Макияж. Уход за волосами. Уход за кожей

Макияж. Уход за волосами. Уход за кожей

» » Если радиус вращения точки по окружности. Движение по окружности

Если радиус вращения точки по окружности. Движение по окружности

Движение тела по окружности является частным случаем криволинейного движения. Наряду с вектором перемещения удобно рассматривать угловое перемещение Δφ (или угол поворота ), измеряемое в радианах (рис. 1.6.1). Длина дуги связана с углом поворота соотношением

При малых углах поворота Δl ≈ Δs .

Угловой скоростью ω тела в данной точке круговой траектории называют предел (при Δt →0) отношения малого углового перемещения Δφ к малому промежутку времени Δt :

Угловая скорость измеряется в рад/с .

Связь между модулем линейной скорости υ и угловой скоростью ω:

При равномерном движении тела по окружности величины υ и ω остаются неизменными. В этом случае при движении изменяется только направление вектора

Равномерное движение тела по окружности является движением с ускорением. Ускорение

направлено по радиусу к центру окружности. Его называют нормальным или центростремительным ускорением . Модуль центростремительного ускорения связан с линейной υ и угловой ω скоростями соотношениями:

Для доказательства этого выражения рассмотрим изменение вектора скорости за малый промежуток времени Δt . По определению ускорения

Векторы скоростей и в точках A и B направлены по касательным к окружности в этих точках. Модули скоростей одинаковы υA B = υ.

Из подобия треугольников OAB и BCD (рис. 1.6.2) следует:

При малых значениях угла Δφ = ωΔt расстояние |AB | =Δs ≈ υΔt . Так как |OA | = R и |CD | = Δυ, из подобия треугольников на рис. 1.6.2 получаем:

При малых углах Δφ направление вектора приближается к направлению на центр окружности. Следовательно, переходя к пределу при Δt →0, получаем:

При изменении положения тела на окружности изменяется направление на центр окружности. При равномерном движении тела по окружности модуль ускорения остается неизменным, но направление вектора ускорения изменяется со временем. Вектор ускорения в любой точке окружности направлен к ее центру. Поэтому ускорение при равномерном движении тела по окружности называется центростремительным.

В векторной форме центростремительное ускорение может быть записано в виде

где - радиус-вектор точки на окружности, начало которого находится в ее центре.

Если тело движется по окружности неравномерно, то появляется также касательная (или тангенциальная ) составляющая ускорения (см 1.1):

В этой формуле Δυ τ = υ 2 - υ 1 - изменение модуля скорости за промежуток времени Δt .

Направление вектора полного ускорения определяется в каждой точке круговой траектории величинами нормального и касательного ускорений (рис. 1.6.3).

1. Достаточно часто можно наблюдать такое движение тела, при котором его траекторией является окружность. По окружности движется, например, точка обода колеса при его вращении, точки вращающихся деталей станков, конец стрелки часов, ребенок, сидящий на какой‑либо фигуре вращающихся каруселей.

При движении по окружности может изменяться не только направление скорости тела, но и ее модуль. Возможно движение, при котором изменяется только направление скорости, а ее модуль остается постоянным. Такое движение называют равномерным движением тела по окружности . Введем характеристики этого движения.

2. Движение тела по окружности повторяется через определенные промежутки времени, равные периоду обращения.

Периодом обращения называют время, в течение которого тело совершает один полный оборот.

Период обращения обозначают буквой T . За единицу периода обращения в СИ принята секунда (1 с ).

Если за время t тело совершило N полных оборотов, то период обращения равен:

T = .

Частотой обращения называют число полных оборотов тела за одну секунду.

Частоту обращения обозначают буквой n .

n = .

За единицу частоты обращения в СИ принята секунда в минус первой степени (1 с– 1 ).

Частота и период обращения связаны следующим образом:

n = .

3. Рассмотрим величину, характеризующую положение тела на окружности. Пусть в начальный момент времени тело находилось в точке A , а за время t оно переместилось в точку B (рис. 38).

Проведем радиус‑вектор из центра окружности в точку A и радиус‑вектор из центра окружности в точку B . При движении тела по окружности радиус‑вектор повернется за время t на угол j. Зная угол поворота радиуса‑вектора, можно определить положение тела на окружности.

Единица угла поворота радиуса‑вектора в СИ - радиан (1 рад ).

При одном и том же угле поворота радиуса‑вектора точки A и B , находящиеся на разных расстояниях от его центра равномерно вращающегося диска (рис. 39), пройдут разные пути.

4. При движении тела по окружности мгновенную скорость называют линейной скоростью .

Линейная скорость тела, равномерно движущегося по окружности, оставаясь постоянной по модулю, меняется по направлению и в любой точке направлена по касательной к траектории.

