Макияж. Уход за волосами. Уход за кожей

Макияж. Уход за волосами. Уход за кожей

» » Литературный портрет паустовского грина. А

Литературный портрет паустовского грина. А

Урок физики в 9-м классе по теме

"Радиоактивность как свидетельство сложного

строения атомов"

Тип урока – урок изучения нового материала

Форма изучения нового материала – лекция учителя с активным привлечением обучающихся.

Методы урока – словесные, наглядные, практические

Цели урока:

    (дидактические или образовательные) обеспечить в ходе урока усвоение понятий “радиоактивность”, альфа-, бета-, гамма излучений. В ходе подготовки к итоговой аттестации повторить понятия: электрический ток, сила тока, напряжение, сопротивление, закон Ома для участка цепи. Продолжать совершенствовать навыки сборки электрических цепей. Продолжить формирование общеучебных умений: планирования рассказа, работы с дополнительной литературой

    (воспитательные задачи ставятся на год) продолжать формировать у обучающихся научное мировоззрение.

    (развивающие задачи ставятся на год) развивать навыки культуры речи, в целях развития познавательного интереса обучающихся к предмету на уроке планируются интересные исторические справки.

Демонстрация. Портреты ученых: Демокрита, А. Беккереля, Э. Резерфорда, М. Склодовской – Кюри, П. Кюри.

Таблица “Опыт по изучению радиоактивности”

Ход урока

I. Организационный момент . (приветствие, проверка готовности обучающихся к уроку)

II. Вступительное слово учителя. (1 – 3 минуты)

Сегодня на уроке продолжаем повторять ранее изученный материал, и готовимся к итоговой аттестации. Сегодня мы повторяем такие понятия, как

    Электрический ток.

    Сила электрического тока.

    Электрическое напряжение.

    Электрическое сопротивление.

    Закон Ома для участка цепи.

и совершенствуем навыки сборки простейших электрических цепей.

III. Повторение, подготовка к итоговой аттестации . (8-10 минут)

Учитель дает индивидуальные задания для слабых учащихся в виде карточек и для выполнения задания им разрешается пользоваться учебниками

Обучающиеся, которые выбрали физику на итоговую аттестацию, получают практические задания по сборке электрических цепей.

Решение экспериментальной задачи. Собрать электрическую цепь из источника тока, резистора, ключа, амперметра, вольтметра. По показаниям приборов определить сопротивление резистора.

Остальные обучающиеся участвуют во фронтальном опросе

    Что такое электрический ток?

    Какие заряженные частицы вы знаете?

    Что нужно создать в проводнике, чтобы в нем возник и существовал электрический ток?

    Перечислите источники электрического тока.

    Перечислите действия электрического тока.

    Какой величиной определяется сила тока в электрической цепи?

    Как называется единица силы тока?

    Как называется прибор для измерения силы тока, и как включают его в цепь?

    Что характеризует напряжение, и что принимают за единицу напряжения?

    Как называется прибор для измерения напряжения, какое напряжение используют в городской осветительной цепи?

    Что является причиной электрического сопротивления, и что принимают за единицу сопротивления проводника?

    Сформулируйте закон Ома для участка цепи и запишите его формулу.

Поставить оценки обучающимся за повторение изученного материала.

IV. Записать домашнее задание: параграф 55, ответить на вопросы стр. 182 Повторить 8 кл. гл 4 “Электромагнитные явления”

V. Изучение нового материала.

Сегодня мы начинаем изучать четвертую главу нашего учебника, она называется “Строение атома и атомного ядра. Использование энергии атомных ядер”.

Тема нашего урока “Радиоактивность как свидетельство сложного строения атомов” (запись в тетради даты и темы урока).

Предположение о том, что все тела состоят из мельчайших частиц, было высказано древнегреческим философом Демокритом еще 2500 лет назад. Частицы были названы атомами, что означает неделимые. Таким названием Демокрит хотел подчеркнуть, что атом – это мельчайшая, простейшая, не имеющая составных частей и поэтому неделимая частица.

Информационная справка (сообщения делают обучающиеся).

Демокрит – годы жизни 460-370 до н.э. Древнегреческий ученый, философ – материалист, главный представитель древней атомистики. Считал, что во Вселенной существует бесконечное множество миров, которые возникают, развиваются и гибнут.

Но примерно с середины XIX века стали появляться экспериментальные факты, которые ставили под сомнение представления о неделимости атомов. Результаты этих экспериментов наводили на мысль о том, что атомы имеют сложную структуру, и что в их состав входят электрически заряженные частицы.

Наиболее ярким свидетельством сложного строения атомов явилось открытие явления радиоактивности, сделанное французским физиком Анри Беккерелем в 1896г.

Информационная справка

Беккерель Антуан Анри французский физик родился 15 декабря 1852 г. Окончил политехническую школу в Париже. Основные работы посвящены радиоактивности и оптике. В 1896г открыл явление радиоактивности. В 1901г обнаружил физиологическое действие радиоактивного излучения. В 1903г Беккерель удостоен Нобелевской премии за открытие естественной радиоактивности урана. Умер 25 августа 1908 г.

Открытие радиоактивности произошло благодаря счастливой случайности. Беккерель долгое время исследовал свечение веществ, предварительно облученных солнечным светом. К таким веществам принадлежат соли урана, с которыми экспериментировал Беккерель. И вот у него возник вопрос: не появляются ли после облучения солей урана наряду с видимым светом и рентгеновские лучи? Беккерель завернул фотопластинку в плотную черную бумагу, положил сверху крупинки урановой соли и выставил на яркий солнечный свет. После проявления фотопластинка почернела на тех участках, где лежала соль. Следовательно, уран создавал какое – то излучение, которое пронизывает непрозрачные тела и действует на фотопластинку. Беккерель думал, что это излучение возникает под влиянием солнечных лучей. Но однажды, в феврале 1896г., провести ему очередной опыт не удалось из-за облачной погоды. Беккерель убрал пластинку в ящик стола, положив на нее сверху медный крест, покрытый солью урана. Проявив на всякий случай пластинку два дня спустя, он обнаружил на ней почернение в форме отчетливой тени креста. Это означало, что соли урана самопроизвольно, без каких либо внешних влияний создают какое-то излучение. Начались интенсивные исследования. Вскоре Беккерель установил важный факт: интенсивность излучения определяется только количеством урана в препарате, и не зависит от того в какие соединения он входит. Следовательно, излучение присуще не соединениям, а химическому элементу урану, его атомам.

Естественно ученые попытались обнаружить, не обладают ли способностью к самопроизвольному излучению другие химические элементы. В эту работу внесла большой вклад Мария Склодовская-Кюри.

