстера А. Х. Уравнения и неравенства с параметрами.

Основная цель настоящей работы – восполнение некоторых содержательных пробелов основного курса алгебры и установление фактов использования свойств квадратичной функции, позволяющие существенно упростить решение задач, связанных с расположением корней квадратного уравнения относительно некоторых характерных точек.

Задачи работы:

Установить возможные случаи расположения корней квадратного трехчлена на числовой прямой;

Выявить алгоритмы, позволяющие решать квадратные уравнения с параметром на основе использования расположения корней квадратного трехчлена на числовой прямой;

Научиться решать задачи более высокой, по сравнению с обязательным уровнем, сложности; овладеть рядом технических и интеллектуальных математических умений на уровне свободного их использования; повысить математическую культуру в рамках школьного курса математики.

Объект исследования: расположение корней квадратного трехчлена на координатной прямой.

Предмет исследования: квадратные уравнения с параметром.

Способы исследования. Основные способы исследования задач с параметром: аналитический, графический и комбинированный (функционально - графический). Аналитический – это способ так называемого прямого решения, повторяющего стандартные процедуры нахождения ответа в задачах без параметра. Графический – это способ, при котором используют графики в координатной плоскости (х; у). Наглядность графического способа помогает найти быстрый путь решения задачи. Из этих двух способов последний является не только изящным, но и наиболее важным, так как в нем просматриваются взаимосвязь между всеми типами математической модели: словесное описание задачи, геометрическая модель – график квадратного трехчлена, аналитическая модель – описание геометрической модели системой неравенств, составленных на основании математических утверждений выявленных по графику квадратичной функции.

Во многих случаях решение квадратных уравнений с параметром приводит к громоздким преобразованиям. Гипотеза: использование свойств квадратичной функции позволит существенно упростить решение, сводя его к решению рациональных неравенств.

Основная часть. Расположение корней квадратного трехчлена на координатной прямой

Рассмотрим некоторые утверждения, связанные с расположением корней квадратного трехчлена f(x)=ax2+bx+с на числовой прямой cотносительно точек m и п таких, что m

x1 и x2 - корни квадратного трехчлена,

D=b2-4ac- дискриминант квадратного трехчлена, D≥0.

m, n, m1, m2, n1, n2 - заданные числа.

Все рассуждения рассматриваются для a>0, случай для a

Утверждение первое

Для того, чтобы число m было расположено между корнями квадратного трехчлена (x1

Доказательство.

при условии x1

Геометрическая интерпретация

Пусть х1 и х2 - корни уравнения. При а > 0 f(x)

Задача 1. При каких значениях k уравнение x2-(2k+1)x + 3k-4=0 имеет два корня, один из которых меньше 2, а другой больше 2?

Решение. f(x)=x2-(2k+1)x + 3k-4; x1

При k>-2 уравнение x2-(2k+1)x + 3k-4=0 имеет два корня, один из которых меньше 2, а другой больше 2.

Ответ: k>-2.

Задача 2. При каких значениях k уравнение kx2+(3k-2)x + k-3=0 имеет корни разных знаков?

Эта задача может быть сформулирована так: при каких значениях k число 0 лежит между корнями данного уравнения.

Решение (1 способ) f(x)= kx2+(3k-2)x + k-3; x1

2 способ решения (использование теоремы Виета). Если квадратное уравнение имеет корни (D>0) и c/a

Задача 3. При каких значениях k уравнение (k2-2)x2+(k2+k-1)x – k3+k2=0 имеет два корня, один из которых меньше k, а другой больше k?

f(x)=(k2-2)x2+(k2+k-1)x – k3+k2; x1 Подставив значения k из найденного множества убедимся в том, что при этих значениях k D>0.

Утверждение второе (а)

Для того, чтобы корни квадратного трехчлена были меньше числа m (x1

Доказательство: x1-m>0, x2-m 0; m2-mx1-mx2+x1x2>0; m2-(x1+x2)m+x1x2

Задача 4. При каких значениях параметра корни уравнения x2-(3k+1)x+2k2+4k-6=0 меньше -1?

D≥0; (3k+1)2-4(2k2+4k-6) ≥0; (k-5)2≥0; k- любое; x0-3/2; k0. 1+(3k+1)+(2k2+4k-6)>0. 2(k+4)(k-1/2)>0. k1/2

Утверждение второе (б)

Для того, чтобы корни квадратного трехчлена были больше числа m (m

D ≥0; x0>m; af(m)>0.

Если выполнено условие m m. Так как m не принадлежит промежутку (x1; x2), то f(m) > О при а > 0 и f(m)

Обратно, пусть выполнена система неравенств. Из условия D > 0 следует существование корней х1 и х2 (х1 m.

Остается показать, что х1 > m. Если D = 0, то х1 = х2 > m. Если же D > 0, то f(х0) = -D/4a и af(x0) О, следовательно, в точках х0 и m функция принимает значения противоположных знаков и х1 принадлежит промежутку (m;х0).

Задача 5. При каких значениях параметра m корни уравнения x2-(3m+1)x+2m2+4m-6=0 a) больше 1? б) меньше -1?