Модуль линейной скорости можно определить по формуле:

v = .

Пусть тело, двигаясь по окружности радиусом R , совершило один полный оборот, Тогда пройденный им путь равен длине окружности: l = 2pR , а время равно периоду обращения T . Следовательно, линейная скорость тела:

v = .

Поскольку T = , то можно записать

v = 2pRn .

Быстроту обращения тела характеризуют угловой скоростью .

Угловой скоростью называют физическую величину, равную отношению угла поворота радиуса-вектора к промежутку времени, за которое этот поворот произошел.

Угловая скорость обозначается буквой w.

w = .

За единицу угловой скорости в СИ принимают радиан в секунду (1 рад/с ):

[w] == 1 рад/с.

За время, равное периоду обращения T , тело совершает полный оборот и угол поворота радиуса-вектора j = 2p. Поэтому угловая скорость тела:

w =или w = 2pn .

Линейная и угловая скорости связаны друг с другом. Запишем отношение линейной скорости к угловой:

== R .

Таким образом,

v = wR .

При одинаковой угловой скорости точек A и B , расположенных на равномерно вращающемся диске (см. рис. 39), линейная скорость точки A больше линейной скорости точки B : v A > v B .

5. При равномерном движении тела по окружности модуль его линейной скорости остается постоянным, а направление скорости меняется. Поскольку скорость - величина векторная, то изменение направления скорости означает, что тело движется по окружности с ускорением.

Выясним, как направлено и чему равно это ускорение.

Напомним, что ускорение тела определяется по формуле:

a == ,

где Dv - вектор изменения скорости тела.

Направление вектора ускорения a совпадает с направлением вектора Dv .

Пусть тело, движущееся по окружности радиусом R , за ма-лый промежуток времени t переместилось из точки A в точку B (рис. 40). Чтобы найти изменение скорости тела Dv , в точку A перенесем параллельно самому себе вектор v и вычтем из него v 0 , что равноценно сложению вектора v с вектором –v 0 . Вектор, направленный от v 0 к v , и есть вектор Dv .

Рассмотрим треугольники AOB и ACD . Оба они равнобедренные (AO = OB и AC = AD, поскольку v 0 = v ) и имеют равные углы: _AOB = _CAD (как углы со взаимно перпендикулярными сторонами: AO B v 0 , OB B v ). Следовательно, эти треугольники подобны и можно записать отношение соответствующих сторон:= .

Поскольку точки A и B расположены близко друг к другу, то хорда AB мала и ее можно заменить дугой. Длина дуги- путь, пройденный телом за время t с постоянной скоростью v : AB = vt .

Кроме того, AO = R , DC = Dv , AD = v . Следовательно,

= ;= ;= a .

Откуда ускорение тела

a = .

Из рисунка 40 видно, что чем меньше хорда AB , тем точнее направление вектора Dv совпадает с радиусом окружности. Следовательно, вектор изменения скорости Dv и вектор ускорения a направлены по радиусу к центру окружности. Поэтому ускорение при равномерном движении тела по окружности называют центростремительным .

Таким образом,

при равномерном движении тела по окружности его ускорение постоянно по модулю и в любой точке направлено по радиусу окружности к ее центру.

Учитывая, что v = wR , можно записать другую формулу центростремительного ускорения:

a = w 2 R .

6. Пример решения задачи

Частота обращения карусели 0,05 с– 1 . Человек, вращающийся на карусели, находится на расстоянии 4 м от оси вращения. Определите центростремительное ускорение человека, период обращения и угловую скорость карусели.

Дано :

Решение

n = 0,05 с– 1

R = 4 м

Центростремительное ускорение равно:

a = w2R =(2pn )2R =4p2n 2R .

Период обращения: T = .

Угловая скорость карусели: w = 2pn .

a ?

T ?

a = 4 (3,14) 2 (0,05с– 1) 2 4 м 0,4 м/с 2 ;

T == 20 с;

w = 2 3,14 0,05 с– 1 0,3 рад/с.

Ответ: a 0,4 м/с 2 ; T = 20 с; w 0,3 рад/с.

Вопросы для самопроверки

1. Какое движение называют равномерным движением по окружности?

2. Что называют периодом обращения?

3. Что называют частотой обращения? Как связаны между собой период и частота обращения?

4. Что называют линейной скоростью? Как она направлена?

5. Что называют угловой скоростью? Что является единицей угловой скорости?

6. Как связаны угловая и линейная скорости движения тела?

7. Как направлено центростремительное ускорение? По какой формуле оно рассчитывается?

Задание 9

1. Чему равна линейная скорость точки обода колеса, если радиус колеса 30 см и один оборот она совершает за 2 с? Чему равна угловая скорость колеса?

