Макияж. Уход за волосами. Уход за кожей

Макияж. Уход за волосами. Уход за кожей

» » Открытие Д.И. Менделеевым периодического закона

Открытие Д.И. Менделеевым периодического закона

Металлы и силикаты, оксиды и углеводы, вода и белки Как сильно различаются они по составу, свойствам, строению. Поистине удивительно многообразие веществ, из которых состоит окружающий нас мир. А если принять во внимание и химические соединения, которые не существуют в природе, но полученные учеными в лабораториях, в списки уже известных веществ придется включать миллионы наименований. И эти списки непрерывно расширяются

В этом безбрежном море было бы невозможно ориентироваться, если бы не было в руках ученых надежного «компаса». Все вещества образованы лишь из нескольких десятков химических элементов, а сами элементы беспрекословно подчиняются единому закону. Этот важный закон – Периодический закон,- открытый в 1869г. великим русским химиком Д. И. Менделеевым, служит одним из краеугольных камней фундамента, на котором зиждется химическая наука.

Меня привлекла тема "Д. И. Менделеев и Периодический закон" тем, что захотелось подробно узнать и понять личность великого ученого, открытие им Периодического закона.

Предпосылки открытия

Периодического закона Д. И. Менделеева.

Еще на заре цивилизации люди находили в природе некоторые химические элементы, среди них медь, железо, серебро, золото и др. Эти металлы, в частности медь и железо, имели такое большое значение в жизни человека, что в честь них были названы целые исторические эпохи (бронзовый и железный века).

Значительный вклад в разработку атомических учений внесли древнегреческие философы: Демокрит (460-370гг. до н. э.), Эпикур (341-270гг. до н. э.), Аристотель (384-322гг. до н. э.). Атомистическая теория древнегреческих философов была результатом строго логичного рассуждения о первоначалах природы, о важнейших принципах жизни. Необходимо было найти единое, неизменное, неуничтожимое в многообразии окружающих вещей. Так возникла мысль о мельчайших, неделимых, неуничтожаемых телах (атомах), составляющих любую вещь.

Последовавшие затем почти тысячелетнее засилье религии и мракобесия привело к тому, что атомистика была предана забвению и возродилась лишь в XVII в. на качественно новом уровне.

Роберт Бойль (1627-1691гг.), английский физик и химик, внес большой вклад в становление химии как науки. Главная заслуга Бойля состоит в том, что он стал рассматривать химические элементы не как некие отвлеченные понятия, а как реально существующие частицы. Он считал, что в действительности химических элементов может быть немного – и тем самым нацеливал на их поиск в природе. Р. Бойль дал принципиально новое понятие о химическом элементе как строго индивидуальном материальном теле, состоящем из атомов. Ключ Бойля "состав – свойства" открывал путь химическому производству веществ с заданными свойствами.

Якоб Берцелиус (1779-1848гг.), шведский химик, определил атомные массы 45 химических элементов в 1818г. Опубликовал их в виде таблице. В том же году он провел сопоставление процентного состава 2000 химических соединений и указал их "атомные веса" (он не пользовался понятием "молекула", а рассматривал молекулы как атомы различной степени сложности). Для обозначения химических элементов Берцелиус предложил использовать начальные буквы их латинских названий. По его мнению, для обозначений химических соединений следовало использовать буквы и цифры, чтобы их легко можно было писать и печатать. Они должны были наглядно отражать соотношение элементов в соединениях, указывать относительные количества составных частей, образующих вещество, и, наконец, выражать численный результат анализа так же просто и понятно, как алгебраические формулы. Берцелиус открыл новые химические элементы: церий, селен и торий. Ему первому удалось получить в свободном состоянии кремний, титан, тантал, цирконий, а также ванадий.

Иоганн Деберейнер (1780-1849гг.), немецкий химик, при сопоставлении атомных весов некоторых химически сходных элементов нашел, что для многих широко распространенных в природе элементов эти числа довольно близки, а для таких элементов, как Fe, Co, Ni, Cr, Mn, они практически одинаковы. Кроме того, он отметил, что относительный "атомный вес" SrO представляет собой приблизительное среднее арифметическое из "атомных весов" CaO и BaO. На этой основе Деберейнер предложил "закон триад", состоящий в том, что сходные по химическим свойствам элементы могут быть сведены в группы по три элемента (триады), например Cl, Br, J или Sr, Ca, Ba. При этом атомный вес среднего элемента триады близок к половине суммы атомных весов крайних элементов.

Другие химики интересовались закономерностями в изменении значений атомных масс в группах сходных элементов. Первой из таких сопоставлений была так называемая "винтовая линия" А. де Шанкуртуа. В своих сообщениях он сделал попытку сопоставить свойства элементов в виде кривой. Он нанес на боковую поверхность цилиндра линию под углом 45° к его основанию. Поверхность цилиндра разделена вертикальными линиями на 16 частей (атомная масса кислорода равна 16). Атомные массы элементов и молекулярные массы простых тел были изображены в виде точек на винтовой линии в соответствующем масштабе. Если развернуть образующую цилиндра, то на плоскости получится ряд отрезов прямых, параллельных друг другу. При таком расположении сходные элементы оказываются друг под другом далеко не всегда. Так, в группу кислорода попадает титан; марганец включен в группу щелочных металлов; железо – в группу щелочноземельных. Однако, "винтовая линия" Шанкуртуа фиксирует и некоторые правильные соотношения между атомными массами ряда элементов, но, тем не менее, не отражает периодичности свойств элементов.

Одной из предпосылок открытия Периодического закона послужили решения международного съезда химиков в Карлсруэ в 1860г. , когда окончательно утвердилось атомно-молекулярное учение, были приняты первые единые определения понятий молекулы и атома, а также атомного веса, который мы теперь называем относительной атомной массой. Именно это понятие как неизменную характеристику атомов химических элементов Д. И. Менделеев положил в основу своей классификации. Он писал: "Масса вещества есть именно такое свойство его, от которого должны находиться в зависимости все остальные свойства. Поэтому ближе или естественнее всего искать зависимость между свойствами и сходствами элементов, с одной стороны, и атомными их весами – с другой". Предшественники Д. И. Менделеева сравнивали между собой только сходные элементы, а поэтому и не смогли открыть Периодический закон. В отличие от них Д. И. Менделеев обнаружил периодичность в изменении свойств химических элементов, расположенных в порядке возрастания величин их атомных масс, сравнивая между собой все известные ему, в том числе и несходные, элементы.

Д. И. Менделеев в своем открытии опирался на четко сформулированные исходные положения:

– Общее неизменное свойство атомов всех химических элементов – их атомная масса;

– Свойства элементов зависят от их атомных масс;

– Форма этой зависимости - периодическая.

Рассмотренные выше предпосылки можно назвать объективными, то есть не зависящими от личности ученого, так как они были обусловлены историческим развитием химии как науки.

Но без личностных качеств великого химика, которые составляют субъективную предпосылку открытия Периодического закона, вряд ли он был бы открыт в 1869г. Если бы его открыл какой-нибудь другой химик, вероятно, это произошло бы намного позже. Энциклопедичность знаний, научная интуиция, умение обобщать, постоянное стремление к познанию неведомого, дар научного предвидения Д. И. Менделеева сыграли свою немалую роль в открытии Периодического закона.

Открытие Д. И. Менделеевым

Периодического закона.

1 марта 1969г. научная общественность всего мира отмечала столетие одного из величайших законов современного естествознания – Периодического закона химических элементов. Наука и техника сделала за этот период гигантские скачки. Казалось бы, значение Периодического закона Д. И. Менделеева должно было потускнеть перед грандиозными достижениями современной науки. Напротив, в наши дни Периодический закон химических элементов представляется рельефнее и значительнее, чем 100 лет назад.

Открытие Периодического закона внесло ясность и порядок в многообразии, и разрозненные сведения о природе и химических свойствах элементах и их соединениях. Химия из эмпирического искусства преобразовалась в подлинную, точную науку. Привычная простота и четкость таблицы Д. И. Менделеева скрывают теперь от нас гигантскую и кропотливую работу по освоению и переработке всего того, что было известно до Д. И. Менделеева. Ему пришлось выполнить грандиозную работу, чтобы стала возможной и осуществимой догадка о существовании закона периодичности свойств элементов.

К 1869г. были открыты только 63 элемента. Из них достаточно хорошо изучены с точно определенными атомными массами только 48, в то время как атомная масса остальных элементов была определена неточно или неверно. Расположив элементы в ряд по возрастанию неверных, или неточно определенных, атомных масс, ни один химик в мире не мог бы обнаружить общей закономерности в их свойствах. Только непостижимая способность обобщения позволила увидеть всеобъемлющую простоту закона. Для этого необходима великая научная смелость, и этой научной смелостью обладал Д. И. Менделеев. Открытый им Периодический закон отвечал самому главному требованию – возможности предсказания нового и предвидения неизвестного. Закон Д. И. Менделеева в этом плане не имеет равных себе.

В самом деле, для того чтобы расположить химические элементы в соответствии с периодическим законом и построить первую Периодическую таблицу, Д. И. Менделеев должен был оставить в ней «пустые» места и принять новые значения атомных масс для многих элементов, т. е. предсказать новые элементы. Для этого нужна уверенность в истинности вновь открытого закона, необходима смелость и решимость, что и отличает Д. И. Менделеева от всех его предшественников.

Более 30 лет Д. И. Менделеев работал над открытием и совершенствованием Периодического закона. Будучи уверенным, что он открыл новый естественный закон природы, Д. И. Менделеев на основании его предсказывает существование 12 неизвестных в то время науке элементов, для трех из них дает подробное описание их свойств, а также свойств их соединений и даже тех способов, при помощи которых они впоследствии могут быть получены.

Все предсказания, сделанные Д. И. Менделеевым на основе Периодического закона, а также исправления атомных масс элементов блестяще подтвердились.