Решение а) D≥0; D≥0; (3m+1)2-4(2m2+4m-6) ≥0; x0>m; x0>1; ½(3m+1)>1; f(m)>0. f(1)>0. 1-(3m+1)+(2m2+4m-6)>0.

(m-5)2≥0; m - любое m>1/3; m>1/3;

(2km-3)(m+2)>0. m3/2. Ответ:m>3/2.

б) D≥0; (3m+1)2-4(2m2+4m-6)≥0; (m-5)2 ≥0; m - любое x0-3/2; m0. 1+(3m+1)+(2m2+4m-6)>0. 2(m+4)(m-1/2)>0. m1/2.

Задача 6. При каких значениях параметра корни уравнения kx2-(2k +1)x+3 k -1=0 больше 1?

Решение. Очевидно, что задача равносильна следующей: при каких значениях параметра m корни квадратного трехчлена больше 1?

D≥0; D≥0 (2k+1)2-4k (3k-1) ≥0; 8k2-8k-1≤0; x0>m; x0>1 (2k+1)/ (2k) >1; 2k+1 > 2k; af(m)>0. af(1)>0. k(k-(2k+1)+(3k-1)) >0. 2k2-2k>0.

Решив эту систему, находим, что

Утверждение третье

Для того, чтобы корни квадратного трехчлена были больше числа m и меньше n (m

D ≥0; m 0 af(n)>0.

Отметим характерные черты графика.

1)Уравнение имеет корни, а значит D > 0.

2) Ось симметрии расположена между прямыми х = m и х = n, а значит m

3) В точках х = m и х = n график расположен выше оси ОХ, следовательно f(m) > 0 и f(n) > 0 (при m

Перечисленные выше условия (1; 2; 3) являются необходимыми и достаточными для искомых значений параметра.

Задача 7. При каких m x2-2mx+m2-2m+5=0 по модулю не превосходят числа 4?

Решение. Условие задачи можно сформулировать следующим образом: при каких m выполняется соотношение -4

Значения т находим из системы

D > 0; m2 - (m2 – 2m + 5) ≥ 0;

4 ≤ х0 ≤ 4; -4 ≤ m≤ 4; f(-4)≥ 0; 16 + 8m+ m2 – 2m + 5 ≥ 0; f(4)≥0; 16-8m + m2-2m + 5 ≥0; решением которой является отрезок . Ответ: m .

Задача 8. При каких значениях m корни квадратного трехчлена

(2m - 2)x2 + (m+1)х + 1 больше -1, но меньше 0 ?

Решение. Значения m можно найти из системы

D≥0; (m+1)2-4(2m-2) ≥ 0;

(2m - 2)/(-1) > 0 (2m -2)(2m -2 -m -1 +1) > 0;

(2m-2)f(0)>0; (2m-2)>0;

Ответ: m > 2.

Утверждение четвертое(а)

Для того, чтобы меньший корень квадратного трехчлена принадлежал интервалу (m;n), а больший не принадлежал (m

D ≥0; af(m)>0 af(n)

График квадратичного трехчлена в точности один раз пересекает ось ОХ на интервале (m; n). Это значит, что в точках х=m и х=n квадратный трехчлен принимает разные по знаку значения.

Задача 10. При каких значениях параметра а только меньший корень квадратного уравнения х2+2ах+а=0 принадлежит интервалу Х(0;3).

Решение. Рассмотрим квадратный трехчлен у(х)= х2-2ах+а. Графиком является парабола. Ветви параболы направлены вверх. Пусть х1 меньший корень квадратного трехчлена. По условию задачи х1 принадлежит промежутку (0;3). Изобразим геометрическую модель задачи, отвечающую условиям задачи.

Перейдем к системе неравенств.

1) Замечаем, что у(0)>0 и у(3) 0. Следовательно, это условие записывать в систему неравенств не нужно.

Итак, получаем следующую систему неравенств:

Ответ: а>1,8.

Утверждение четвертое(б)

Для того, чтобы больший корень квадратного трехчлена принадлежал интервалу (m; n), а меньший не принадлежал (x1

D ≥0; af(m) 0.

Утверждение четвертое (объединенное)

Замечание. Пусть задача сформулирована следующим образом при каких значениях параметра один корень уравнения принадлежит интервалу (ь;т), а другой - не принадлежит? Для решения этой задачи не нужно различать два подслучая, ответ находим из неравенства f(m)·f(n)

D ≥0; f(m)·f(n)

Задача 11. При каких m только один корень уравнения х2-mх+6=0 удовлетворяет условию 2

Решение. На основании утверждения 4(б) значения m найдем из условия f(2)f(5) (10 – 2m)(31 – 5m) m2 - 24 = 0, т. е. при m = ±2√6, При m= -2√6 х = - √6 , который не принадлежит интервалу (2; 5), при m = 2√6 х =√6, принадлежащий интервалу (2; 5).

Ответ: m {2√6} U (5; 31/5).

Утверждение пятое

Для того, чтобы корни квадратного трехчлена удовлетворяли соотношению (x1

D ≥0; af(m)Задача 12. Найти все значения m, при которых неравенство х2+2(m-3)х + m2-6m

Решение. По условию интервал (0; 2) должен содержаться во множестве решений неравенства х2 + 2(m - 3)x + m2 – 6m На основании утверждения 5 значения m находим из системы неравенств f(0) ≤ 0;m2-6m ≤ 0; m f(2) ≤ 0. 4 + 4(m-3) + m2-6m ≤ 0. m [-2;4], откуда m.

Ответ: m .

Утверждение шестое

Для того, чтобы меньший корень квадратного трехчлена принадлежал интервалу (m1; m2), а больший принадлежал интервалу (n1;n2) (m2

D ≥0; af(m1)>0; af(m2)Это утверждение является комбинацией утверждений 4а и 4б. Первые два неравенства гарантируют, что х1(m1, n1), а два последних неравенства – то, что х2(m2, n2),

Задача 13. При какихm один из корней уравнения х2 - (2m + l)x + m2 + m- 2 = 0 находится между числами 1 и 3, а второй - между числами 4 и 6?

Решение. 1 способ. Учитывая, что а = 1, значения m можно найти из системы f(1) > 0; 1 -2m- 1+m2 + т-2 >0; m2-m-2>0 m (-∞;-1) U (2;+∞) f(3)

4(4) 0; 36-12m-6 + m2 + m-2 0 m (-∞;4)U (7;+∞), откуда m(2; 4).

Ответ: m(2; 4).

Таким образом мы установили утверждения, связанные с расположением корней квадратного трехчлена f(x)=ax2+bx+ на числовой прямой cотносительно некоторых точек.

Заключение

В ходе работы я овладела рядом технических и математических умений на уровне свободного их использования и повысила математическую культуру в рамках школьного курса математики.

В результате выполнения работы была выполнена поставленная цель: установлены свойства квадратичной функции, позволяющие существенно упростить решение задач, связанных с расположением корней квадратного уравнения относительно некоторых характерных точек. Установлены возможные случаи расположения корней квадратного трехчлена на числовой прямой. Выявлены алгоритмы, позволяющие решать квадратные уравнения с параметром на основе использования расположения корней квадратного трехчлена на числовой прямой; решены задачи более высокой, по сравнению с обязательным уровнем, сложности. В работе представлено решение только 12 задач в виду ограниченности количества страниц работы. Конечно, рассмотренные в работе задачи можно решить и другими способами: используя формулы корней квадратного уравнения, применяя свойство корней (теорему Виета).

Фактически было решено значительное количество задач. Поэтому было решено создать сборник задач по теме проектно-исследовательской работы «Решебник задач на применение свойств квадратного трехчлена, связанных с расположением его корней на координатной прямой». Кроме того, результатом работы (продуктом проектно-исследовательской работы) является компьютерная презентация, которую можно использовать на занятиях элективного предмета «Решение задач с параметрами».

Квадратным трехчленом называют трехчлен вида a*x 2 +b*x+c, где a,b,c некоторые произвольные вещественные (действительные) числа, а x – переменная. Причем число а не должно равняться нулю.

Числа a,b,c называются коэффициентами. Число а – называется старшим коэффициентом, число b коэффициентом при х, а число с называют свободным членом.

Корнем квадратного трехчлена a*x 2 +b*x+c называют любое значение переменной х, такое, что квадратный трехчлен a*x 2 +b*x+c обращается в нуль.

Для того, чтобы найти корни квадратного трехчлена необходимо решить квадратное уравнение вида a*x 2 +b*x+c=0.

Как найти корни квадратного трехчлена

Для решения можно использовать один из известных способов.

  • 1 способ.

Нахождение корней квадратного трехчлена по формуле.

1. Найти значение дискриминанта по формуле D =b 2 -4*a*c.

2. В зависимости от значения дискриминанта вычислить корни по формулам:

Если D > 0, то квадратный трехчлен имеет два корня.

x = -b±√D / 2*a

Если D < 0, то квадратный трехчлен имеет один корень.

Если дискриминант отрицателен, то квадратный трехчлен не имеет корней.

  • 2 способ.

Нахождение корней квадратного трехчлена выделением полного квадрата. Рассмотрим на примере приведенного квадратного трехчлена. Приведенное квадратное уравнение, уравнение у которого на старший коэффициент равен единице.

Найдем корни квадратного трехчлена x 2 +2*x-3. Для этого решим следующее квадратное уравнение: x 2 +2*x-3=0;

Преобразуем это уравнение:

В левой части уравнения стоит многочлен x 2 +2*x, для того чтобы представить его в виде квадрата суммы нам необходимо чтобы там был еще один коэффицент равный 1. Добавим и вычтем из этого выражения 1, получим:

(x 2 +2*x+1) -1=3

То, что в скобках можно представить в виде квадрата двучлена

Данное уравнение распадается на два случая либо x+1=2 , либо х+1=-2.

В первом случае получаем ответ х=1, а во втором, х=-3.

Ответ: х=1, х=-3.

В результате преобразований нам необходимо получить в левой части квадрат двучлена, а в правой части некоторое число. В правой части не должна содержаться переменная.