2. Скорость автомобиля 72 км/ч. Каковы угловая скорость, частота и период обращения колеса автомобиля, если диаметр колеса70 см? Сколько оборотов совершит колесо за 10 мин?

3. Чему равен путь, пройденный концом минутной стрелки будильника за 10 мин, если ее длина 2,4 см?

4. Каково центростремительное ускорение точки обода колеса автомобиля, если диаметр колеса 70 см? Скорость автомобиля 54 км/ч.

5. Точка обода колеса велосипеда совершает один оборот за 2 с. Радиус колеса 35 см. Чему равно центростремительное ускорение точки обода колеса?

На этом уроке мы рассмотрим криволинейное движение, а именно равномерное движение тела по окружности. Мы узнаем, что такое линейная скорость, центростремительное ускорение при движении тела по окружности. Также введем величины, которые характеризуют вращательное движение (период вращения, частота вращения, угловая скорость), и свяжем эти величины между собой.

Под равномерным движением по окружности понимают, что тело за любой одинаковый промежуток времени поворачивается на одинаковый угол (см. Рис. 6).

Рис. 6. Равномерное движение по окружности

То есть модуль мгновенной скорости не меняется:

Такую скорость называют линейной .

Хотя модуль скорости не меняется, направление скорости изменяется непрерывно. Рассмотрим векторы скорости в точках A и B (см. Рис. 7). Они направлены в разные стороны, поэтому не равны. Если вычесть из скорости в точке B скорость в точке A , получаем вектор .

Рис. 7. Векторы скорости

Отношение изменения скорости () ко времени, за которое это изменение произошло (), является ускорением.

Следовательно, любое криволинейное движение является ускоренным .

Если рассмотреть треугольник скоростей, полученный на рисунке 7, то при очень близком расположении точек A и B друг к другу угол (α) между векторами скорости будет близок к нулю:

Также известно, что этот треугольник равнобедренный, поэтому модули скоростей равны (равномерное движение):

Следовательно, оба угла при основании этого треугольника неограниченно близки к :

Это означает, что ускорение, которое направлено вдоль вектора , фактически перпендикулярно касательной. Известно, что линия в окружности, перпендикулярная касательной, является радиусом, поэтому ускорение направлено вдоль радиуса к центру окружности. Называется такое ускорение центростремительным.

На рисунке 8 изображены рассмотренный ранее треугольник скоростей и равнобедренный треугольник (две стороны являются радиусами окружности). Эти треугольники являются подобными, так как у них равны углы, образованные взаимно перпендикулярными прямыми (радиус, как и вектор перпендикулярны к касательной).

Рис. 8. Иллюстрация к выводу формулы центростремительного ускорения

Отрезок AB является перемещением (). Мы рассматриваем равномерное движение по окружности, поэтому:

Подставим полученное выражение для AB в формулу подобия треугольников:

Понятий «линейная скорость», «ускорение», «координата» не достаточно для того, чтобы описать движение по кривой траектории. Поэтому необходимо ввести величины, характеризующие вращательное движение.

1. Периодом вращения (T ) называется время одного полного оборота. Измеряется в системе СИ в секундах.

Примеры периодов: Земля вращается вокруг своей оси за 24 часа (), а вокруг Солнца - за 1 год ().

Формула для вычисления периода:

где - полное время вращения; - число оборотов.

2. Частота вращения (n ) - число оборотов, которое тело совершает в единицу времени. Измеряется в системе СИ в обратных секундах.

Формула для нахождения частоты:

где - полное время вращения; - число оборотов

Частота и период - обратно пропорциональные величины:

3. Угловой скоростью () называют отношение изменения угла, на который повернулось тело, ко времени, за которое этот поворот произошел. Измеряется в системе СИ в радианах, деленных на секунды.

Формула для нахождения угловой скорости:

где - изменение угла; - время, за которое произошел поворот на угол .

Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назватьравномерным , оно являетсяравноускоренным .

Угловая скорость

Выберем на окружности точку1 . Построим радиус. За единицу времени точка переместится в пункт2 . При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.

Период и частота

Период вращенияT - это время, за которое тело совершает один оборот.

Частота вращение - это количество оборотов за одну секунду.

Частота и период взаимосвязаны соотношением

Связь с угловой скоростью

Линейная скорость

Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной.Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.


Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено - это есть периодT .Путь , который преодолевает точка - это есть длина окружности.

Центростремительное ускорение

При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.

Используя предыдущие формулы, можно вывести следующие соотношения


Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

Земля участвует в двух основных вращательных движениях: суточном (вокруг своей оси) и орбитальном (вокруг Солнца). Период вращения Земли вокруг Солнца составляет 1 год или 365 суток. Вокруг своей оси Земля вращается с запада на восток, период этого вращения составляет 1 сутки или 24 часа. Широтой называется угол между плоскостью экватора и направлением из центра Земли на точку ее поверхности.