Информационная справка

Мария Склодовская-Кюри – польский и французский физик и химик, один из основоположников учения о радиоактивности родилась 7 ноября 1867 в Варшаве. Она первая женщина – профессор Парижского университета. За исследования явления радиоактивности в 1903 г., совместно с А. Беккерелем получила Нобелевскую премию по физике, а в 1911 г. за получение радия в металлическом состоянии – Нобелевскую премию по химии. Умерла от лейкемии 4 июля 1934 г.

В 1898г М. Склодовская-Кюри и др. ученые обнаружили излучение тория. В дальнейшем главные усилия в поисках новых элементов были предприняты М. Склодовской-Кюри и ее мужем П. Кюри. Систематическое исследование руд, содержащих уран и торий, позволило им выделить новый неизвестный ранее химический элемент – полоний № 84, названный так в честь родины М. Склодовской-Кюри – Польши. Был открыт еще один элемент, дающий интенсивное излучение – радий № 88, т.е. лучистый. Само же явление произвольного излучения было названо супругами Кюри радиоактивностью.

Записать в тетради “радиоактивность” – (лат) radio – излучаю, aсtivus – действенный.

Впоследствии было установлено, что все химические элементы с порядковым номером более 83 являются радиоактивными

В 1899 году под руководством английского ученого Э. Резерфорда, был проведен опыт, позволивший обнаружить сложный состав радиоактивного излучения.

Информационная справка

Эрнест Резерфорд английский физик, родился 30 августа 1871 г. в Новой Зеландии. Его исследования посвящены радиоактивности, атомной и ядерной физике. Своими фундаментальными открытиями в этих областях Резерфорд заложил основы современного учения о радиоактивности и теории строения атома. Умер 19 октября 1937 г.

В результате опыта, проведенного под руководством английского физикаЭрнеста Резерфорда, было обнаружено, что радиоактивное излучение радия неоднородно, т.е. оно имеет сложный состав. Рассмотрим, как проводился этот опыт.

На рисунке 1 изображен толстостенный свинцовый сосуд с крупицей радия на дне. Пучок радиоактивного излучения радия выходит сквозь узкое отверстие и попадает на фотопластинку (излучение радия направлено во все стороны, но сквозь толстый слой свинца оно пройти не может). После проявления фотопластинки на ней обнаруживалось одно (рис. 1) темное пятно – как раз в том месте, куда попадал пучок.

Потом опыт изменяли (рис.2), создали сильное магнитное поле, действовавшее на пучок. В этом случае на проявленной пластинке возникало три пятна: одно, центральное, было на том же месте, что и раньше, а два других – по разные стороны от центрального. Если два потока отклонились в магнитном поле от прежнего направления, значит, они представляют собой потоки заряженных частиц. Отклонение в разные стороны свидетельствовало о разных знаках электрических зарядов частиц. В одном потоке присутствовали только положительно заряженные частицы, в другом – отрицательно заряженные. А центральный поток представлял собой излучение, не имеющее электрического заряда.

Положительно заряженные частицы назвали альфа-частицами, отрицательно заряженные – бета-частицами, а нейтральные – гамма (рис. 2) квантами. Некоторое время спустя в результате исследования некоторых физических характеристик и свойств этих частиц (электрического заряда, массы, проникающей способности) удалось установить, что гамма – кванты или лучи – это коротковолновое электромагнитное излучение, скорость распространения электромагнитного излучения такая же, как и у всех электромагнитных волн – 300000 км/с. Гамма – лучи проникают в воздух на сотни метров.

Бета – частицы представляют собой поток быстрых электронов, летящих со скоростями близкими к скорости света. Они проникают в воздух до 20 м.

Альфа частицы – это потоки ядер атомов гелия. Скорость этих частиц

20000 км/с, что превышает скорость современного самолета (1000 км/ч) в 72000 раз. Альфа – лучи проникают в воздух до 10 см.

Итак, явление радиоактивности, т.е. самопроизвольного излучения веществом? -, ? – и? – частиц, наряду с другими экспериментальными фактами, послужило основанием для предположения о том, что атомы вещества имеют сложный состав.

V. Закрепление знаний.

VII. Подведение итога урока.

Тип урока – урок изучения нового материала

Форма изучения нового материала – лекция учителя с активным привлечением обучающихся.

Методы урока – словесные, наглядные, практические

Цели урока:

  • (дидактические или образовательные) обеспечить в ходе урока усвоение понятий “радиоактивность”, альфа-, бета-, гамма излучений. В ходе подготовки к итоговой аттестации повторить понятия: электрический ток, сила тока, напряжение, сопротивление, закон Ома для участка цепи. Продолжать совершенствовать навыки сборки электрических цепей. Продолжить формирование общеучебных умений: планирования рассказа, работы с дополнительной литературой
  • (воспитательные задачи ставятся на год) продолжать формировать у обучающихся научное мировоззрение.
  • (развивающие задачи ставятся на год) развивать навыки культуры речи, в целях развития познавательного интереса обучающихся к предмету на уроке планируются интересные исторические справки.

Демонстрация. Портреты ученых: Демокрита, А. Беккереля, Э. Резерфорда, М. Склодовской – Кюри, П. Кюри.

Таблица “Опыт по изучению радиоактивности”

Ход урока

I. Организационный момент . (приветствие, проверка готовности обучающихся к уроку)

II. Вступительное слово учителя. (1 – 3 минуты)

Сегодня на уроке продолжаем повторять ранее изученный материал, и готовимся к итоговой аттестации. Сегодня мы повторяем такие понятия, как

  • Электрический ток.
  • Сила электрического тока.
  • Электрическое напряжение.
  • Электрическое сопротивление.
  • Закон Ома для участка цепи.

и совершенствуем навыки сборки простейших электрических цепей.

III. Повторение, подготовка к итоговой аттестации . (8-10 минут)

Учитель дает индивидуальные задания для слабых учащихся в виде карточек и для выполнения задания им разрешается пользоваться учебниками

Обучающиеся, которые выбрали физику на итоговую аттестацию, получают практические задания по сборке электрических цепей.

Решение экспериментальной задачи. Собрать электрическую цепь из источника тока, резистора, ключа, амперметра, вольтметра. По показаниям приборов определить сопротивление резистора.

Остальные обучающиеся участвуют во фронтальном опросе

  • Что такое электрический ток?
  • Какие заряженные частицы вы знаете?
  • Что нужно создать в проводнике, чтобы в нем возник и существовал электрический ток?
  • Перечислите источники электрического тока.
  • Перечислите действия электрического тока.
  • Какой величиной определяется сила тока в электрической цепи?
  • Как называется единица силы тока?
  • Как называется прибор для измерения силы тока, и как включают его в цепь?
  • Что характеризует напряжение, и что принимают за единицу напряжения?
  • Как называется прибор для измерения напряжения, какое напряжение используют в городской осветительной цепи?
  • Что является причиной электрического сопротивления, и что принимают за единицу сопротивления проводника?
  • Сформулируйте закон Ома для участка цепи и запишите его формулу.

Поставить оценки обучающимся за повторение изученного материала.

IV. Записать домашнее задание: параграф 55, ответить на вопросы стр. 182 Повторить 8 кл. гл 4 “Электромагнитные явления”

V. Изучение нового материала.

Сегодня мы начинаем изучать четвертую главу нашего учебника, она называется “Строение атома и атомного ядра. Использование энергии атомных ядер”.

Тема нашего урока “Радиоактивность как свидетельство сложного строения атомов” (запись в тетради даты и темы урока).

Предположение о том, что все тела состоят из мельчайших частиц, было высказано древнегреческим философом Демокритом еще 2500 лет назад. Частицы были названы атомами, что означает неделимые. Таким названием Демокрит хотел подчеркнуть, что атом – это мельчайшая, простейшая, не имеющая составных частей и поэтому неделимая частица.

Информационная справка (сообщения делают обучающиеся).

Демокрит – годы жизни 460-370 до н.э. Древнегреческий ученый, философ – материалист, главный представитель древней атомистики. Считал, что во Вселенной существует бесконечное множество миров, которые возникают, развиваются и гибнут.

Но примерно с середины XIX века стали появляться экспериментальные факты, которые ставили под сомнение представления о неделимости атомов. Результаты этих экспериментов наводили на мысль о том, что атомы имеют сложную структуру, и что в их состав входят электрически заряженные частицы.

Наиболее ярким свидетельством сложного строения атомов явилось открытие явления радиоактивности, сделанное французским физиком Анри Беккерелем в 1896г.

Информационная справка

Беккерель Антуан Анри французский физик родился 15 декабря 1852 г. Окончил политехническую школу в Париже. Основные работы посвящены радиоактивности и оптике. В 1896г открыл явление радиоактивности. В 1901г обнаружил физиологическое действие радиоактивного излучения. В 1903г Беккерель удостоен Нобелевской премии за открытие естественной радиоактивности урана. Умер 25 августа 1908 г.

Открытие радиоактивности произошло благодаря счастливой случайности. Беккерель долгое время исследовал свечение веществ, предварительно облученных солнечным светом. К таким веществам принадлежат соли урана, с которыми экспериментировал Беккерель. И вот у него возник вопрос: не появляются ли после облучения солей урана наряду с видимым светом и рентгеновские лучи? Беккерель завернул фотопластинку в плотную черную бумагу, положил сверху крупинки урановой соли и выставил на яркий солнечный свет. После проявления фотопластинка почернела на тех участках, где лежала соль. Следовательно, уран создавал какое – то излучение, которое пронизывает непрозрачные тела и действует на фотопластинку. Беккерель думал, что это излучение возникает под влиянием солнечных лучей. Но однажды, в феврале 1896г., провести ему очередной опыт не удалось из-за облачной погоды. Беккерель убрал пластинку в ящик стола, положив на нее сверху медный крест, покрытый солью урана. Проявив на всякий случай пластинку два дня спустя, он обнаружил на ней почернение в форме отчетливой тени креста. Это означало, что соли урана самопроизвольно, без каких либо внешних влияний создают какое-то излучение. Начались интенсивные исследования. Вскоре Беккерель установил важный факт: интенсивность излучения определяется только количеством урана в препарате, и не зависит от того в какие соединения он входит. Следовательно, излучение присуще не соединениям, а химическому элементу урану, его атомам.

Естественно ученые попытались обнаружить, не обладают ли способностью к самопроизвольному излучению другие химические элементы. В эту работу внесла большой вклад Мария Склодовская-Кюри.

Информационная справка

Мария Склодовская-Кюри – польский и французский физик и химик, один из основоположников учения о радиоактивности родилась 7 ноября 1867 в Варшаве. Она первая женщина – профессор Парижского университета. За исследования явления радиоактивности в 1903 г., совместно с А. Беккерелем получила Нобелевскую премию по физике, а в 1911 г. за получение радия в металлическом состоянии – Нобелевскую премию по химии. Умерла от лейкемии 4 июля 1934 г.

В 1898г М. Склодовская-Кюри и др. ученые обнаружили излучение тория. В дальнейшем главные усилия в поисках новых элементов были предприняты М. Склодовской-Кюри и ее мужем П. Кюри. Систематическое исследование руд, содержащих уран и торий, позволило им выделить новый неизвестный ранее химический элемент – полоний № 84, названный так в честь родины М. Склодовской-Кюри – Польши. Был открыт еще один элемент, дающий интенсивное излучение – радий № 88, т.е. лучистый. Само же явление произвольного излучения было названо супругами Кюри радиоактивностью.

Записать в тетради “радиоактивность” – (лат) radio – излучаю, aсtivus – действенный.

Впоследствии было установлено, что все химические элементы с порядковым номером более 83 являются радиоактивными

В 1899 году под руководством английского ученого Э. Резерфорда, был проведен опыт, позволивший обнаружить сложный состав радиоактивного излучения.

Информационная справка

Эрнест Резерфорд английский физик, родился 30 августа 1871 г. в Новой Зеландии. Его исследования посвящены радиоактивности, атомной и ядерной физике. Своими фундаментальными открытиями в этих областях Резерфорд заложил основы современного учения о радиоактивности и теории строения атома. Умер 19 октября 1937 г.

В результате опыта, проведенного под руководством английского физикаЭрнеста Резерфорда, было обнаружено, что радиоактивное излучение радия неоднородно, т.е. оно имеет сложный состав. Рассмотрим, как проводился этот опыт.

На рисунке 1 изображен толстостенный свинцовый сосуд с крупицей радия на дне. Пучок радиоактивного излучения радия выходит сквозь узкое отверстие и попадает на фотопластинку (излучение радия направлено во все стороны, но сквозь толстый слой свинца оно пройти не может). После проявления фотопластинки на ней обнаруживалось одно (рис. 1) темное пятно – как раз в том месте, куда попадал пучок.

Потом опыт изменяли (рис.2), создали сильное магнитное поле, действовавшее на пучок. В этом случае на проявленной пластинке возникало три пятна: одно, центральное, было на том же месте, что и раньше, а два других – по разные стороны от центрального. Если два потока отклонились в магнитном поле от прежнего направления, значит, они представляют собой потоки заряженных частиц. Отклонение в разные стороны свидетельствовало о разных знаках электрических зарядов частиц. В одном потоке присутствовали только положительно заряженные частицы, в другом – отрицательно заряженные. А центральный поток представлял собой излучение, не имеющее электрического заряда.

Положительно заряженные частицы назвали альфа-частицами, отрицательно заряженные – бета-частицами, а нейтральные – гамма (рис. 2) квантами. Некоторое время спустя в результате исследования некоторых физических характеристик и свойств этих частиц (электрического заряда, массы, проникающей способности) удалось установить, что гамма – кванты или лучи – это коротковолновое электромагнитное излучение, скорость распространения электромагнитного излучения такая же, как и у всех электромагнитных волн – 300000 км/с. Гамма – лучи проникают в воздух на сотни метров.

Бета – частицы представляют собой поток быстрых электронов, летящих со скоростями близкими к скорости света. Они проникают в воздух до 20 м.

Альфа частицы – это потоки ядер атомов гелия. Скорость этих частиц

20000 км/с, что превышает скорость современного самолета (1000 км/ч) в 72000 раз. Альфа – лучи проникают в воздух до 10 см.

Итак, явление радиоактивности, т.е. самопроизвольного излучения веществом? -, ? – и? – частиц, наряду с другими экспериментальными фактами, послужило основанием для предположения о том, что атомы вещества имеют сложный состав.

V. Закрепление знаний.

VII. Подведение итога урока.

Предположение о том, что все тела состоят из мельчайших частиц, было высказано древнегреческими философами Левкиппом и Демокритом примерно 2500 лет назад. Частицы эти были названы атомами, что означает «неделимые». Атом - это мельчайшая, простейшая, не имеющая составных частей и поэтому неделимая частица.

Но примерно с середины XIX в. стали появляться экспериментальные факты, которые ставили под сомнение представления о неделимости атомов. Результаты этих экспериментов наводили на мысль о том, что атомы имеют сложную структуру и что в их состав входят электрически заряженные частицы.

Наиболее ярким свидетельством сложного строения атома явилось открытие явления радиоактивности, сделанное французским физиком Анри Беккерелем в 1896 г.

Анри Беккерель (1852-1908)
Французский физик. Один из первооткрывателей радиоактивности

Беккерель обнаружил, что химический элемент уран самопроизвольно (т. е. без внешних воздействий) излучает ранее неизвестные невидимые лучи, которые позже были названы радиоактивным излучением.

Поскольку радиоактивное излучение обладало необычными свойствами, многие учёные занялись его исследованием. Оказалось, что не только уран, но и некоторые другие химические элементы (например, радий) тоже самопроизвольно испускают радиоактивные лучи. Способность атомов некоторых химических элементов к самопроизвольному излучению стали называть радиоактивностью (от лат. radio - излучаю и activus - действенный).

Эрнест Резерфорд (1871-1935)
Английский физик. Обнаружил сложный состав радиоактивного излучения радия, предложил ядерную модель строения атома. Открыл протон

В 1899 г. в результате опыта, проведённого под руководством английского физика Эрнеста Резерфорда, было обнаружено, что радиоактивное излучение радия неоднородно, т. е. имеет сложный состав. Рассмотрим, как проводился этот опыт.

На рисунке 156, а изображён толстостенный свинцовый сосуд с крупицей радия на дне. Пучок радиоактивного излучения радия выходит сквозь узкое отверстие и попадает на фотопластинку (излучение радия происходит во все стороны, но сквозь толстый слой свинца оно пройти не может). После проявления фотопластинки на ней обнаруживалось одно тёмное пятно - как раз в том месте, куда попадал пучок.

Рис. 156. Схема опыта Резерфорда по определению состава радиоактивного излучения

Потом опыт изменяли (рис. 156, б): создавали сильное магнитное поле, действовавшее на пучок. В этом случае на проявленной пластинке возникало три пятна: одно, центральное, было на том же месте, что и раньше, а два других - по разные стороны от центрального. Если два потока отклонились в магнитном поле от прежнего направления, значит, они представляют собой потоки заряженных частиц. Отклонение в разные стороны свидетельствовало о разных знаках электрических зарядов частиц. В одном потоке присутствовали только положительно заряженные частицы, в другом - отрицательно заряженные. А центральный поток представлял собой излучение, не имеющее электрического заряда.

Положительно заряженные частицы назвали альфа-частицами, отрицательно заряженные - бета-частицами, а нейтральные - гамма-частицами или гамма-квантами.

Джозеф Джон Томсон(1856-1940)
Английский физик. Открыл электрон. Предложил одну из первых моделей строения атома

Некоторое время спустя в результате исследования различных физических характеристик и свойств этих частиц (электрического заряда, массы и др.) удалось установить, что β-частица представляет собой электрон, а α-частица - полностью ионизированный атом химического элемента гелия (т. е. атом гелия, потерявший оба электрона). Выяснилось также, что γ-излучение представляет собой один из видов, точнее диапазонов, электромагнитного излучения (см. рис. 136).

Явление радиоактивности, т. е. самопроизвольное излучение веществом α-, β- и α-частиц, наряду с другими экспериментальными фактами, послужило основанием для предположения о том, что атомы вещества имеют сложный состав. Поскольку было известно, что атом в целом нейтрален, это явление позволило сделать предположение, что в состав атома входят отрицательно и положительно заряженные частицы.

Опираясь на эти и некоторые другие факты, английский физик Джозеф Джон Томсон предложил в 1903 г. одну из первых моделей строения атома. По предположению Томсона, атом представляет собой шар, по всему объёму которого равномерно распределён положительный заряд. Внутри этого шара находятся электроны. Каждый электрон может совершать колебательные движения около своего положения равновесия. Положительный заряд шара равен по модулю суммарному отрицательному заряду электронов, поэтому электрический заряд атома в целом равен нулю.

Модель строения атома, предложенная Томсоном, нуждалась в экспериментальной проверке. В частности, важно было проверить, действительно ли положительный заряд распределён по всему объёму атома с постоянной плотностью. Поэтому в 1911 г. Резерфорд совместно со своими сотрудниками провёл ряд опытов по исследованию состава и строения атомов.

Чтобы понять, как проводились эти опыты, рассмотрим рисунок 157. В опытах использовался свинцовый сосуд С с радиоактивным веществом Р, излучающим α-частицы. Из этого сосуда α-частицы вылетают через узкий канал со скоростью порядка 15 000 км/с.

Рис. 157. Схема установки опыта Резерфорда по исследованию строения атома

Поскольку α-частицы непосредственно увидеть невозможно, то для их обнаружения служит стеклянный экран Э. Экран покрыт тонким слоем специального вещества, благодаря чему в местах попадания в экран α-частиц возникают вспышки, которые наблюдаются с помощью микроскопа М. Такой метод регистрации частиц называется методом, сцинтилляций (т. е. вспышек).

Вся эта установка помещается в сосуд, из которого откачан воздух (чтобы устранить рассеяние α-частиц за счет их столкновений с молекулами воздуха).

Если на пути α-частиц нет никаких препятствий, то они падают на экран узким, слегка расширяющимся пучком (рис. 157, а). При этом все возникающие на экране вспышки сливаются в одно небольшое световое пятно.

Если же на пути α-частиц поместить тонкую фольгу Ф из исследуемого металла (рис. 157, б), то при взаимодействии с веществом α-частицы рассеиваются по всем направлениям на разные углы φ (на рисунке изображены только три угла: φ1, φ2 и φ3).

Когда экран находится в положении 1, наибольшее количество вспышек расположено в центре экрана. Значит, основная часть всех α-частиц прошла сквозь фольгу, почти не изменив первоначального направления (рассеялась на малые углы). При удалении от центра экрана количество вспышек становится меньше. Следовательно, с увеличением угла рассеяния φ количество рассеянных на эти углы частиц резко уменьшается.

Перемещая экран вместе с микроскопом вокруг фольги, можно обнаружить, что некоторое (очень небольшое) число частиц рассеялось на углы, близкие к 90° (это положение экрана обозначено цифрой 2), а некоторые единичные частицы - на углы порядка 180°, т. е. в результате взаимодействия с фольгой были отброшены назад (положение 3).

Именно эти случаи рассеяния α-частиц на большие углы дали Резерфорду наиболее важную информацию для понимания того, как устроены атомы веществ. Проанализировав результаты опытов, Резерфорд пришёл к выводу, что столь сильное отклонение α-частиц возможно только в том случае, если внутри атома имеется чрезвычайно сильное электрическое поле. Такое поле могло быть создано зарядом, сконцентрированным в очень малом объёме (по сравнению с объёмом атома).

Один из примеров схематичного изображения ядерной модели атома, предложенной Э. Резерфордом

Рис. 158. Траектории полёта α-частиц при прохождении сквозь атомы вещества

Поскольку масса электрона примерно в 8000 раз меньше массы α-частицы, электроны, входящие в состав атома, не могли существенным образом изменить направление движения α-частиц. Поэтому в данном случае речь может идти только о силах электрического отталкивания между α-частицами и положительно заряженной частью атома, масса которой значительно больше массы α-частицы.

Эти соображения привели Резерфорда к созданию ядерной (планетарной) модели атома (о которой вы уже имеете представление из курса физики 8 класса). Напомним, что, согласно этой модели, в центре атома находится положительно заряженное ядро, занимающее очень малый объём атома. Вокруг ядра движутся электроны, масса которых значительно меньше массы ядра. Атом электрически нейтрален, поскольку заряд ядра равен модулю суммарного заряда электронов.

Резерфорд сумел оценить размеры атомных ядер. Оказалось, что в зависимости от массы атома его ядро имеет диаметр порядка 10 -14 - 10 -15 м, т. е. оно в десятки и даже сотни тысяч раз меньше атома (атом имеет диаметр около 10 -10 м).

Рисунок 158 иллюстрирует процесс прохождения α-частиц сквозь атомы вещества с точки зрения ядерной модели. На этом рисунке показано, как меняется траектория полёта α-частиц в зависимости от того, на каком расстоянии от ядра они пролетают. Напряжённость создаваемого ядром электрического поля, а значит, и сила действия на α-частицу довольно быстро убывают с увеличением расстояния от ядра. Поэтому направление полёта частицы сильно меняется только в том случае, если она проходит очень близко к ядру.

Поскольку диаметр ядра значительно меньше диаметра атома, то большая часть из числа всех α-частиц проходит сквозь атом на таких расстояниях от ядра, где сила отталкивания создаваемого им поля слишком мала, чтобы существенно изменить направление движения α-частиц. И только очень немногие частицы пролетают рядом с ядром, т. е. в области сильного поля, и отклоняются на большие углы. Именно такие результаты и были получены в опыте Резерфорда.

Таким образом, в результате опытов по рассеянию α-частиц была доказана несостоятельность модели атома Томсона, выдвинута ядерная модель строения атома и проведена оценка диаметров атомных ядер.

Вопросы

  1. В чём заключалось открытие, сделанное Беккерелем в 1896 г.?
  2. Расскажите, как проводился опыт, схема которого изображена на рисунке 156. Что выяснилось в результате этого опыта?
  3. О чём свидетельствовало явление радиоактивности?
  4. Что представлял собой атом согласно модели, предложенной Томсоном?
  5. Используя рисунок 157, расскажите, как проводился опыт по рассеянию α-частиц.
  6. Какой вывод был сделан Резерфордом на основании того, что некоторые α-частицы при взаимодействии с фольгой рассеялись на большие углы?
  7. Что представляет собой атом согласно ядерной модели, выдвинутой Резерфордом?
ТЕМА УрокА «открытие Радиоактивности.

Альфа-, бета- и гамма-излучения.»

Цели урока.

Образовательные – расширение представлений учащихся о физической картине мира на примере явления радиоактивности ; изучить закономерности

Развивающие – продолжить формирование умений: теоретическому методу исследования физических процессов; сравнивать, обобщать; устанавливать связи между изучаемыми фактами; выдвигать гипотезы и обосновывать их.

Воспитывающие на примере жизни и деятельности Марии и Пьера Кюри показать роль ученых в развитии науки; показать неслучайность случайных открытий ; (мысль: ответственность ученого, первооткрывателя за плоды своих открытий), продолжить формирование познавательных интересов, навыков коллективной, в сочетании с самостоятельной работой.

Дидактический тип урока: изучение и первичное закрепление новых знаний.

Форма проведения урока: традиционная

Необходимое оборудование и материалы :

Знак радиоактивной опасности; портреты ученых, компьютер , проектор, презентация, рабочая тетрадь для обучающихся, периодическая таблица Менделеева.

Методы:


    • информационный метод (сообщения обучающихся)

    • проблемный
Оформление: на доске написано тема и эпиграф урока.

«Ничего не надо бояться – надо лишь понять неизвестное»

Мария Склодовская- Кюри.

КОНСПЕКТ УРОКА
Мотивация обучающихся

Сконцентрировать внимание обучающихся на изучаемом материале, заинтересовать их, показать необходимость и пользу изучения материала. Радиация – это необычные лучи , которые глазом не видно и вообще нельзя никак почувствовать, но которые могут проникать даже через стены и пронизывать человека.


Ход и содержание урока

Этапы урока .


  1. Организационный этап.

  2. Этап подготовки к изучению новой темы, мотивация и актуализация опорных знаний.

  3. Этап усвоения новых знаний.

  4. Этап закрепления новых знаний.

  5. Этап подведения итогов, информация о домашнем задании.

  6. Рефлексия.

  1. . Организационный момент
Сообщение темы и цели урока
2.Этап подготовки к изучению новой темы

Актуализация наличных знаний обучающихся в форме проверки домашнего задания и беглого фронтального опроса обучающихся.

Показываю знак радиоактивной опасности и задаю вопрос: « Что означает этот знак? В чем опасность радиоактивного излучения?»

3.Этап усвоения новых знаний (25 мин)

Радиоактивность появились на земле со времени ее образования, и человек за всю историю развития своей цивилизации находился под влиянием естественных источников радиации. Земля подвержена радиационному фону, источниками которого служат излучения Солнца, космическое излучение, излучение от залегающих в Земле радиоактивных элементов.

Что же такое радиация? Как она возникает? Какие виды радиации существуют? И как от нее защититься?

Слово «радиация» происходит от латинского radius и обозначает луч. В принципе радиация – это все виды существующих в природе излучений – радиоволны, видимый свет , ультрафиолет и так далее. Но излучения бывают различными, некоторые из них полезны, некоторые вредны. Мы в обычной жизни привыкли словом радиация называть вредное излучение, возникающее вследствие радиоактивности некоторых видов вещества. Разберем, как на уроках физики объясняют явление радиоактивности
Открытие радиоактивности Анри Беккерелем .

Возможно, об Антуане Беккереле осталась бы лишь память как о весьма квалифицированном и добросовестном экспериментаторе, но не более , если бы не то, что произошло 1 марта в его лаборатории.

Открытие радиоактивности произошло благодаря счастливой случайности. Беккерель долгое время исследовал свечение веществ, предварительно облученных солнечным светом. Он завернул фотопластинку в плотную черную бумагу, положил сверху крупинки урановой соли и выставил на яркий солнечный свет. После проявления фотопластинка почернела на тех участках, где лежала соль. Беккерель думал, что излучение урана возникает под влиянием солнечных лучей. Но однажды, в феврале 1896г., провести ему очередной опыт не удалось из-за облачной погоды. Беккерель убрал пластинку в ящик стола , положив на нее сверху медный крест, покрытый солью урана. Проявив на всякий случай пластинку два дня спустя, он обнаружил на ней почернение в форме отчетливой тени креста. Это означало, что соли урана самопроизвольно, без каких либо внешних влияний создают какое-то излучение. Начались интенсивные исследования. Вскоре Беккерель установил важный факт: интенсивность излучения определяется только количеством урана в препарате, и не зависит от того в какие соединения он входит. Следовательно, излучение присуще не соединениям , а химическому элементу урану. Затем подобное качество было обнаружено и у тория.

Беккерель Антуан Анри французский физик. Окончил политехническую школу в Париже. Основные работы посвящены радиоактивности и оптике. В 1896г открыл явление радиоактивности. В 1901г обнаружил физиологическое действие радиоактивного излучения. В 1903г Беккерель удостоен Нобелевской премии за открытие естественной радиоактивности урана. (1903, совместно с П. Кюри и М. Склодовской-Кюри).

Открытие радия и полония.

В 1898 году другие французские ученые Мария Склодовская-Кюри и Пьер Кюри выделили из уранового минерала два новых вещества, радиоактивных в гораздо большей степени, чем уран и торий. Так были открыты два неизвестных ранее радиоактивных элемента - полоний и радий , Это был изнурительный труд, в течение долгих четырех лет супруги почти не выходили из своего сырого и холодного сарая. Полоний (Po-84) был назван в честь родины Марии – Польши. Радий (Ra-88)– лучистый, термин радиоактивность предложен был Марией Склодовской. Радиоактивными являются все элементы с порядковыми номерами более 83, т.е. расположенными в таблице Менделеева после висмута. За 10 лет совместной работы они сделали очень многое для изучения явления радиоактивности. Это был беззаветный труд во имя науки – в плохо оборудованной лаборатории и при отсутствии необходимых средств Препарат радия исследователи получили в 1902 году в количестве 0,1 гр. Для этого им потребовалось 45 месяцев напряженного туда и более 10000 химических операций освобождения и кристаллизации.

Недаром Маяковский сравнивал поэзию с добычей радия:

«Поэзия – та же добыча радия. В грамм добыча, в год труды. Изводишь единого слова ради тысячи тонн словесной руды.»

В 1903 году за открытие в области радиоактивности супругам Кюри и А.Беккерелю была присуждена Нобелевская премия по физике.

РАДИОАКТИВНОСТЬ –

это способность некоторых атомных ядер самопроизвольно превращаться в другие ядра , испуская при этом различные частицы:

всякий самопроизвольный радиоактивный распад экзотермичен, то есть происходит с выделением тепла.

Сообщение обучающегося

Мария Склодовская-Кюри – польский и французский физик и химик, один из основоположников учения о радиоактивности родилась 7 ноября 1867 в Варшаве. Она первая женщина – профессор Парижского университета. За исследования явления радиоактивности в 1903 г., совместно с А. Беккерелем получила Нобелевскую премию по физике, а в 1911 г. за получение радия в металлическом состоянии – Нобелевскую премию по химии. Умерла от лейкемии 4 июля 1934 г. Заключенное в свинцовый гроб тело Марии Склодовской-Кюри до сих пор излучает радиоактивность с интенсивностью 360 беккерель/М3 при норме около 13 бк/М3... Ее похоронили вместе с мужем…

Сообщение обучающегося

– Пьер Кюри - французский физик, один из создателей учения о радиоактивности. Открыл (1880) и исследовал пьезоэлектричество. Исследования по симметрии кристаллов (принцип Кюри), магнетизму (закон Кюри, точка Кюри). Совместно с женой М. Склодовской-Кюри открыл (1898) полоний и радий, исследовал радиоактивное излучение. Ввел термин «радиоактивность». Нобелевская премия (1903, совместно со Склодовской-Кюри и А. А. Беккерелем).

Сложный состав Радиоактивного излучения

В 1899 году под руководством английского ученого Э. Резерфорда, был проведен опыт, позволивший обнаружить сложный состав радиоактивного излучения.

В результате опыта, проведенного под руководством английского физика, было обнаружено, что радиоактивное излучение радия неоднородно , т.е. оно имеет сложный состав.

Резерфорд Эрнст (1871-1937), английский физик, один из создателей учения о радиоактивности и строении атома, основатель научной школы, иностранный член-корреспондент РАН (1922) и почетный член АН СССР (1925). Директор Кавендишской лаборатории (с 1919). Открыл (1899) альфа- и бета-лучи и установил их природу. Создал (1903, совместно с Ф. Содди) теорию радиоактивности. Предложил (1911) планетарную модель атома. Осуществил (1919) первую искусственную ядерную реакцию. Предсказал (1921) существование нейтрона. Нобелевская премия (1908).

Классический опыт, позволивший обнаружить сложный состав радиоактивного излучения.

Препарат радия помещали в свинцовый контейнер с отверстием. Напротив отверстия помещали фотопластинку. На излучение действовало сильное магнитное поле.

Почти 90 % известных ядер нестабильны. Радиоактивные ядра могут испускать частицы трех видов: положительно заряженные (α-частицы – ядра гелия), отрицательно заряженные (β-частицы – электроны) и нейтральные (γ-частицы – кванты коротковолнового электромагнитного излучения). Магнитное поле позволяет разделить эти частицы.
4) Проникающая способность α .β. γ излучения

α –лучи обладают наименьшей проникающей способностью. Слой бумаги толщиной 0.1мм для них уже непрозрачен.

. β-лучи полностью задерживает алюминиевая пластинка толщиной несколько мм.

γ-лучи при прохождении через слой свинца в 1см уменьшают интенсивность в 2 раза.


5) Физическая природа α .β. γ излучения

γ-излучение электромагнитные волны 10 -10 -10 -13 м

Гамма-излучение - это фотоны, т.е. электромагнитная волна , несущая энергию. В воздухе оно может проходить большие расстояния, постепенно теряя энергию в результате столкновений с атомами среды. Интенсивное гамма-излучение, если от него не защититься, может повредить не только кожу, но и внутренние ткани. Плотные и тяжелые материалы, такие как железо и свинец, являются отличными барьерами на пути гамма-излучения.

С. Беккерель

2.-лучи представляют собой….

А. поток электронов

3. В результате - распада элемент смещается

2 вариант

1. Кто из перечисленных ниже ученых является первооткрывателем радиоактивности?

А. Супруги Кюри

В. Резерфорд

С. Беккерель

2. - лучи представляют собой…

А. поток электронов

В. поток ядер гелия

С. электромагнитные волны

3. В результате - распада элемент смещается

А. на одну клетку к концу периодической системы

В. на две клетки к началу периодической системы

С. на одну клетку к началу периодической системы
5.Этап подведения итогов, информация о домашнем задании.

6. Рефлексия деятельности на уроке

Закончить фразу


  1. сегодня я узнал…

  2. мне было интересно…

  3. я понял, что…

  4. теперь я могу…

  5. я научился…

  6. у меня получилось …

  7. меня удивило…

  8. урок дал мне для жизни…

  9. мне захотелось…
«Ничего не надо бояться – надо лишь понять неизвестное»

Мария Склодовская- Кюри.

§§ 99,100
РЕЦЕНЗИЯ

на методическую разработку урока по учебной дисциплине Физика


  1. Фамилия, имя, отчество автора – Шепелева Раиса Александровна

  2. Должность – преподаватель общеобразовательных дисциплин

  3. Название методической разработки: Открытие радиоактивности. Альфа- бета и гамма-излучения

  4. Полное наименование учебного заведения ОГАОУ СПО «Ракитянский агротехнологический техникум»

  5. Адрес образовательного учреждения пос. Ракитное, Белгородская область, ул. Коммунаров,11
Данный урок является четвёртым уроком в изучении темы и основной акцент делается на формирование основных понятий и их закрепление. Преподаватель выделяет четкую структуру урока, которая отвечает требованиям комбинированной формы.

На контрольно-оценочном этапе предлагается проведение тестового контроля. Материал заданий направлен не только на проверку знаний и умений, но и способствует дальнейшему использованию в ходе изучения темы.

Основными формами организации учебной деятельности является фронтальная, групповая и индивидуальная формы работы. Активное включение детей в учебный процесс происходит за счет правильно спланированного процесса целеполагания и постановки проблемного вопроса.

Основные методы обучения: объяснительно-иллюстративные, репродуктивные, частично-поисковые. Выбранные средства обучения способствуют лучшему восприятию и усвоению материала.

Первичное закрепление материала проводится в форме проверочной работы , организованной по группам.

Использование ПК позволяет не только усилить наглядное представление изучаемого материала, но и способствует более осмысленному его усвоению. Слайдовая презентация содержит весь необходимый наглядный и практический материал. Все это позволяет повысить плотность урока и оптимально увеличить его темп. Рефлексивно-оценочный этап проведен в форме полилога, на определение степени затруднений обучающихся при изучении темы, а также планирования перспективных индивидуальных целей.


  1. Фамилия, имя, отчество рецензента (полностью) ___________________

  2. Должность ___________________________________________________

  3. Место работы _________________________________________________

Урок № 50 Тема урока: Радиоактивность как свидетельство сложного строения атомов Подготовил: учитель физики Д.А. Мелентьев КУРСК 2013

Слайд 2

Слайд 3

Сегодня мы узнаем: 1. Радиоактивность как свидетельство сложного строения атомов. 2. Открытие явления радиоактивности. 3. Опыт по обнаружению сложного состава радиоактивного излучения. 4. 5.

Слайд 4

Демокрит Древнегреческий философ, основоположник атомистического учения. По Демокриту, существуют только атомы и пустота. Атомы – неделимые материальные элементы, вечные, неразрушимые, непроницаемые, различаются формой, положением в пустоте, величиной; движутся в различных направлениях, из их «вихря» образуются как отдельные тела, так и все бесчисленные миры; невидимы для человека; истечения из них, действуя на органы чувств, вызывают ощущения.

Слайд 5

Антуан Анри Беккерель В 1896 г. Беккерель случайно открыл радиоактивность во время работ по исследованию фосфоресценции в солях урана. Французский физик, лауреат Нобелевской премии по физике и один из первооткрывателей радиоактивности. Антуан Анри Беккерель родился 15 декабря 1852 года в семье потомственных ученых. Его отец Александр Эдмонд Беккерель был профессором физики и руководителем Национального музея естественной истории. Как и дед Анри, он работал в области фосфоресценции и одновременно занимался вопросами фотографии.

Слайд 6

Фосфоресценция Фосфоресценция – это процесс, в котором энергия, поглощенная веществом, высвобождается относительно медленно в виде света. Фосфоресцентныйпорошок при облучении видимым светом, ультрафиолетовым светом и в полной темноте.

Слайд 7

Слайд 8

Радиоактивность Радиоактивность – способность атомов некоторых химических элементов к самопроизвольному излучению

Слайд 9

Мария Склодовская-Кюри Польско-французский учёный-экспериментатор (физик, химик), педагог, общественный деятель. Дважды лауреат Нобелевской премии: по физике (1903) и по химии (1911), первый дважды нобелевский лауреат в истории.

Слайд 10

«Тогда я занялась изысканиями, не существует ли других элементов, обладающих тем же свойством, и с этой целью изучила все известные в то время элементы, как в чистом виде, так и в соединениях. Я нашла, что среди этих лучей только соединения тория испускают лучи, подобные лучам урана».

Слайд 11

«Тогда я выдвинула гипотезу, - писала Мария Склодовская-Кюри, - что минералы с ураном и торием содержат небольшое количество вещества, гораздо более радиоактивного, чем уран и торий; это вещество не могло принадлежать к известным элементам, потому все они уже были исследованы; это должен был быть новый химический элемент».

Слайд 12

18 июля 1898 года Пьер и Мария Кюри на заседании Парижской Академии наук выступили с сообщением «Оновом радиоактивном веществе, содержащемся в смоляной обманке». «Вещество, которое мы извлекли из смоляной обманки, содержит металл, еще не описанный и являющийся соседом висмута по своим аналитическим свойствам. Если существование нового металла подтвердится, мы предлагаем назвать его полонием, по имени родины одного из нас».

Слайд 13

26 декабря 1898 года появляется следующая статья супругов Кюри: «Об одном новом, сильно радиоактивном веществе, содержащемся в смоляной руде».

Слайд 14

Радиоактивные элементы Впоследствии было установлено, что все химические элементы с порядковым номером более 83 являются радиоактивными.

Слайд 15

Эрнест Резерфорд Британский физик новозеландского происхождения. Известен как «отец» ядерной физики, создал планетарную модель атома. Лауреат Нобелевской премии по химии 1908 года. В 1899 году под руководством английского ученого Э. Резерфорда, был проведен опыт, позволивший обнаружить сложный состав радиоактивного излучения.

Слайд 16

Опыт по обнаружению сложного состава радиоактивного излучения.

Слайд 17

Альфа, бета, и гамма – частицы.

Слайд 18

Альфа, бета, и гамма – частицы.

Слайд 19

Альфа, бета, и гамма – частицы.

Слайд 20

Альфа, бета, и гамма – частицы.

Слайд 21

Проникающая способность радиоактивного излучения.

Слайд 22

Проникающая способность радиоактивного излучения.

Слайд 23

Проникающая способность радиоактивного излучения.

Слайд 24

Проникающая способность радиоактивного излучения.

Слайд 25

Слайд 26

Проникающая способность радиоактивного излучения.

Слайд 27

Проникающая способность радиоактивного излучения.

Слайд 28

Проникающая способность радиоактивного излучения.

Слайд 29

Проникающая способность радиоактивного излучения.

Слайд 30

Слайд 31

До завершения тестирования осталось 5 минут

Слайд 32

До завершения тестирования осталось 4 минуты

Слайд 33

До завершения тестирования осталось 3 минуты

Слайд 34

До завершения тестирования осталось 2 минуты

Слайд 35

До завершения тестирования осталось 1 минута

Слайд 36

ТЕСТИРОВАНИЕ ЗАВЕРШЕНО

Слайд 37

Слайд 38

ПРОВЕРИМ ТЕСТ 1. Переведите с древнегреческого слово «атом». 2. Кто из учёных впервые открыл явление радиоактивности? Маленький Простой Неделимый Твёрдый Д. Томсон Э. Резерфорд А. Беккерель А. Эйнштейн

Слайд 39

ПРОВЕРИМ ТЕСТ 1. Переведите с древнегреческого слово «атом». 2. Кто из учёных впервые открыл явление радиоактивности? Маленький Простой Неделимый Твёрдый Д. Томсон Э. Резерфорд А. Беккерель А. Эйнштейн

Слайд 40

Слайд 41

ПРОВЕРИМ ТЕСТ 3. - излучение – это 4.  - излучение – это Поток положительных частиц Поток отрицательных частиц Поток нейтральных частиц Поток положительных частиц Поток отрицательных частиц Поток нейтральных частиц

Слайд 42

ПРОВЕРИМ ТЕСТ 3. - излучение – это 4.  - излучение – это Поток положительных частиц Поток отрицательных частиц Поток нейтральных частиц Поток положительных частиц Поток отрицательных частиц Поток нейтральных частиц

Слайд 43

Слайд 44

ПРОВЕРИМ ТЕСТ 5. - излучение – это 6. Что представляет собой  - излучение? Поток ядер гелия Поток протонов Поток электронов Электромагнитные волны большой частоты Поток положительных частиц Поток отрицательных частиц Поток нейтральных частиц

Слайд 45

ПРОВЕРИМ ТЕСТ 5. - излучение – это 6. Что представляет собой  - излучение? Поток ядер гелия Поток протонов Поток электронов Электромагнитные волны большой частоты Поток положительных частиц Поток отрицательных частиц Поток нейтральных частиц

Слайд 46

Слайд 47

ПРОВЕРИМ ТЕСТ 7. Что представляет собой - излучение? 6. Что представляет собой - излучение? Поток ядер гелия Поток протонов Поток электронов Электромагнитные волны большой частоты Поток ядер гелия Поток протонов Поток электронов Электромагнитные волны большой частоты

Слайд 48

ПРОВЕРИМ ТЕСТ 7. Что представляет собой - излучение? 6. Что представляет собой - излучение? Поток ядер гелия Поток протонов Поток электронов Электромагнитные волны большой частоты Поток ядер гелия Поток протонов Поток электронов Электромагнитные волны большой частоты

Слайд 49

Критерии оценивания

Слайд 50

Вопросы 1. В чем заключается открытие, сделанное Беккерелем в 1896г? 2. Кто из ученых занимался исследованием данных лучей? 3. Как и кем было названо явление самопроизвольного излучения некоторыми атомами? 4. В ходе исследования явления радиоактивности, какие неизвестные ранее химические элементы были открыты? 5. Что доказывает опыт Резерфорда? 6. Как были названы частицы, входящие в состав радиоактивного излучения? 7. О чем свидетельствует явление радиоактивности?

Слайд 51

Домашнее задание § 55 (старый учебник), §65 (новый учебник) Ответьте на вопросы после параграфа. Вопрос??? Почему опыт Резерфорда доказывает сложное строение атома?

Посмотреть все слайды