Периодический закон стал законом предвидения в химии. Исследования Д. И. Менделеева дали прочный и надежный фундамент дальнейшего развития науки. Они послужили основой для объяснения строения атомов и их соединения. "Нет ни одного, сколь-либо общего закона природы,- писал Д. И. Менделеев,- который бы основался сразу; всегда его утверждению предшествует много предчувствий, а признание закона наступает не тогда, когда он вполне сознан во всем его значении, а лишь по утверждению его следствий опытами, которые естествоиспытатели должны признавать высшею инстанциею своих соображений и мнений". Вполне естественно, что открытию такого всеобъемлющего закона природы также предшествовал длительный этап "предчувствий". До Д. И. Менделеева было много ученых, которые предлагали свои таблицы и графики элементов и отдельные частные закономерности о соотношении свойств элементов. Не случайно, что некоторые из них после открытия Д. И. Менделеевым выступали с претензиями на первенство открытия. Большое значение для установления периодичности химических элементов имело точное определение основных химических понятий "элемент" и "простое тело". Большая заслуга в определении этих понятий принадлежит Д. И. Менделееву, который, в отличие от своих предшественников, создал систему элементов, а не простых тел или эквивалентов. "Разнообразные периодические отношения принадлежат элементам,- писал Д. И. Менделеев,- а не простым телам, и это весьма важно заметить, потому что Периодический закон относится к элементам, так как им свойствен атомный вес, а простым телам, как и сложным, частичный вес". В то время почти все предшественники Д. И. Менделеева в своих поисках пользовались весьма расплывчатыми понятиями элемента и простого тела и зачастую оперировали не только истинными атомными массами, а эквивалентами. При существовавшей путанице таких понятий, как "атомная масса", "молекулярная масса", "эквивалент", многие химики, занимавшиеся поиском закономерностей между элементами, естественно, не могли обнаружить внутренней связи между их физическими и химическими свойствами. Так, например, У. Одлинг в 1865г. в своей книге "Курс практической химии" дал таблицу, озаглавив ее "Атомные веса и знаки элементов". Эта таблица внешне была сходна с первой таблицей Д. И. Менделеева. Однако сходство было чисто вешним, и поэтому Д. И. Менделеев справедливо указал, что У. Одлинг ничего не говорит о смысле своей таблице и нигде о ней не упоминал.

Все предшественники Д. И. Менделеева не смогли сделать всеобъемлющих обобщений из отмеченных ими закономерностей.

В течение многих лет Д. И. Менделеев выполнял гигантскую работу. В центре его внимания в эти годы было изучение связи химических свойств веществ с их физической структурой – центральная проблема, над которой работали химики того времени.

Деятельность в этой области и подготовила Д. И. Менделеева к открытию периодической закономерности в изменении свойств элементов. Читая курс неорганической химии, в 1868г. он приступил к составлению учебника "Основы химии", который был издан в 1869г. Работая над ним, Д. И. Менделеев искал логическую основу для распределения материала второй части своего курса. Поиски привели его к мысли сопоставить группы сходных элементов. При этом он заметил, что все элементы можно расположить в порядке возрастания атомных масс, объединив их в группы. Таким образом, и появилась первая таблица элементов, озаглавленная "Опыт системы элементов, основанной на их атомном весе и химическом сходстве". Д. И. Менделеев сразу же понял, что эта таблица не просто служит обоснованием логического плана расположения материала курса, а отражает определенный закон природы, устанавливающий тесную связь между всеми известными элементами.

6 марта 1869г. составленная Д. И. Менделеевым таблица была доложена на заседании Русского химического общества, а затем опубликована в журнале "Русское химическое общество".

В 1871г. он опубликовал две классические статьи о Периодическом законе: "Естественная система элементов и применение ее к указанию свойств неоткрытых элементов" и "Периодическая закономерность химических элементов". Эти статьи явились обобщением огромной работы, выполненной Д. И. Менделеевым по уточнению формулировки открытого им закона и важнейших следствий и выводов из него. Здесь ученый впервые называет свое открытие Периодическим законом.

Излагая сущность открытого им закона, он формулировал его в следующих словах: "свойства простых тел, также формы и свойства соединений элементов, находятся в периодической зависимости от величины атомных весов элементов". Появление в русской и иностранной печати сообщений и статей Д. И. Менделеева по периодическому закону, а также рефератов его статей и выход в свет "Основ химии", первого в истории курса, в котором расположение материала базировалось на Периодическом законе, мало обратило внимание со стороны ведущих химиков того времени.

Однако прошло всего лишь около 4 лет со времени предсказаний Д. И. Менделеева, как одно из них получило блестящее подтверждение. Известный французский химик-аналитик Лекок де Буабодран 27 августа 1875г. сообщил об открытии нового элемента, названного им галлием, и описал его свойства. Ознакомившись с работой французского ученого, Д. И. Менделеев тотчас пришел к выводу, что новый элемент есть не что иное, как предсказанный им экаалюминий. Он немедленно направил письмо Лекок де Буабодрану и заметку во французский журнал ("Доклады Парижской Академии наук"). Лекок де Буабодран был удивлен этим письмом и заметкой, опубликованной в журнале. Он не слышал о существовании химика Д. И. Менделеева и к тому же считал, что свойства нового элемента может лучше знать он, который открыл и экспериментально изучил их. Д. И. Менделеев писал, что определение Лекок де Буабордраном плотности этого элемента неточно; по расчетам Д. И. Менделеева, плотность галлия должна быть равна 6. Лекок де Буабодран повторил определение плотности элемента и нашел, что она равна 5,96.

Открытие галлия было блестящим доказательством предсказаний Д. И. Менделеева и произвело огромное впечатление в ученом мире. Его статьи, которые ранее оставались почти не замеченными, теперь привлекли всеобщее внимание.

В 1879г. шведский химик Л. Нильсон при исследовании минералов эвксенита и гадолинита открыл новый элемент, названный им скандием. Свойства этого элемента оказались в точности совпадающими с теми, которые были предсказаны Д. И. Менделеевым на основании периодического закона.

И, наконец, немецкий химик, профессор Горной академии во Фрейберге К. А. Винклер, анализируя минерал аргиродит, обнаружил в нем новый неизвестный элемент и назвал его германием. Свойства германия совпадали с предсказаниями Д. И. Менделеевым свойствами экасилиция.

Эти открытия были блестящим триумфом Периодического закона. Скептицизм и сомнения, существовавшие у некоторой части ученых по отношению к Периодическому закону, сменились полнейшей уверенностью в его величайшем научном значении. Периодический закон стал прочной базой для разнообразных исследований химиков и физиков всего мира. Настала эпоха систематического изучения всех элементов и возможных новых типов их соединения.

К концу прошлого столетия Периодический закон стал общепризнанным. Лежащие в его основе представления о вечности, неизменности атомов и уверенность, что относительная масса атомов одного и того же элемента строго одинакова, казались незыблемыми. Ученые-химики считали своей задачей открытие еще неизвестных элементов, которые должны занять пустующие клетки в Периодической системе Д. И. Менделеева. Однако новые блестящие открытия ученых подвергли Периодический закон серьезным испытаниям. Так, в 1892г. английский физик Р. Дж. Рэлей, исследуя плотность газов воздуха, нашел новый элемент, который был назван аргоном. В следующем году открыт еще один инертный газ – гелий, присутствие которого задолго до этого было спектроскопически обнаружено в солнечной атмосфере. Эти открытия поставили несколько в тупик Д. И. Менделеева, так как для этих элементов не находилось места в Периодической системе. Другой английский физик и химик У. Рамзай предложил аргон и гелий разместить в периодической системе в особый нулевой группе. У. Рамзай предсказал одновременно существование и других инертных газов и, пользуясь методом Д. И. Менделеева, заранее описал их возможные свойства. Действительно, вскоре были открыты неон, криптон и ксенон. Они составили нулевую группу инертных элементов и тем самым были существенным дополнением к Периодической системе. В настоящее время эти элементы формально нельзя назвать инертными, так как получены соединения для криптона и ксенона. Поэтому их теперь размещают в VIII группе Периодической системы.

Одним из важных следствий Периодического закона является современное учение о строении атома.

В конце XIX столетия был открыт электрон. Возникли первые модели строения атома, в основу которых положили гипотезу о равномерном распределении положительного и отрицательного электричества. Э. Резерфорд с помощью опытов сделал вывод, что основная масса вещества сосредоточена в ядре атома. Ядро же атома по сравнению с объемом всего атома имеет весьма малый объем. Весь положительный заряд сосредоточен в ядре. Вокруг положительно заряженного ядра атома движутся отдельные электроны в количестве, равном заряду ядра. На основании опытных данных Э. Резерфорд рассчитал заряд ядер некоторых атомов. Ван-ден-Брэк, сопоставивший результаты измерения заряда ядра атома, сделал следующее предположение: величина заряда ядра атома каждого химического элемента, измеренная в элементарных единицах заряда, равна атомному номеру, т. е. порядковому номеру, который данный элемент имеет в Периодической таблице.

Этот вывод позволил, наконец, понять истинную природу Периодического закона Д. И. Менделеева. стало ясно, что лежит в основе таблицы Д. И. Менделеева, чем отличаются атомы различных химических элементов и что определяет их химическую индивидуальность. Таким образом, все атомы по своему строению аналогичны, т. е. атом любого химического элемента состоит из ядра и электронов, количество которых определяется зарядом ядра.

В соответствии с теорией Н. Бора электроны в атоме располагаются по слоям, причем было найдено, что количество слоев в атоме элемента соответствует номеру периода Периодической системы.

В свете этих открытий Периодический закон Д. И. Менделеева в настоящее время формулируется так: "Свойства химических элементов находится в периодической зависимости от зарядов их атомных ядер, или порядкового номера элемента".

Основным и исходным пунктом таких грандиозных успехов в науке за сравнительно короткий срок, является открытие Д. И. Менделеева Периодического закона. В то же время эти открытия не только не умалили, а, наоборот, расширили горизонты Периодического закона, превратили его в могучий инструмент познаний природы. Он стал основой для дальнейшего развития науки. Сбылись пророческие слова Д. И. Менделеева, сказанные в Английском химическом обществе 23 мая 1889г. , о том, что Периодический закон, расширив горизонт зрения, как инструмент требует дальнейших улучшений для того, чтобы ясность видения еще новых дальнейших элементов была достаточна для полной уверенности.

Обращаясь к английским коллегам, он подчеркивал, что Периодический закон ждет не только новых приложений, но и усовершенствований.

Успехи современной химии, успехи атомной и ядерной физики, синтез искусственных элементов стали возможными благодаря Периодическому закону. Вместе с тем успехи атомной физики, а также открытие новых методов исследования, развитие квантовой механики, в свою очередь, расширили и углубили сущность Периодического закона. Развитие науки показало, что Периодический закон до конца еще не познан и не завершен, что он много шире и глубже, чем мог предположить Д. И. Менделеев, чем думали до недавнего времени ученые. Так, оказалось, что закону периодичности подчиняется не только строение внешних оболочек атома, но и тонкая структура атомных ядер. Очевидно, что закономерности, которые управляют сложным и во многом в настоящее время еще не понятым миром элементарных частиц, также имеют в своей основе периодический характер.

Будущее Периодической таблицы.

Попробуем заглянуть в будущее. Рассмотрим нижнюю часть таблицы подробно, введя в нее элементы, открытые в последние годы.

Химические свойства полученного в 1998г. элемента № 114 можно ориентировочно предсказать по положению в Периодической системе. Это – непереходной элемент, находящийся в группе углерода, и по свойствам должен напоминать свинец, расположенный над ним. Впрочем, химические свойства нового элемента недоступны для непосредственного изучения – элемент зафиксирован в количестве нескольких атомов и недолговечен.

У элемента - № 118 – целиком заполнены все семь электронных уровней. Поэтому вполне естественно, что он находится в группе инертных газов – над ним расположен радон. Таким образом, 7-й период таблицы Д. И. Менделеева завершен. Эффектный финал столетия!

В течение всего XXв. человечество в основном заполняло именно этот седьмой период, и сейчас он простирается от элемента № 87 – франция. Попробуем решить другой вопрос. Сколько же всего будет элементов в 8-м периоде? Поскольку прибавление каждого электрона соответствует появлению нового элемента, то просто надо сложить максимальное число электронов на всех орбиталях от s до g: 2+6+10+14+18=50. Долгое время так и предполагали, однако компьютерные расчеты показывают, что в 8-м периоде будет не 50, а 46 элементов. Итак, 8-й период будет простираться от элемента № 119 до № 164.

Внимательное рассмотрение Периодической системы позволяет отметить еще одну простую закономерность. p-Элементы впервые появляются во 2-м периоде, d-элементы – в 4-м, f-элементы – в 6-м. Получился ряд четных чисел: 2, 4, 6. эта закономерность определяется правилами заполнения электронных оболочек. Теперь понятно, почему g-элементы появятся в 8м периоде. Простое продолжение ряда четных чисел! Существует и более дальние прогнозы, но они основаны на достаточно сложных расчетах.

Очень интересно, существует ли теоретически последний элемент Периодической системы? Современные расчеты ответить на этот вопрос пока не могут, так что он наукой еще не решен.

Мы достаточно далеко зашли в наших прогнозах, может быть, даже в XXII в. , что, впрочем, вполне объяснимо. Попытаться бросить взгляд в отдаленное будущее – вполне естественное желание для каждого человека.

Заключение.

Значение Периодического закона и Периодической системы химических элементов

Д. И. Менделеева.

Периодический закон Д. И. Менделеева имеет исключительно большое значение. Он положил начало современной химии, сделал ее единой, целостной наукой. Элементы стали рассматриваться во взаимосвязи, в зависимости от того, какое место они занимают в Периодической системе. Как указывал Н. Д. Зелинский, Периодический закон явился "открытием взаимной связи всех атомов в мироздании".

Химия перестала быть описательной наукой. С открытием Периодического закона в нем стало возможным научное предвидение. Появилась возможность предсказывать и описывать новые элементы и их соединения. Блестящий пример тому – предсказание Д. И. Менделеевым существования еще не открытых в его время элементов, из которых для трех – Ga, Sc и Ge – он дал точное описание их свойств.

На основе закона Д. И. Менделеева были заполнены все пустые клетки его системы от элемента с Z=1 до Z=92, а также открыты трансурановые элементы. И сегодня этот закон служит ориентиром для открытия или искусственного создания новых химических элементов.

Периодический закон послужил основой для исправления атомных масс элементов. У 20 элементов Д. И. Менделеевым были исправлены атомные массы, после чего эти элементы заняли свои места в Периодической системе.

Большое общенаучное и философское значение Периодического закона и системы состоит в том, что он подтвердил наиболее общие законы развития природы (единства и борьбы противоположностей, перехода количества в качество, отрицание отрицания).

Учение о строении атома привело к открытию атомной энергии и использованию ее для нужд человека. Можно без преувеличения сказать, что Периодический закон является первоисточником всех открытий химии и физики XX в. Он сыграл выдающую роль в развитии других, смежных с химией естественных наук.

Периодический закон и система лежат в основе решения современных задач химической науки и промышленности. С учетом Периодической системы химических элементов Д. И. Менделеева ведутся работы по получению новых полимерных и полупроводниковых материалов, жаропрочных сплавов, веществ с заданными свойствами, по использованию ядерной энергии, исследуются недра Земли, Вселенная

Вещие слова Д. И. Менделеева: "Посев научный взойдет доля жатвы народной",- сбылись. В них все помыслы, желания. Великий ученый и патриот, он всегда останется для нас символом честности и трудолюбия, борьбы за интересы народа. Мы, его верные последователи, будем вечно чтить светлое имя Дмитрия Ивановича Менделеева. Я согласна с тем, что "феномен Менделеева" будет еще долго изучаться учеными разных специальностей.

Утверждение атомно-молекулярной теории на рубеже XIIX - XIX веков сопровождалось бурным ростом числа известных химических элементов. Только за первое десятилетие 19 века было открыто 14 новых элементов. Рекордсменом среди первооткрывателей оказался английский химик Гемфри Деви, который за один год с помощью электролиза получил 6 новых простых веществ (натрий, калий, магний, кальций, барий, стронций). А к 1830 году число известных элементов достигло 55.

Существование такого количества элементов, разнородных по своим свойствам, озадачивало химиков и требовало упорядочения и систематизации элементов. Многие учёные занимались поисками закономерностей в списке элементов и добивались определённого прогресса. Можно выделить три наиболее значительные работы, которые оспаривали приоритет открытия периодического закона у Д.И. Менделеева.

Менделеев сформулировал периодический закон в виде следующих основных положений:

  • 1. Элементы, расположенные по величине атомного веса, представляют явственную периодичность свойств.
  • 2. Должно ожидать открытия ещё многих неизвестных простых тел, например, сходных с Al и Si элементов с атомным весом 65 - 75.
  • 3. Величина атомного веса элемента иногда может быть исправлена, зная его аналогии.

Некоторые аналогии открываются по величине веса их атома. Первое положение было известно ещё до Менделеева, но именно он придал ему характер всеобщего закона, предсказав на его основе существование ещё не открытых элементов, изменив атомные веса ряда элементов и расположив некоторые элементы в таблице вопреки их атомным весам, но в полном соответствии с их свойствами (главным образом, валентностью). Остальные положения открыты только Менделеевым и являются логическими следствиями из периодического закона. Правильность этих следствий подтверждалась многими опытами в течение последующих двух десятилетий и позволила говорить о периодическом законе как о строгом законе природы.

Используя эти положения, Менделеев составил свой вариант периодической системы элементов. Первый черновой набросок таблицы элементов появился 17 февраля (1 марта по новому стилю) 1869 года.

А 6 марта 1869 года официальное сообщение об открытии Менделеева сделал профессор Меншуткин на заседании Русского химического общества.

В уста учёного вложили такую исповедь: Вижу во сне таблицу, где все элементы расставлены, как нужно. Проснулся, тотчас записал на клочке бумаги - только в одном месте впоследствии оказалась нужной поправка». Как всё просто в легендах! На разработку и поправку ушло более 30 лет жизни учёного.

Процесс открытия периодического закона поучителен и сам Менделеев рассказывал об этом так: «Невольно зародилась мысль о том, что между массой и химическими свойствами необходимо должна быть связь.

А так как масса вещества, хотя и не абсолютная, а лишь относительная, выражается окончательно в виде весов атомов, то надо искать функциональное соответствие между индивидуальными свойствами элементов и их атомными весами. Искать же что - либо, хотя бы грибы или какую-нибудь зависимость, нельзя иначе, как смотря и пробуя.

Вот я и стал подбирать, написав на отдельных карточках элементы с их атомными весами и коренными свойствами, сходные элементы и близкие атомные веса, что быстро и привело к тому заключению, что свойства элементов стоят в периодической зависимости от их атомного веса, причём, сомневаясь во многих неясностях, я ни минуты не сомневался в общности сделанного вывода, так как случайность допустить не возможно».

В самой первой таблицы Менделеева все элементы до кальция включительно - такие же, как и в современной таблице, за исключением благородных газов. Это можно увидеть по фрагменту страницы из статьи Д.И. Менделеева, содержащей периодическую систему элементов.

Если исходить из принципа увеличения атомных весов, то следующими элементами после кальция должны были быть ванадий, хром и титан. Но Менделеев поставил после кальция знак вопроса, а следом поместил титан, изменив его атомный вес с 52 до 50.

Неизвестному элементу, обозначенному знаком вопроса, был приписан атомный вес А = 45, являющийся средним арифметическим между атомными весами кальция и титана. Затем, между цинком и мышьяком Менделеев оставил место сразу для двух ещё не открытых элементов. Кроме того, он поместил теллур перед йодом, хотя последний имеет меньший атомный вес. При таком расположении элементов все горизонтальные ряды в таблице содержали только сходные элементы, и отчётливо проявлялась периодичность изменения свойств элементов. Последующие два года Менделеев значительно усовершенствовал систему элементов. В 1871 году вышло первое издание учебника Дмитрия Ивановича «Основы химии», в котором приведена периодическая система в почти современном виде.

В таблице образовалось 8 групп элементов, номера групп указывают на высшую валентность элементов тех рядов, которые включены в эти группы, и периоды становятся более близкими к современным, разбитые на 12 рядов. Теперь каждый период начинается активным щелочным металлом и заканчивается типичным неметаллом галогеном.Второй вариант системы дал возможность Менделееву предсказать существование не 4, а 12 элементов и, бросая вызов учёному миру, с изумительной точностью описал свойства трёх неизвестных элементов, которые он назвал экабор (эка на санскрите означает «одно и то же»), экаалюминий и экасилиций. (Галлия - древнеримское название Франции). Учёному удалось выделить этот элемент в чистом виде и изучить его свойства. А Менделеев увидел, что свойства галлия совпадают со свойствами предсказанного им экаалюминия, и сообщил Лекок де Буабодрану, что тот неверно измерил плотность галлия, которая должна быть равна 5,9-6,0 г/см3 вместо 4,7 г/см3. И действительно, более аккуратные измерения привели к правильному значению 5,904 г/см3. Окончательного признания периодический закон Д.И. Менделеева добился после 1886 года, когда немецкий химик К. Винклер, анализируя серебряную руду, получил элемент, который он назвал германием. Это оказывается экасицилий.

Периодический закон и периодическая система элементов.

Периодический закон - один из важнейших законов химии. Менделеев считал, что главной характеристикой элемента является его атомная масса. Поэтому он расположил все элементы в один ряд в порядке увеличения их атомной массы.

Если рассмотреть ряд элементов от Li до F, то можно увидеть, что металлические свойства элементов ослабляются, а неметаллические свойства усиливаются. Аналогично изменяются и свойства элементов в ряду от Na до Cl. Следующий знак К, как Li и Na, является типичным металлом.

Высшая валентность элементов увеличивается от I y Li до V y N (кислород и фтор имеют постоянную валентность, соответственно II и I) и от I y Na до VII y Cl. Следующий элемент К, как Li и Na, имеет валентность I. В ряду оксидов от Li2O до N2O5 и гидроксидов от LiОН до HNO3 основные свойства ослабляются, а кислотные свойства усиливаются. Аналогично изменяются свойства оксидов в ряду от Na2O и NaOH до Cl2O7 и HClO4. Оксид калия К2О, как и оксиды лития и натрия Li2O и Na2O, является основным оксидом, а гидроксид калия КОН, как и гидроксиды лития и натрия LiOH и NaOH, является типичным основанием.

Аналогично изменяются формы и свойства неметаллов от CH4 до HF и от SiH4 до HCl.

Такой характер свойств элементов и их соединений, какой наблюдается при увеличении атомной массы элементов, называется периодическим изменением. Свойства всех химических элементов при увеличении атомной массы изменяются периодически.

Это периодическое изменение называется периодической зависимостью свойств элементов и их соединений от величины атомной массы.

Поэтому Д.И. Менделеев сформулировал открытый им закон так:

· Свойства элементов, а так же формы и свойства соединений элементов находятся в периодической зависимости от величины атомной массы элементов.

Менделеев расположил периоды элементов друг под другом и в результате составил периодическую систему элементов.

Он говорил, что таблица элементов - плод не только его собственного труда, но и усилий многих химиков, среди которых он особо отмечал «укрепителей периодического закона», открывших предсказанные им элементы.

Для создания современной таблицы потребовалась напряженная многолетняя работа тысяч и тысяч химиков и физиков. Если бы Менделеев был сейчас жив, он, глядя на современную таблицу элементов, вполне мог бы повторить слова английского химика Дж.У.Меллора, автора классической 16-томной энциклопедии по неорганической и теоретической химии. Закончив в 1937, после 15-летней работы, свой труд, он написал с признательностью на титульном листе: «Посвящается рядовым огромной армии химиков. Их имена забыты, их работы остались»...

Периодическая система - это классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона. На октябрь 2009 года известно 117 химических элементов (с порядковыми номерами с 1 по 116 и 118), из них 94 обнаружены в природе (некоторые -- лишь в следовых количествах). Остальные23 получены искусственно в результате ядерных реакций - это процесс превращения атомных ядер, происходящий при их взаимодействии с элементарными частицами, гамма-квантами и друг с другом, обычно приводящий к выделению колоссального количества энергии. Первые 112 элементов имеют постоянные названия, остальные -- временные.

Открытие 112-го элемента (самый тяжелый из официальных) признано Международным союзом теоретической и прикладной химии.

Самый стабильный из известных изотопов данного элемента имеет период полураспада 34 секунды. На начало июня 2009 года носит неофициальное имя унунбий, был впервые синтезирован в феврале 1996 года на ускорителе тяжелых ионов в Институте тяжелых ионов в Дармштадте. Первооткрыватели имеют полгода, чтобы предложить новое официальное название для добавления в таблицу (ими уже предлагались Виксхаузий, Гельмгольций, Венусий, Фриший, Штрассманий и Гейзенбергий). В настоящее время известны трансурановые элементы с номерами 113-116 и 118, полученные в Объединенном институте ядерных исследований в Дубне, однако они официально пока не признаны. Распространённее других являются 3 формы таблицы Менделеева: «короткая» (короткопериодная), «длинная» (длиннопериодная) и «сверхдлинная». В «сверхдлинном» варианте каждый период занимает ровно одну строчку. В «длинном» варианте лантаноиды (семейство из 14 химических элементов с порядковыми номерами 58--71, расположенных в VI периоде системы) и актиноиды (семейство радиоактивных химических элементов, состоящее из актиния и 14 подобных ему по своим химическим свойствам) вынесены из общей таблицы, делая её более компактной. В «короткой» форме записи, в дополнение к этому, четвёртый и последующие периоды занимают по 2 строчки; символы элементов главных и побочных подгрупп выравниваются относительно разных краёв клеток. Короткая форма таблицы, содержащая восемь групп элементов, была официально отменена ИЮПАК в 1989 году. Несмотря на рекомендацию использовать длинную форму, короткая форма продолжила приводиться в большом числе российских справочников и пособий и после этого времени. Из современной иностранной литературы короткая форма исключена полностью, вместо неё используется длинная форма. Такую ситуацию некоторые исследователи связывают, в том числе с кажущейся рациональной компактностью короткой формы таблицы, а также со стереотипностью мышления и невосприятием современной (международной) информации.

В 1969 году Теодор Сиборг предложил расширенную периодическую таблицу элементов. Нильсом Бором разрабатывалась лестничная (пирамидальная) форма периодической системы.

Существует и множество других, редко или вовсе не используемых, но весьма оригинальных, способов графического отображения Периодического закона. Сегодня существуют несколько сот вариантов таблицы, при этом учёные предлагают всё новые варианты.

Периодический закон и его обоснование.

Периодический закон позволил привести в систему и обобщить огромный объем научной информации в химии. Эту функцию закона принято называть интегративной. Особо четко она проявляется в структурировании научного и учебного материала химии.

Академик А. Е. Ферсман говорил, что система объединила всю химию в рамки единой пространственной, хронологической, генетической, энергетической связи.

Интегративная роль Периодического закона проявилась и в том, что некоторые данные об элементах, якобы выпадавшие из общих закономерностей, были проверены и уточнены как самим автором, так и его последователями.

Так случилось с характеристиками бериллия. До работы Менделеева его считали трехвалентным аналогом алюминия из-за их так называемого диагонального сходства. Таким образом, во втором периоде оказывалось два трехвалентных элемента и ни одного двухвалентного. Именно на этой стадии Менделеев заподозрил ошибку в исследованиях свойств бериллия, он нашел работу российского химика Авдеева, утверждавшего, что бериллий двухвалентен и имеет атомный вес 9. Работа Авдеева оставалась не замеченной ученым миром, автор рано скончался, по-видимому, получив отравление чрезвычайно ядовитыми бериллиевыми соединениями. Результаты исследования Авдеева утвердились в науке благодаря Периодическому закону.

Такие изменения и уточнения значений и атомных весов, и валентностей были сделаны Менделеевым еще для девяти элементов (In, V, Th, U, La, Ce и трех других лантаноидов).

Еще у десяти элементов были исправлены только атомные веса. И все эти уточнения впоследствии были подтверждены экспериментально.

Прогностическая (предсказательная) функция Периодического закона получила самое яркое подтверждение в открытии неизвестных элементов с порядковыми номерами 21, 31 и 32.

Их существование сначала было предсказано на интуитивном уровне, но с формированием системы Менделеев с высокой степенью точности смог рассчитать их свойства. Хорошо известная история открытия скандия, галлия и германия явилась триумфом менделеевского открытия. Он все предсказания делал на основе им же самим открытого всеобщего закона природы.

Всего же Менделеевым были предсказаны двенадцать элементов.С самого начала Менделеев указал, что закон описывает свойства не только самих химических элементов, но и множества их соединений. Для подтверждения этого достаточно привести такой пример. С 1929 г., когда академик П. Л. Капица впервые обнаружил неметаллическую проводимость германия, во всех странах мира началось развитие учения о полупроводниках.

Сразу стало ясно, что элементы с такими свойствами занимают главную подгруппу IV группы.

Со временем пришло понимание, что полупроводниковыми свойствами должны в большей или меньшей мере обладать соединения элементов, расположенных в периодах равно удаленной от этой группы (например, с общей формулой типа АзВ).

Это сразу сделало поиск новых практически важных полупроводников целенаправленным и предсказуемым. На таких соединениях основывается практически вся современная электроника.

Важно отметить, что предсказания в рамках Периодической системы делались и после ее всеобщего признания. В 1913г.

Мозли обнаружил, что длина волн рентгеновских лучей, которые получены от антикатодов, сделанных из разных элементов, изменяется закономерно в зависимости от порядкового номера, условно присвоенного элементам в Периодической системе. Эксперимент подтвердил, что порядковый номер элемента имеет прямой физический смысл.

Лишь позднее порядковые номера были связаны со значением положительного заряда ядра. Зато закон Мозли позволил сразу экспериментально подтвердить число элементов в периодах и вместе с тем предсказать места еще не открытых к тому времени гафния (№ 72) и рения (№ 75).

Долгое время шел спор: выделять инертные газы в самостоятельную нулевую группу элементов или считать их главной подгруппой VIII группы.

Исходя из положения элементов в Периодической системе, химики-теоретики во главе с Лайнусом Полингом давно сомневались в полной химической пассивности инертных газов, напрямую указывая на возможную устойчивость их фторидов и оксидов.

Но только в 1962 г. американский химик Нил Бартлетт впервые осуществил в самых обычных условиях реакцию гексафторида платины с кислородом, получив гексафтороплати-нат ксенона XePtF^, а за ним и другие соединения газов, которые теперь правильнее называть благородными, а не инертны.

Реферат

«История открытия и подтверждения периодического закона Д.И. Менделеева»

Санкт-Петербург 2007


Введение

Периодический закон Д.И. Менделеева – это фундаментальный закон, устанавливающий периодическое изменение свойств химических элементов в зависимости от увеличения зарядов ядер их атомов. Открыт Д.И. Менделеевым в феврале 1869 г. При сопоставлении свойств всех известных в то время элементов и величин их атомных масс (весов). Термин «периодический закон» Менделеев впервые употребил в ноябре 1870, а в октябре 1871 дал окончательную формулировку Периодического закона: «…свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса». Графическим (табличным) выражением периодического закона является разработанная Менделеевым периодическая система элементов.


1. Попытки других ученых вывести периодический закон

Периодическая система, или периодическая классификация, элементов имела огромное значение для развития неорганической химии во второй половине XIX в. Это значение в настоящее время колоссально, потому что сама система в результате изучения проблем строения вещества постепенно приобрела ту степень рациональности, которой невозможно было достичь, зная только атомные веса. Переход от эмпирической закономерности к закону составляет конечную цель всякой научной теории.

Поиски основы естественной классификации химических элементов и их систематизации начались задолго до открытия Периодического закона. Трудности, с которыми сталкивались естествоиспытатели, которые первыми работали в этой области, были вызваны недостаточностью экспериментальных данных: в начале XIX в. число известных химических элементов было ещё слишком невелико, а принятые значения атомных масс многих элементов неточны.

Не считая попыток Лавуазье и его школы дать классификацию элементов на основе критерия аналогии в химическом поведении, первая попытка периодической классификации элементов принадлежит Дёберейнеру.

Триады Дёберейнера и первые системы элементов

В 1829 г. немецкий химик И. Дёберейнер предпринял попытку систематизации элементов. Он заметил, что некоторые сходные по своим свойствам элементы можно объединить по три в группы, которые он назвал триадами: Li–Na–K; Ca–Sr–Ba; S–Se–Te; P–As–Sb; Cl–Br–I.

Сущность предложенного закона триад Дёберейнера состояла в том, что атомная масса среднего элемента триады была близка к полусумме (среднему арифметическому) атомных масс двух крайних элементов триады. Хотя разбить все известные элементы на триады Дёберейнеру, естественно, не удалось, закон триад явно указывал на наличие взаимосвязи между атомной массой и свойствами элементов и их соединений. Все дальнейшие попытки систематизации основывались на размещении элементов в соответствии с их атомными массами.

Идеи Дёберейнера были развиты Л. Гмелиным, который показал, что взаимосвязь между свойствами элементов и их атомными массами значительно сложнее, нежели триады. В 1843 г. Гмелин опубликовал таблицу, в которой химически сходные элементы были расставлены по группам в порядке возрастания соединительных (эквивалентных) весов. Элементы составляли триады, а также тетрады и пентады (группы из четырёх и пяти элементов), причём электроотрицательность элементов в таблице плавно изменялись сверху вниз.

В 1850-х гг. М. фон Петтенкофер и Ж. Дюма предложили т.н. дифференциальные системы, направленные на выявление общих закономерностей в изменении атомного веса элементов, которые детально разработали немецкие химики А. Штреккер и Г. Чермак.

В начале 60-х годов XIX в. появилось сразу несколько работ, которые непосредственно предшествовали Периодическому закону.

Спираль де Шанкуртуа

А. де Шанкуртуа располагал все известные в то время химические элементы в единой последовательности возрастания их атомных масс и полученный ряд наносил на поверхность цилиндра по линии, исходящей из его основания под углом 45° к плоскости основания (т.н. земная спираль ). При развертывании поверхности цилиндра оказывалось, что на вертикальных линиях, параллельных оси цилиндра, находились химические элементы со сходными свойствами. Так, на одну вертикаль попадали литий, натрий, калий; бериллий, магний, кальций; кислород, сера, селен, теллур и т.д. Недостатком спирали де Шанкуртуа было то обстоятельство, что на одной линии с близкими по своей химической природе элементами оказывались при этом и элементы совсем иного химического поведения. В группу щелочных металлов попадал марганец, в группу кислорода и серы – ничего общего с ними не имеющий титан.

Таблица Ньюлендса

Английский учёный Дж. Ньюлендс в 1864 г. опубликовал таблицу элементов, отражающую предложенный им закон октав . Ньюлендс показал, что в ряду элементов, размещённых в порядке возрастания атомных весов, свойства восьмого элемента сходны со свойствами первого. Ньюлендс пытался придать этой зависимости, действительно имеющей место для лёгких элементов, всеобщий характер. В его таблице в горизонтальных рядах располагались сходные элементы, однако в том же ряду часто оказывались и элементы совершенно отличные по свойствам. Кроме того, в некоторых ячейках Ньюлендс вынужден был разместить по два элемента; наконец, таблица не содержала свободных мест; в итоге закон октав был принят чрезвычайно скептически.

Таблицы Одлинга и Мейера

В том же 1864 г. появилась первая таблица немецкого химика Л. Мейера; в неё были включены 28 элементов, размещённые в шесть столбцов согласно их валентностям. Мейер намеренно ограничил число элементов в таблице, чтобы подчеркнуть закономерное (аналогичное триадам Дёберейнера) изменение атомной массы в рядах сходных элементов.

В 1870 г. вышла работа Мейера, содержащая новую таблицу под названием «Природа элементов как функция их атомного веса», состоявшая из девяти вертикальных столбцов. Сходные элементы располагались в горизонтальных рядах таблицы; некоторые ячейки Мейер оставил незаполненными. Таблица сопровождалась графиком зависимости атомного объёма элемента от атомного веса, имеющий характерный пилообразный вид, прекрасно иллюстрирующий термин «периодичность», уже предложенный к тому времени Менделеевым.

2. Что было сделано до дня великого открытия

Предпосылки открытия периодического закона следует искать в книге Д.И. Менделеева (далее Д.И.) «Основы химии». Первые главы 2-й части этой книги Д.И. написал в начале 1869 г. 1-я глава была посвящена натрию, 2-я – его аналогам, 3-я – теплоемкости, 4-я – щелочноземельным металлам. Ко дню открытия периодического закона (17 февраля 1869 г.) он, вероятно, уже успел изложить вопрос о соотношении таких полярно-противоположных элементов, как щелочные металлы и галоиды, которые были сближены между собой по величине их атомности (валентности), а также вопрос о соотношении самих щелочных металлов по величине их атомных весов. Он вплотную подошел и к вопросу о сближении и сопоставлении двух групп полярно-противоположных элементов по величине атомных весов их членов, что фактически уже означало отказ от принципа распределения элементов по их атомности и переход к принципу их распределения по атомным весам. Этот переход представлял собой не подготовку к открытию периодического закона, а уже начало самого открытия

К началу 1869 г. Значительная часть элементов была объединена в отдельные естественные группы и семейства по признаку общности химических свойств; наряду с этим другая часть их представлял собой разрозненные, стоявшие особняком отдельные элементы, которые не были объединены в особые группы. Твердо установленными считались следующие:

– группа щелочных металлов – литий, натрий, калий, рубидий и цезий;

– группа щелочноземельных металлов – кальций, стронций и барий;

– группа кислорода – кислород, сера, селен и теллур;

– группа азота – азот, фосфор, мышьяк и сурьма. Кроме того, сюда часто присоединяли висмут, а в качестве неполного аналога азота и мышьяка рассматривали ванадий;

– группа углерода – углерод, кремний и олово, причем в качестве неполных аналогов кремния и олова рассматривали титан и цирконий;

– группа галогенов (галоидов) – фтор, хлор, бром и йод;

– группа меди – медь и серебро;

– группа цинка – цинк и кадмий

– семейство железа – железо, кобальт, никель, марганец и хром;

– семейство платиновых металлов – платина, осмий, иридий, палладий, рутений и родий.

Сложнее дело обстояло с такими элементами, которые могли быть отнесены к разным группам или семействам:

– свинец, ртуть, магний, золото, бор, водород, алюминий, таллий, молибден, вольфрам.

Кроме того был известен ряд элементов, свойства которых были еще недостаточно изучены:

– семейство редкоземельных элементов – иттрий, «эрбий», церий, лантан и «дидим»;

– ниобий и тантал;

– бериллий;

3. День великого открытия

Д.И. был весьма разносторонним ученым. Он давно и очень сильно интересовался вопросами сельского хозяйства. Он принимал самое близкое участие в деятельности Вольного экономического общества в Петербурге (ВЭО), членом которого он состоял. ВЭО организовало в ряде северных губерний артельное сыроварение. Одним из инициаторов этого начинания был Н.В. Верещагин. В конце 1868 г., т.е. в то время как Д.И. заканчивал вып. 2 своей книги, Верещагин обратился в ВЭО с просьбой прислать кого-нибудь из членов Общества для того, чтобы на месте обследовать работу артельных сыроварен. Согласие на такого рода поездку выразил Д.И. В декабре 1868 г. он обследовал ряд артельных сыроварен в Тверской губернии. Для завершения обследования нужна было дополнительная командировка. Как раз на 17 февраля 1869 г. и был назначен отъезд.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Биография

2. Мастер чемоданных дел

Список литературы

Биография

Дмитрий Иванович Менделеев (1834-1907) - великий русский ученый-энциклопедист, химик, физик, технолог, геолог и даже метеоролог. Менделеев обладал удивительно ясным химическим мышлением, он всегда ясно представлял конечные цели своей творческой работы: предвидение и пользу. Он писал: "Ближайший предмет химии составляет изучение однородных веществ, из сложения которых составлены все тела мира, превращений их друг в друга и явлений, сопровождающих такие превращения".

Русский ученый, член - кореспондент Петербургской АН (с 1876 г.). Родился в Тобольске. Окончил Главный педагогический институт в Петербурге (1855 г.). В 1855-1856 гг. - учитель гимназии при Ришельевском лицее в Одессе. В 1857-1890 гг. преподавал в Петербургском университете (с 1865 г. - профессор), одновременно в 1863-1872 гг. - профессор Петербургского технологического института. В 1859-1861 гг. находился в научной командировке в Гейдельберге. В 1890 г. покинул университет из-за конфликта с министром просвещения, который во время студенческих волнений отказался принять от Менделеева петицию студентов. С 1892 г. - ученый-хранитель Депо образцовых гирь и весов, которое в 1893 г. по его инициативе было преобразовано в Главную палату мер и весов (с 1893 г. - управляющий).

Научные работы относятся преимущественно к той дисциплине, которую называют общей химией, а также к физике, химической технологии, экономике, сельскому хозяйству, метрологии, географии, метеорологии.

Исследовал (1854-1856 гг.) явления изоморфизма, раскрывающие отношения между кристаллической формой и химическим составом соединений, а также зависимость свойств элементов от величины их атомныхобъемов. Открыл (1860 г.) "температуру абсолютного кипения жидкостей", или критическую.

Работая над трудом "Основы химии", открыл (февраль 1869 г.) один из фундаментальных законов природы - Периодический закон химических элементов.

Развил (1869-1871 гг.) идеи периодичности, ввел понятие о месте элемента в Периодической системе как совокупности его свойств в сопоставлении со свойствами других элементов. На этой основе исправил значения атомных масс многих элементов (бериллия, индия, урана и др.).

Предсказал (1870 г.) существование, вычислил атомные массы и описал свойства трех еще не открытых элементов - "экаалюминия" (открыт в 1875 г. и назван галлием), "экабора" (открыт в 1879 г. и назван скандием) и "экасилиция" (открыт в 1885 г. и назван германием). Затем предсказал существование еще восьми элементов, в том числе "двителлура" - полония (открыт в 1898 г.), "экаиода" - астата (открыт в 1942-1943 гг.), "двимарганца" - технеция (открыт в 1937 г.), "экацезия" - Франция (открыт в 1939 г.).

В 1900 г. Менделеев и У. Рамзай пришли к выводу о необходимости включения в Периодическую систему элементов особой, нулевой группы благородных газов. Помимо выявившейся необходимости исправления атомных масс элементов, уточнения формул оксидов и валентности элементов в соединениях, Периодический закон направил дальнейшие работы химиков и физиков на изучение строения атомов, установление причин периодичности и физического смысла закона.

Менделеев систематически занимался изучением растворов и изоморфных смесей. Сконструировал (1859 г.) пикнометр - прибор для определения плотности жидкости. Создал (1865-1887 гг.) гидратную теорию растворов. Развил идеи о существовании соединений переменного состава.

Исследуя газы, нашел (1874 г.) общее уравнение состояния идеального газа, включающее как частность зависимость состояния газа от температуры, обнаруженную (1834 г.) физиком Б. П. Э. Клапейроном (уравнение Клапейрона-Менделеева).

Выдвинул (1877 г.) гипотезу происхождения нефти из карбидов тяжелых металлов; предложил принцип дробной перегонки при переработке нефтей.

Выдвинул (1880 г.) идею подземной газификации углей.

Занимался вопросами химизации сельского хозяйства. Совместно с И. М. Чельцовым принимал участие (1890-1892 гг.) в разработке бездымного пороха. Создал физическую теорию весов, разработал конструкции коромысла, точнейшие методы взвешивания.

Член многих академий наук и научных обществ. Один из основателей Русского физико-химического общества (1868 г.). В его честь назван элемент № 101 - менделевий.

АН СССР учредила (1962 г.) премию и Золотую медаль им. Д. И. Менделеева за лучшие работы по химии и химической технологии.

Менделеев и Периодический закон.

За четыре года до открытия Периодического закона Д.И. Менделеев, наконец, обрел спокойствие в семейных делах и уверенность в своих действиях. В 1865 году он купил имение Боблово недалеко от Клина и получил возможность заниматься агрохимией, которой тогда увлекался, и отдыхать там с семьей каждое лето.

В 1867 году Менделеев стал заведовать кафедрой общей и неорганической химии физико-математического факультета Петербургского университета, а в конце года ему предоставили долгожданную университетскую квартиру. В мае 1868 года у Менделеевых родилась любимая дочь Ольга.

Жизнь не всегда была благосклонна к Менделееву: были в ней и разрыв с невестой, и недоброжелательность коллег, неудачный брак и затем развод... Два года (1880 и 1881) были очень тяжелыми в жизни Менделеева. В декабре 1880 года Петербургская академия наук отказала ему в избрании академиком: "за" проголосовало девять, а "против" - десять академиков. Особенно неблаговидную роль при этом сыграл секретарь академии некто Веселовский. Он откровенно заявил: "Мы не хотим университетских. Если они и лучше нас, то нам все-таки их не нужно".

В 1881 году с большим трудом был расторгнут брак Менделеева с первой женой, совершенно не понимавшей мужа и упрекавшей его в отсутствии внимания.

2. Мастер чемоданных дел

Любимым занятием на досуге у Менделеева в течение многих лет было изготовление чемоданов и рамок для портретов. Припасы для этих работ он закупал в Гостином дворе. Однажды, выбирая нужный товар, Менделеев услыхал за спиной вопрос одного из покупателей:

- "Кто этот почтенный господин?"

- "Таких людей знать надо, - с уважением в голосе ответил приказчик. - Это мастер чемоданных дел Менделеев".

В 1895 году Менделеев ослеп, но продолжал руководить Палатой мер и весов. Деловые бумаги ему зачитывали вслух, распоряжения он диктовал секретарю, а дома вслепую продолжал клеить чемоданы. Профессор И. В. Костенич за две операции удалил катаракту, и вскоре зрение вернулось…

Но вернемся к 1867 году.

Зимой 1867-68 года Менделеев начал писать учебник "Основы химии" и сразу столкнулся с трудностями систематизации фактического материала. К середине февраля 1869 года, обдумывая структуру учебника, он постепенно пришел к выводу, что свойства простых веществ (а это есть форма существования химических элементов в свободном состоянии) и атомные массы элементов связывает некая закономерность.

Менделеев многого не знал о попытках его предшественников расположить химические элементы по возрастанию их атомных масс и о возникающих при этом казусах. Например, он не имел почти никакой информации о работах Шанкуртуа, Ньюлендса и Мейера.

Решающий этап его раздумий наступил 1 марта 1869 года (14 февраля по старому стилю). Днем раньше Менделеев написал прошение об отпуске на десять дней для обследования артельных сыроварен в Тверской губернии: он получил письмо с рекомендациями по изучению производства сыра от А. И. Ходнева - одного из руководителей Вольного экономического общества.

В Петербурге в этот день было пасмурно и морозно. Под ветром поскрипывали деревья в университетском саду, куда выходили окна квартиры Менделеева. Еще в постели Дмитрий Иванович выпил кружку теплого молока, затем встал, умылся и пошел завтракать. Настроение у него было чудесное.

Неожиданная мысль.

За завтраком Менделееву пришла неожиданная мысль: сопоставить близкие атомные массы различных химических элементов и их химические свойства.

Недолго думая, на обратной стороне письма Ходнева он записал символы хлора Cl и калия K с довольно близкими атомными массами, равными соответственно 35,5 и 39 (разница всего в 3,5 единицы). На том же письме Менделеев набросал символы других элементов, отыскивая среди них подобные "парадоксальные" пары: фтор F и натрий Na, бром Br и рубидий Rb, иод I и цезий Cs, для которых различие масс возрастает с 4,0 до 5,0, а потом и до 6,0. Менделеев тогда не мог знать, что "неопределенная зона" между явными неметаллами и металлами содержит элементы - благородные газы, открытие которых в дальнейшем существенно видоизменит Периодическую систему.

После завтрака Менделеев закрылся в своем кабинете. Он достал из конторки пачку визитных карточек и стал на их обратной стороне писать символы элементов и их главные химические свойства.

Через некоторое время домочадцы услышали, как из кабинета стало доноситься: "У-у-у! Рогатая. Ух, какая рогатая! Я те одолею. Убью-у!" Эти возгласы означали, что у Дмитрия Ивановича наступило творческое вдохновение.

Менделеев перекладывал карточки из одного горизонтального ряда в другой, руководствуясь значениями атомной массы и свойствами простых веществ, образованных атомами одного и того же элемента. В который раз на помощь ему пришло доскональное знание неорганической химии. Постепенно начал вырисовываться облик будущей Периодической системы химических элементов.

Так, вначале он положил карточку с элементом бериллием Be (атомная масса 14) рядом с карточкой элемента алюминия Al (атомная масса 27,4), по тогдашней традиции приняв бериллий за аналог алюминия. Однако затем, сопоставив химические свойства, он поместил бериллий над магнием Mg. Усомнившись в общепринятом тогда значении атомной массы бериллия, он изменил ее на 9,4, а формулу оксида бериллия переделал из Be 2 O 3 в BeO (как у оксида магния MgO). Кстати, "исправленное" значение атомной массы бериллия подтвердилось только через десять лет. Так же смело действовал он и в других случаях.

Постепенно Дмитрий Иванович пришел к окончательному выводу, что элементы, расположенные по возрастанию их атомных масс, выказывают явную периодичность физических и химических свойств.

В течение всего дня Менделеев работал над системой элементов, отрываясь ненадолго, чтобы поиграть с дочерью Ольгой, пообедать и поужинать.

Вечером 1 марта 1869 года он набело переписал составленную им таблицу и под названием "Опыт системы элементов, основанной на их атомном весе и химическом сходстве" послал ее в типографию, сделав пометки для наборщиков и поставив дату "17 февраля 1869 года" (это по старому стилю).

Так был открыт Периодический закон, современная формулировка которого такова:

Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от заряда ядер их атомов.

Менделееву тогда было всего 35 лет.

Отпечатанные листки с таблицей элементов Менделеев разослал многим отечественным и зарубежным химикам и только после этого выехал из Петербурга для обследования сыроварен.

До отъезда он еще успел передать Н. А. Меншуткину, химику-органику и будущему историку химии, рукопись статьи "Соотношение свойств с атомным весом элементов" - для публикации в Журнале Русского химического общества и для сообщения на предстоящем заседании общества.

18 марта 1869 года Меншуткин, который был в то время делопроизводителем общества, сделал от имени Менделеева небольшой доклад о Периодическом законе. Доклад сначала не привлек особого внимания химиков, и Президент русского химического общества, академик Николай Зинин (1812-1880) заявил, что Менделеев делает не то, чем следует заниматься настоящему исследователю. Правда, через два года, прочтя статью Дмитрия Ивановича "Естественная система элементов и применение ее к указанию свойств некоторых элементов", Зинин изменил свое мнение и написал Менделееву: "Очень, очень хорошо, премного отличных сближений, даже весело читать, дай Бог Вам удачи в опытном подтверждении Ваших выводов. Искренне Вам преданный и глубоко Вас уважающий Н. Зинин".

3. Так что же такое периодичность?

Это повторяемость химических свойств простых веществ и их соединений при изменении порядкового номера элемента Z и появление у ряда свойств максимумов и минимумов, в зависимости от значения порядкового (атомного) номера элемента.

Например, что позволяет объединить в одну группу все щелочные элементы? менделеев периодический закон химия

Прежде всего, повторяемость через некоторые интервалы значений Z электронной конфигурации. Атомы всех щелочных элементов имеют на внешней атомной орбитали всего один электрон, и поэтому в своих соединениях проявляют одну и ту же степень окисления, равную +I. Формулы их соединений однотипны: у хлоридов MCl, у карбонатов - М 2 СO 3 , у ацетатов - CH 3 COOM и так далее (здесь буквой M обозначен щелочной элемент).

Менделееву после открытия Периодического закона предстояло сделать еще многое. Причина периодического изменения свойств элементов оставалась неизвестной, не находила объяснения и сама структура Периодической системы, где свойства повторялись через семь элементов у восьмого. Однако с этих чисел был снят первый покров таинственности: во втором и третьем периодах системы находилось тогда как раз по семь элементов.

Не все элементы Менделеев разместил в порядке возрастания атомных масс; в некоторых случаях он больше руководствовался сходством химических свойств. Так, у кобальта Co атомная масса больше, чем у никеля Ni, у теллура Te она также больше, чем у иода I, но Менделеев разместил их в порядке Co - Ni, Te - I, а не наоборот. Иначе теллур попадал бы в группу галогенов, а иод становился родственником селена Se.

Самое же важное в открытии Периодического закона - предсказание существования еще не открытых химических элементов. Под алюминием Al Менделеев оставил место для его аналога "экаалюминия", под бором B - для "экабора", а под кремнием Si - для "экасилиция". Так назвал Менделеев еще не открытые химические элементы. Он даже дал им символы El, Eb и Es.

По поводу элемента "экасилиция" Менделеев писал: "Мне кажется, наиболее интересным из несомненно недостающих металлов будет тот, который принадлежит к IV группе аналогов углерода, а именно, к III ряду. Это будет металл, следующий тотчас же за кремнием, и потому назовем его экасилицием". Действительно, этот еще не открытый элемент должен был стать своеобразным "замкОм", связывающим два типичных неметалла - углерод C и кремний Si - с двумя типичными металлами - оловом Sn и свинцом Pb.

Не все зарубежные химики сразу оценили значение открытия Менделеева. Уж очень многое оно меняло в мире сложившихся представлений.

Так, немецкий физикохимик Вильгельм Оствальд, будущий лауреат Нобелевской премии, утверждал, что открыт не закон, а принцип классификации "чего-то неопределенного". Немецкий химик Роберт Бунзен, открывший в 1861 году два новых щелочных элемента, рубидий Rb и цезий Cs, писал, что Менделеев увлекает химиков "в надуманный мир чистых абстракций".

Профессор Лейпцигского университета Герман Кольбе в 1870 году назвал открытие Менделеева "спекулятивным".

Кольбе отличался грубостью и неприятием новых теоретических воззрений в химии. В частности, он был противником теории строения органических соединений и в свое время резко обрушился на статью Якоба Вант-Гоффа "Химия в пространстве". Позднее Вант-Гофф за свои исследования стал первым Нобелевским лауреатом. А ведь Кольбе предлагал таких исследователей, как Вант-Гофф, "исключить из рядов настоящих ученых и зачислить их в лагерь спиритов"!

С каждым годом Периодический закон завоевывал все большее число сторонников, а его открыватель - все большее признание.

В лаборатории Менделеева стали появляться высокопоставленные посетители, в том числе даже великий князь Константин Николаевич, управляющий морским ведомством.

Наконец, пришло время триумфа. В 1875 году французский химик Поль-Эмиль Лекок де Буабодран открыл в минерале вюртците - сульфиде цинка ZnS - предсказанный Менделеевым "экаалюминий" и назвал его в честь своей родины галлием Ga (латинское название Франции - "Галлия").

Он писал: "Я думаю, нет необходимости настаивать на огромном значении подтверждения теоретических выводов господина Менделеева".

Заметим, что в названии элемента есть намек и на имя самого Буабодрана. Латинское слово "галлус" означает петух, а по-французски петух - "ле кок". Это слово есть и в имени первооткрывателя. Что имел в виду Лекок де Буабодран, когда давал название элементу - себя или свою страну - этого, видимо, уже никогда не выяснить.

Менделеев точно предсказал свойства экаалюминия: его атомную массу, плотность металла, формулу оксида El 2 O 3 , хлорида ElCl 3 , сульфата El 2 (SO 4) 3 . После открытия галлия эти формулы стали записывать как Ga 2 O 3 , GaCl 3 и Ga 2 (SO 4) 3 .

Менделеев предугадал, что это будет очень легкоплавкий металл, и действительно, температура плавления галлия оказалась равной 29,8 о С. По легкоплавкости галлий уступает только ртути Hg и цезию Cs.

В 1879 году шведский химик Ларс Нильсон открыл скандий, предсказанный Менделеевым как экабор Eb. Нильсон писал: "Не остается никакого сомнения, что в скандии открыт экабор.

Так подтверждаются нагляднейшим образом соображения русского химика, которые не только дали возможность предсказать существование скандия и галлия, но и предвидеть заранее их важнейшие свойства".

Скандий получил название в честь родины Нильсона Скандинавии, а открыл он его в сложном минерале гадолините, имеющем состав Be 2 (Y,Sc) 2 FeO 2 (SiO 4) 2 .

В 1886 году профессор Горной академии во Фрайбурге немецкий химик Клеменс Винклер при анализе редкого минерала аргиродита состава Ag 8 GeS 6 обнаружил еще один элемент, предсказанный Менделеевым. Винклер назвал открытый им элемент германием Ge в честь своей родины, но это почему-то вызвало резкие возражения со стороны некоторых химиков.

Они стали обвинять Винклера в национализме, в присвоении открытия, которое сделал Менделеев, уже давший элементу имя "экасилиций" и символ Es. Обескураженный Винклер обратился за советом к самому Дмитрию Ивановичу. Тот объяснил, что именно первооткрыватель нового элемента должен дать ему название.

Предугадать существование группы благородных газов Менделеев не мог, и им поначалу не нашлось места в Периодической системе.

Открытие аргона Ar английскими учеными У. Рамзаем и Дж. Релеем в 1894 году сразу же вызвало бурные дискуссии и сомнения в Периодическом законе и Периодической системе элементов.

Менделеев вначале посчитал аргон аллотропной модификацией азота и только в 1900 году под давлением непреложных фактов согласился с присутствием в Периодической системе "нулевой" группы химических элементов, которую заняли другие благородные газы, открытые вслед за аргоном. Теперь эта группа известна под номером VIIIА.

В 1905 году Менделеев написал: "По-видимому, периодическому закону будущее не грозит разрушением, а только надстройки и развитие обещает, хотя как русского меня хотели затереть, особенно немцы".

Открытие Периодического закона ускорило развитие химии и открытие новых химических элементов.

Список литературы

Алимарин И.П. Энциклопедия школьника. - М.: «Советская энциклопе- дия», 1975.

Фельдман Ф.Г., Рудзитис Г.Е. Химия. - 3-е изд. - М.: «Просвещение», 1994.

Химия. Большой справочник для школьников и поступающих в вузы. - 2-е изд. - М.: «Дрофа», 1999.

Семененко К.Н. Химия. - 2-е издание. - М.: «Мир», 1972.

Размещено на Allbest.ru

...

Подобные документы

    Открытие Д.И. Менделеевым периодического закона химических элементов. Неорганическая химия с точки зрения периодического закона в труде "Основы химии". Полет на воздушном шаре, наблюдение за затмением. Проблемы освоения Арктики. Другие увлечения ученого.

    презентация , добавлен 29.11.2013

    Биографические сведения о жизни великого ученого Менделеева, его семья, научная деятельность. Открытие Менделеевым периодического закона химических элементов - одного из основных законов естествознания. Его проект арктического экспедиционного ледокола.

    презентация , добавлен 01.10.2012

    Д.И. Менделеев - русский учёный-энциклопедист, профессор, член-корреспондент Императорской Академии наук, автор классического труда "Основы химии". Биография, становление учёного, научная деятельность. Открытие периодического закона химических элементов.

    презентация , добавлен 28.05.2015

    Изучение биографии и жизненного пути ученого Д. Менделеева. Описания разработки стандарта для русской водки, изготовления чемоданов, открытия периодического закона, создания системы химических элементов. Анализ его исследований в области состояния газов.

    презентация , добавлен 16.09.2011

    Исследование истории семьи Д.И. Менделеева - создателя периодического закона химических элементов - одного из основных законов естествознания. Малоизвестные подробности из истории рождения и жизни внучки Менделеева - Наталье Алексеевне Трироговой.

    доклад , добавлен 02.03.2008

    Исторические сведения о Д.И. Менделееве. Биографические сведения. "Мастер чемоданных дел". Общественная и промышленная деятельность. Д.И. Менделеева. Открытие ПСХЭ. Неожиданная мысль. Триумф. Обстоятельства открытия периодического закона.

    реферат , добавлен 26.04.2006

    "Золотой век" мировой культуры. Прогрессивное развитие науки. Периодическая система, или периодическая классификация, химических элементов и ее значение для развития неорганической химии во второй половине XIX века. Таблица Менделеева и ее видоизменение.

    реферат , добавлен 26.02.2011

    Развитие науки в XIX веке, послужившее основой для последующего технического прогресса. Биографические данные и научные открытия великих ученых, проводивших исследования в области физики, химии, астрономии, фармацевтики, биологии, медицины, генетики.

    презентация , добавлен 15.05.2012

    Выдающиеся научные открытия XIX века в области физики, биологии, физиологии человека, психологии, географии, медицины и в других науках. Научные достижения Ж.Б. Ламарка, Н.И. Пирогова, Н.И. Лобачевского, А.Г. Столетова, А.П. Бородина, Ф.А. Бредихина.

    презентация , добавлен 05.05.2014

    Биографические сведения о жизни Д. Менделеева - русского учёного-энциклопедиста. Хроника его творческой жизни. Обоснование Менделеевым главных направлений хозяйственного развития России, изобретение пироколлодийного пороха, его научные труды и учебники.

Введение

Периодический закон и Периодическая система химических элементов Д. И. Менделеева – основа современной химии. Они относятся к таким научным закономерностям, которые отражают явления, реально существующие в природе, и поэтому никогда не потеряют своего значения.

Периодический закон и сделанные на его основе открытия в различных областях естествознания и техники являются величайшим триумфом человеческого разума, свидетельством всё более глубокого проникновения в самые сокровенные тайны природы, успешного преобразования природы на благо человека.

«Редко бывает, чтобы научное открытие оказалось чем-то совершенно неожиданным, почти всегда оно предчувствуется, однако последующим поколениям, которые пользуются апробированными ответами на все вопросы, часто нелегко оценить, каких трудностей это стоило их предшественникам». Д.И. Менделеев.

Цель: Характеризовать понятие периодическая система и периодический закон элементов, периодический закон и его обоснование, дать характеристику структурам периодической системы: подгруппы, периоды и группы. Изучить историю открытия периодического закона и периодической системы элементов.

Задачи: Рассмотреть историю открытия периодического закона и периодической системы. Дать определение периодическому закону и периодической системе. Проанализировать периодический закон и его обоснование. Структуру периодической системы: подгруппы, периоды и группы.

История открытия периодического закона и периодической системы химических элементов

Утверждение атомно-молекулярной теории на рубеже XIIX – XIX веков сопровождалось бурным ростом числа известных химических элементов. Только за первое десятилетие 19 века было открыто 14 новых элементов. Рекордсменом среди первооткрывателей оказался английский химик Гемфри Деви, который за один год с помощью электролиза получил 6 новых простых веществ (натрий, калий, магний, кальций, барий, стронций). А к 1830 году число известных элементов достигло 55.

Существование такого количества элементов, разнородных по своим свойствам, озадачивало химиков и требовало упорядочения и систематизации элементов. Многие учёные занимались поисками закономерностей в списке элементов и добивались определённого прогресса. Можно выделить три наиболее значительные работы, которые оспаривали приоритет открытия периодического закона у Д.И. Менделеева.

В 1860 году состоялся первый Международный химический конгресс, после которого стало ясно, что основной характеристикой химического элемента является его атомный вес. Французский учёный Б. Де Шанкуртуа в 1862 году впервые расположил элементы в порядке возрастания атомных весов и разместил их по спирали вокруг цилиндра. Каждый виток спирали содержал 16 элементов, сходные элементы, как правило, попадали в вертикальные столбцы, хотя были отмечены и значительные расхождения. Работа де Шанкуртуа осталась незамеченной, но выдвинутая им идея сортировки элементов в порядке возрастания атомных весов оказалась плодотворной.

И двумя годами позже, руководствуясь этой идеей, английский химик Джон Ньюлендс разместил элементы в виде таблицы и заметил, что свойства элементов периодически повторяются через каждые семь номеров. Например, хлор по свойствам похож на фтор, калий – на натрий, селен – на серу и т.д. Данную закономерность Ньюлендс назвал «законом октав», практически опередив понятие периода. Но Ньюлендс настаивал на том, что длина периода (равная семи) является неизменной, поэтому его таблица содержит не только правильные закономерности, но и случайные пары (кобальт – хлор, железо – сера и углерод – ртуть).

А вот немецкий учёный Лотар Мейер в 1870 году построил график зависимости атомного объёма элементов от их атомного веса и обнаружил отчётливую периодическую зависимость, причём длина периода не совпадала с законом октав и была переменной величиной.

Во всех этих работах много общего. Де Шанкуртуа, Ньюлендс и Мейер открыли проявление периодичности изменения свойств элементов в зависимости от их атомного веса. Но они не смогли создать единую периодическую систему всех элементов, поскольку в открытых ими закономерностях многие элементы не находили своего места. Никаких серьёзных выводов из своих наблюдений этим учёным так же сделать не удалось, хотя они чувствовали, что многочисленные соотношения между атомными весами элементов являются проявлением какого-то общего закона.

Этот общий закон был открыт великим русским химиком Дмитрием Ивановичем Менделеевым в 1869 году. Менделеев сформулировал периодический закон в виде следующих основных положений:

1. Элементы, расположенные по величине атомного веса, представляют явственную периодичность свойств.

2. Должно ожидать открытия ещё многих неизвестных простых тел, например, сходных с Al и Si элементов с атомным весом 65 – 75.

3. Величина атомного веса элемента иногда может быть исправлена, зная его аналогии.

Некоторые аналогии открываются по величине веса их атома. Первое положение было известно ещё до Менделеева, но именно он придал ему характер всеобщего закона, предсказав на его основе существование ещё не открытых элементов, изменив атомные веса ряда элементов и расположив некоторые элементы в таблице вопреки их атомным весам, но в полном соответствии с их свойствами (главным образом, валентностью). Остальные положения открыты только Менделеевым и являются логическими следствиями из периодического закона

Правильность этих следствий подтверждалась многими опытами в течение последующих двух десятилетий и позволила говорить о периодическом законе как о строгом законе природы.

Используя эти положения, Менделеев составил свой вариант периодической системы элементов. Первый черновой набросок таблицы элементов появился 17 февраля (1 марта по новому стилю) 1869 года.

А 6 марта 1869 года официальное сообщение об открытии Менделеева сделал профессор Меншуткин на заседании Русского химического общества.

В уста учёного вложили такую исповедь: Вижу во сне таблицу, где все элементы расставлены, как нужно. Проснулся, тотчас записал на клочке бумаги – только в одном месте впоследствии оказалась нужной поправка». Как всё просто в легендах! На разработку и поправку ушло более 30 лет жизни учёного.

Процесс открытия периодического закона поучителен и сам Менделеев рассказывал об этом так: «Невольно зародилась мысль о том, что между массой и химическими свойствами необходимо должна быть связь. А так как масса вещества, хотя и не абсолютная, а лишь относительная, выражается окончательно в виде весов атомов, то надо искать функциональное соответствие между индивидуальными свойствами элементов и их атомными весами. Искать же что – либо, хотя бы грибы или какую-нибудь зависимость, нельзя иначе, как смотря и пробуя. Вот я и стал подбирать, написав на отдельных карточках элементы с их атомными весами и коренными свойствами, сходные элементы и близкие атомные веса, что быстро и привело к тому заключению, что свойства элементов стоят в периодической зависимости от их атомного веса, причём, сомневаясь во многих неясностях, я ни минуты не сомневался в общности сделанного вывода, так как случайность допустить не возможно».

В самой первой таблицы Менделеева все элементы до кальция включительно – такие же, как и в современной таблице, за исключением благородных газов. Это можно увидеть по фрагменту страницы из статьи Д.И. Менделеева, содержащей периодическую систему элементов.

Если исходить из принципа увеличения атомных весов, то следующими элементами после кальция должны были быть ванадий (А = 51), хром (А = 52) и титан (А = 52). Но Менделеев поставил после кальция знак вопроса, а следом поместил титан, изменив его атомный вес с 52 до 50. Неизвестному элементу, обозначенному знаком вопроса, был приписан атомный вес А = 45, являющийся средним арифметическим между атомными весами кальция и титана. Затем, между цинком и мышьяком Менделеев оставил место сразу для двух ещё не открытых элементов. Кроме того, он поместил теллур перед йодом, хотя последний имеет меньший атомный вес. При таком расположении элементов все горизонтальные ряды в таблице содержали только сходные элементы, и отчётливо проявлялась периодичность изменения свойств элементов.

В последующие два года Менделеев значительно усовершенствовал систему элементов. В 1871 году вышло первое издание учебника Дмитрия Ивановича «Основы химии», в котором приведена периодическая система в почти современном виде. В таблице образовалось 8 групп элементов, номера групп указывают на высшую валентность элементов тех рядов, которые включены в эти группы, и периоды становятся более близкими к современным, разбитые на 12 рядов. Теперь каждый период начинается активным щелочным металлом и заканчивается типичным неметаллом галогеном.

Второй вариант системы дал возможность Менделееву предсказать существование не 4, а 12 элементов и, бросая вызов учёному миру, с изумительной точностью описал свойства трёх неизвестных элементов, которые он назвал экабор (эка на санскрите означает «одно и то же»), экаалюминий и экасилиций. Современные названия их Se, Ga, Ge.

Учёный мир Запада в начале отнёсся к Менделеевской системе и его предсказаниям скептически, но всё изменилось, когда в 1875 году французский химик П. Лекок де Буабодран, исследуя спектры цинковой руды, обнаружил следы нового элемента, который он назвал галлием в честь своей родины (Галлия – древнеримское название Франции)

Учёному удалось выделитьэтот элемент в чистом виде и изучить его свойства. А Менделеев увидел, что свойства галлия совпадают со свойствами предсказанного им экаалюминия, и сообщил Лекок де Буабодрану, что тот неверно измерил плотность галлия, которая должна быть равна 5,9-6,0 г/см3вместо 4,7 г/см3. И действительно, более аккуратные измерения привели к правильному значению 5,904 г/см3.

В 1879 году шведский химик Л. Нильсон при разделении редкоземельных элементов, полученных из минерала гадолинита, выделил новый элемент и назвал его скандием. Это оказывается предсказанный Менделеевым экабор.

Окончательного признания периодический закон Д.И. Менделеева добился после 1886 года, когда немецкий химик К. Винклер, анализируя серебряную руду, получил элемент, который он назвал германием. Это оказывается экасицилий.


Похожая информация.