Согласно второму закону Ньютона причиной любого ускорения является сила. Если движущееся тело испытывает центростремительное ускорение, то природа сил, действием которых вызвано это ускорение, может быть различной. Например, если тело движется по окружности на привязанной к нему веревке, то действующей силой является сила упругости.

Если тело, лежащее на диске, вращается вместе с диском вокруг его оси, то такой силой является сила трения. Если сила прекратит свое действие, то далее тело будет двигаться по прямой

Рассмотрим перемещение точки на окружности из А в В. Линейная скорость равна

Теперь перейдем в неподвижную систему, связанную с землей. Полное ускорение точки А останется прежним и по модулю, и по направлению, так как при переходе от одной инерциальной системы отсчета к другой ускорение не меняется. С точки зрения неподвижного наблюдателя траектория точки А - уже не окружность, а более сложная кривая (циклоида), вдоль которой точка движется неравномерно.

Движение по окружности - простейший случай криволинейного движения тела. Когда тело движется вокруг некоторой точки, наряду с вектором перемещения удобно ввести угловое перемещение ∆ φ (угол поворота относительно центра окружности), измеряемое в радианах.

Зная угловое перемещение, можно вычислить длину дуги окружности (путь), которую прошло тело.

∆ l = R ∆ φ

Если угол поворота мал, то ∆ l ≈ ∆ s .

Проиллюстрируем сказанное:

Угловая скорость

При криволинейном движении вводится понятие угловой скорости ω , то есть скорости изменения угла поворота.

Определение. Угловая скорость

Угловая скорость в данной точке траектории - предел отношения углового перемещения ∆ φ к промежутку времени ∆ t , за которое оно произошло. ∆ t → 0 .

ω = ∆ φ ∆ t , ∆ t → 0 .

Единица измерения угловой скорости - радиан в секунду (р а д с).

Существует связь между угловой и линейной скоростями тела при движении по окружности. Формула для нахождения угловой скорости:

При равномерном движении по окружности, скорости v и ω остаются неизменными. Меняется только направление вектора линейной скорости.

При этом равномерное движение по окружности на тело действует центростремительное, или нормальное ускорение, направленное по радиусу окружности к ее центру.

a n = ∆ v → ∆ t , ∆ t → 0

Модуль центростремительного ускорения можно вычислить по формуле:

a n = v 2 R = ω 2 R

Докажем эти соотношения.

Рассмотрим, как изменяется вектор v → за малый промежуток времени ∆ t . ∆ v → = v B → - v A → .

В точках А и В вектор скорости направлен по касательной к окружности, при этом модули скоростей в обеих точках одинаковы.

По определению ускорения:

a → = ∆ v → ∆ t , ∆ t → 0

Взглянем на рисунок:

Треугольники OAB и BCD подобны. Из этого следует, что O A A B = B C C D .

Если значение угла ∆ φ мало, расстояние A B = ∆ s ≈ v · ∆ t . Принимая во внимание, что O A = R и C D = ∆ v для рассмотренных выше подобных треугольников получим:

R v ∆ t = v ∆ v или ∆ v ∆ t = v 2 R

При ∆ φ → 0 , направление вектора ∆ v → = v B → - v A → приближается к направлению на центр окружности. Принимая, что ∆ t → 0 , получаем:

a → = a n → = ∆ v → ∆ t ; ∆ t → 0 ; a n → = v 2 R .

При равномерном движении по окружности модуль ускорения остается постоянным, а направление вектора изменяется со временем, сохраняя ориентацию на центр окружности. Именно поэтому это ускорение называется центростремительным: вектор в любой момент времени направлен к центру окружности.

Запись центростремительного ускорения в векторной форме выглядит следующим образом:

a n → = - ω 2 R → .

Здесь R → - радиус вектор точки на окружности с началом в ее центре.

В общем случае ускорение при движении по окружности состоит из двух компонент - нормальное, и тангенциальное.

Рассмотрим случай, когда тело движется по окружности неравномерно. Введем понятие тангенциального (касательного) ускорения. Его направление совпадает с направлением линейной скорости тела и в каждой точке окружности направлено по касательной к ней.

a τ = ∆ v τ ∆ t ; ∆ t → 0

Здесь ∆ v τ = v 2 - v 1 - изменение модуля скорости за промежуток ∆ t

Направление полного ускорения определяется векторной суммой нормального и тангенциального ускорений.

Движение по окружности в плоскости можно описывать при помощи двух координат: x и y. В каждый момент времени скорость тела можно разложить на составляющие v x и v y .

Если движение равномерное, величины v x и v y а также соответствующие координаты будут изменяться во времени по гармоническому закону с периодом T = 2 π R v = 2 π ω

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter